Supplemental Materials

Inventory

- 1. Table S1
- 2. Table S2
- **3.** Supplemental Figures 1-8

Patients and tumor characteristics	Value
	Mean \pm SD (range) or No (%) N=16
Age (year)	61.25 ± 8.25
Gender	
Male	6 (37.5%)
Female	10 (62.5%)
Histology	
Adenocarcinoma	10 (62.5%)
Squamous cell carcinoma	6 (37.5%)
TNM stage	
I	11 (68.75%)
П	3 (18.75%)
Ш	2 (12.5%)
IV	0
T- factor	
Γ1	6 (37.5%)
Γ2	9 (56.25%)
Г3	1 (6.25%)
Τ4	0
N- factor	
N0	13 (81.25%)
N1/2	3 (18.75%)
Smoking status	
Non-smoker	3 (18.75%)
Smoker	13 (81.25%)

Table S1. Clinicopathological Features of Human NSCLC Patients

Gene		Primers	
mc-Maf	Forward	5'-AGCAGTTGGTGACCATGTCG-3'	
	Reverse	5'-TGGAGATCTCCTGCTTGAGG-3'	
mCSF-1R	Forward	CAGCAATGTGTTTCCGCCC	
CNS+3	Reverse	TCAAACCCCCTGTCAGGTCT	
mCSF-1R CNS-5	Forward	TGAGAAGCGAGAGCCCTAAGT	
	Reverse	CACCAGATTGTCCACCTCCAC	
mCSF-1R CNS+0.6	Forward	CCTAGGCTTTGACTCACGGT	
	Reverse	ACTCCCAGGTAACACCCCAA	
mCSF-1R CNS+0.7	Forward	CTGGGGACAAGGGGACATAC	
	Reverse	TCGAGTTGAGTTGACTGGCA	
mIL-10	Forward	5'-AGTGGAGCAGGTGAAGAGTG-3'	
	Reverse	5'-TTCGGAGAGAGGTACAAACG-3'	
mArginase 1	Forward	5'-TTTTAGGGTTACGGCCGGTG-3'	
mArginase-1	Reverse	5'-CCTCGAGGCTGTCCTTTTGA-3'	
mIL-1β	Forward	5'- GCCACCTTTTGACAGTGATGAG-3'	
	Reverse	5'- GACAGCCCAGGTCAAAGGTT-3'	
mIL-6	Forward	5'- AAGACAAAGCCAGAGTCCTTCA-3'	
	Reverse	5'- AGAGCATTGGAAATTGGGGT-3'	
mTNF-α	Forward	5'- TGTAGCCCACGTCGTAGCAAA-3'	
	Reverse	5'- GCTGGCACCACTAGTTGGTTGT-3'	
miNOS	Forward	5'- GGTGAAGGGACTGAGCTGTTA-3'	
	Reverse	5'- CAACGTTCTCCGTTCTCTTGC-3'	
mIL-12p35	Forward	5'- CTCCTAAACCACCTCAGTTTGG-3'	
	Reverse	5'- CATGATCGATGTCTTCAGCAGT-3'	
mβ-MG	Forward	5'-CTTTCTGGTGCTTGTCTC-3'	
	Reverse	5'-TCAGTATGTTCGGCTTCC-3'	
mVEGF	Forward	5'-TTACTGCTGTACCTCCACC-3'	
	Reverse	5'-ACAGGACGGCTTGAAGATG-3'	

 Table S2. Primer sequences for qRT-PCR and ChIP-qPCR

mIRF4	Forward	5'- CCATTGAGCCAAGCATAAGG-3'
	Reverse	5'- CTCGTCGTGGTCAGCTCTTT-3'
mIRF5	Forward	5'-AATACCCCACCACCTTTTGA-3'
	Reverse	5'-TTGAGATCCGGGTTTGAGAT-3'
mIRF8	Forward	5'-CTACTGCACAGCAACCGCAA-3'
	Reverse	5'-ACCACCCTGCTGTCAGGTA-3'
mTGE-81	Forward	5'-TGCTAATGGTGGACCGCAA-3'
mior-pi	Reverse	5'-CACTGCTTCCCGAATGTCTGA-3'
mCCL5	Forward	5'-CAATCTTGCAGTCGTGTTTG-3'
	Reverse	5'-GGAGTGGGAGTAGGGGATTA-3'
mCCR2	Forward	5'-GGAGAAAAGCCAACTCCTTC-3'
	Reverse	5'-AGGCAGTTGCAAAGGTACTG-3'
hB2M	Forward	5'- TCTTTCAGCAAGGACTGGTCT-3'
	Reverse	5'- ACATGTCTCGATCCCACTTAAC-3'
hc-Maf	Forward	5'- CAGCAAGGAGGAGGTGATCC-3'
	Reverse	5'- GGTTCTTCTCCGACTCCAGG-3'
bII -10	Forward	5'-CCCACTTCCCAGGCAACCTGC-3'
IIIL-10	Reverse	5'-CCCAGGGAGTTCACATGCGCC-3'
hIL-12p35		Hs-IL12A-1-SG (Qiagen, Cat.no.: QT00000357)
hIL-23p19	Forward	5'- GCTTCATGCCTCCCTACTGG-3'
	Reverse	5'- TTGAAGCGGAGAAGGAGACG-3'
hTNF-α	Forward	5'-ACCCACGGCTCCACCCTCTC-3'
	Reverse	5'-CCCTCTGGGGGGCCGATCACT-3'
hIL-6	Forward	5'-TCCCCTCCAGGAGCCCAGCTA-3'
	Reverse	5'-CAGGGCTGAGATGCCGTCGAG-3'

Figure S1. c-Maf inhibition abrogates CD115 expression and reduces M2 BMM-mediated T cell suppression. (A) M2 BMM were treated with c-Maf inhibitor or vehicle and c-Maf and CD115 expression levels were detected by flow cytometry. Representative histograms and summarized expression levels are shown. MFI: mean fluorescent intensity. Representative of at least three experiments. Data are shown as mean \pm SEM. *****P* <0.0001, by one-way ANOVA analysis with Dunnett's multiple comparisons test. (B) Splenocytes from OT-I or OT-II mice were labeled with CFSE and then co-cultured with polarized M2 BMM in the presence of c-Maf inhibitor or vehicle control for 3 days. Cells without M2 BMM were used as control. Representative dot plots and summarized IFN- γ -producing CD4 and CD8 T cells are shown. Data are representative of at least two independent experiments with similar results. Data are shown as mean \pm SD (n=3). **P* <0.05, ***P* <0.01, ****P* <0.001, *****P* <0.001 by by one-way ANOVA with *post hoc t* test and Bonferroni's correction.

Figure S2. Conditional deletion of c-Maf in M2 macrophages leads to decreased CD115, CD206, and CD301 expression. (A, B) Polarized M2 BMM from c-Maf ^{f/f} control mice and LysM-cre;c-Maf ^{f/f} mice were lysed and c-Maf expression was determined by WB analysis (A) or intracellular flow analysis (B). (C) Single cell suspensions from lung, peritoneal cavity, and spleen were stained with CD11b and F4/80. Cells were gated on viable cells. (D, E, F, G). Polarized M2 BMM from c-Maf ^{f/f} control mice and LysM-cre;c-Maf ^{f/f} mice were stained for CD115 (D), CD206 (E), CD301 (F), and MHC II (G). Representative histograms or dot plots and summarized data are shown. Data are shown as mean \pm SEM. **P* <0.05, ***P* <0.01, ****P* <0.001, by two-tailed, unpaired *t* test.

Figure S3. Inhibition of c-Maf promotes anti-PD-1 therapeutic efficacy in LLC s.c model. (A) LLC-bearing mice were treated with c-Maf inhibitor Nivalenol (NIV) with or without anti-PD-1. Tumor growth curve is shown. ***P < 0.001 by mixed-effects two-way ANOVA with Sidak's multiple comparisons test. (**B**, **C**) Single cell suspensions from tumor and draining lymph node (DLN) were stimulated with PMA+ionomycin. Cells were stained for CD8 and intracellular TNF- α and IFN- γ production. Representative dot plots and summarized percentages of TNF- α - and IFN- γ -producing CD8⁺ T cells are shown. Cells were gated on CD8⁺ cells. Data are shown as mean \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, by one-way ANOVA with *post hoc t* test and Bonferroni's correction.

Figure S4. c-Maf is expressed in human M2 macrophages and regulates M2-related gene expression and CD115 and CD301 expression. (A) c-Maf expression in polarized human M1like and M2-like macrophages determined by flow cytometry and WB analysis. Data are representative of at least three independent experiments with similar results. (B) Human M2 macrophages were transfected with c-Maf (Si c-Maf) or control siRNA (Si C) and the specific gene mRNA expression levels were determined by qPCR. ****P* <0.001, *****P* <0.0001, by twotailed, unpaired *t* test. (C) Human M2 macrophages were treated with c-Maf inhibitor or vehicle control for 24 h and the expression levels of CD115 and CD301 were determined by flow cytometry. Representative histograms and summarized data are shown. Data are shown as mean \pm SEM. ****P* <0.001, *****P* <0.0001, by one-way ANOVA with Dunnett's multiple comparisons test.

Figure S5. Inhibition of c-Maf in human M2 macrophages abrogates its

immunosuppressive activity. Human polarized M2 macrophages were co-cultured with CFSElabeled autologous T cells stimulated with CD3/CD28 beads in the presence of c-Maf inhibitor or vehicle control DMSO for three days. Cell proliferation and intracellular IFN- γ production were determined by flow cytometry. Representative histograms, dot plots, and summarized data are shown. Data are shown as mean ± SEM. **P* <0.05, ***P* <0.01, *****P* < 0.0001 by one-way ANOVA with *post hoc t* test and Bonferroni's correction.

P score: Log-rank P value for Kaplan-Meier plot showing results from analysis of correlation between mRNA expression level and patient survival

Figure S6. High expression of c-Maf correlates with worse survival in human cancer

patients. Human protein atlas data show that high mRNA expression level of c-Maf is correlated with poor survival of human cancers. Log-rank P value is shown for Kaplan-Meier plots.

Figure S7. WGP treatment converts M2 BMM and immunosuppressive TAM into an M1like phenotype leading to reduced tumor progression with enhanced antitumor T cell response. (A) Polarized mouse M2 BMM were treated with WGP β -glucan (150 μ g/ml) for 24 h and the mRNA expression levels of indicated genes were determined by qPCR analysis. Data are representative of at least three independent experiments. (B) LLC-bearing mice (n=7-8) were treated with or without oral WGP β -glucan daily. Tumor growth curve is shown. ****P < 0.0001. by two-way repeated measures ANOVA with Sidak's multiple comparisons test. (C) Mice (n=6-10) depleted with or without macrophages using Clodronate were injected with LLC cells. Mice were treated with or without oral WGP β-glucan daily when tumors were palpable. Tumor growth was recorded. *P < 0.05, by two-way repeated measures ANOVA with Sidak's multiple comparisons test. (**D**) TAM were sorted from WGP β -glucan treated mice or control mice. The mRNA expression levels of indicated genes were determined by qRT-PCR. *P <0.05, **P <0.01, by two-tailed, unpaired t test. (E) Single cell suspensions from spleen, draining lymph node (DLN), and tumor were stimulated with PMA+ionomycin. Cells were stained for CD8 and intracellular IFN-γ production. Representative dot plots are shown. Cells were gated on CD8⁺ cells. Summarized frequencies of total CD8 T cells (gated on the total viable cells) and IFN-yproducing CD8⁺ T cells are also shown. Data are shown as mean \pm SEM. *P <0.05, **P <0.01, by two-tailed, unpaired t test.

Figure S8. WGP β-glucan treatment downregulates c-Maf expression in murine M2 BMM and TAM. (**A**) M2 BMM from WT or dectin-1 KO mice were treated with WGP β-glucan (150 µg/ml) for 24 h and c-Maf was detected by WB. (**B**) TAM sorted from LLC-bearing mice were treated with WGP β-glucan for 24 h and c-Maf was determined by WB and qRT-PCR analysis. *****P* <0.0001, by two-tailed, unpaired *t* test. (**C**) M2 BMM transfected with c-Maf (Si c-Maf) or control siRNA (Si C) were stimulated with WGP β-glucan for 6 h and then assayed for the specific gene mRNA expression levels by qRT-PCR. The relative fold increase was calculated using corresponding medium alone (Si-c-Maf or Si C) as baseline. ***P* <0.01, ****P* <0.001, *****P* <0.0001, by two-way ANOVA with Sidak's multiple comparisons test.