The influence of phonon softening on the superconducting critical temperature of Sn nanostructures

Kelly Houben¹, Johanna K. Jochum¹, Sebastien Couet², Enric Menéndez², Thomas Picot¹, Michael Y. Hu³, Jiyong Y. Zhao³, Esen E. Alp³, André Vantomme², Kristiaan Temst² & Margriet J. Van Bael¹

¹Quantum Solid State Physics, Celestijnenlaan 200D, B-3001 Leuven, Belgium
²Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
³Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA

1 Supplementary Information

Eliashberg formalism: The Eliashberg formalism is the natural development of the BCS theory to include retardation effects, due to the slow response of the phonons in comparison to the electron response (1; 2).

The phonon spectrum is linked to the superconducting transition temperature T_C by the following relationship (3):

$$T_C = \frac{0.25}{(e^{2/\lambda_{eff}} - 1)^{\frac{1}{2}}} \langle \Omega^2 \rangle^{\frac{1}{2}}$$
(1)

The characteristic phonon frequency $\langle \Omega^2 \rangle^{1 \over 2}$ and the electron - phonon coupling constant λ

are defined analoguously to the ADMM formalism (see Eqs. 6 and 3 respectively).

 λ_{eff} is the effective coupling constant, given by the following expression:

$$\lambda_{eff} = \frac{\lambda - \mu^*}{1 + 2\mu^* + \lambda\mu^* t(\lambda)},\tag{2}$$

where μ^* , is the Coulomb pseudopotential of the material and corresponds to a renormalized Coulomb repulsion. $t(\lambda)$ is a universal function given by:

$$t(\lambda) = 1.5e^{-0.28\lambda} \tag{3}$$

Eq. 1 holds for any strength of the electron phonon coupling (λ) (3). $\alpha^2(E)$ as well as μ^* were determined in the same manner as for the ADMM formalism. A small difference in μ^* was found for the two formalisms: $\mu^*_{ADMM} = 0.117$ while $\mu^*_E = 0.119$. And while, as shown in Fig. ??, the values for T_C do not perfectly coincide, the discrepancy between the calculated values is small and lies well within the errorbars of each other.

- 1. G. M. Eliashberg, "Interactions between electrons and lattice vibrations in a superconductor," *Sov. Phys.-JETP (Engl. Transl.);(United States)*, vol. 11, no. 3, 1960.
- F. Marsiglio and J. P. Carbotte, "Electron-phonon superconductivity," in *Superconductivity*, pp. 73–162, Springer, 2008.

3. V. Z. Kresin, "On the critical temperature for any strength of the electron-phonon coupling," *Physics Letters A*, vol. 122, no. 8, pp. 434–438, 1987.