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Figure S1. Characterization of BRE:GFP signalling gradients. Related to Figure 1.  

A-I Inhibition of BMP signalling leads to fin growth defects. A-B SEM of fins expressing dominant 

negative BMP receptor in transgenic fish (dnBmpr-GFP+, B) or in sibling controls (A), at 78 hpf 

(for heat-shock conditions, see STAR Methods). C Average PD and AP lengths of fins in 

conditions as in A-B. D Average PD and AP lengths of fins of conditions as in E-H. Mean ± s.e.m. 

are shown in all bar graphs. For all statistical analyses: ***P<0.0001; **P<0.01; *P<0.05; two-

tailed, unpaired, non-parametric Mann–Whitney tests. E-H Live imaging of BRE:d2GFP; H2B-

mCherry transgenics, in DMH1-treated (G-H) and control larvae (E-F), at 72 hpf (for inhibitor 

conditions, see STAR Methods). I Average intensity of BRE:GFP signal versus relative position 

(ROI midline) in DMH1-treated (yellow) and control larvae (blue), in conditions as in E-H. J-K 

Phospho-Smad1/5/9 immunostaining (red) and DAPI (blue), at 60 hpf. L Comparison between 

average intensities of normalized Phospho-Smad1/5/9 (red, from immunostaining) and BRE:GFP 

(green, from live imaging) versus relative position (ROI midline). M-N Bmp receptor 1b 

immunostaining (red) and DAPI (blue), at 60 hpf. O Average intensity of BmpR1b signal versus 

relative position (ROI midline). P-Q Fin of double transgenic BRE:GFP (green) and Histone2b-

mCherry (red) at 54 hpf. Dash outline delimits the AP ROI used for quantification. R Cropped 

BRE:GFP gradient along the AP ROI from P. S Average intensity of BRE:GFP signal versus 

relative position (AP ROI), at 48 and 54 hpf. T-U Live imaging of BRE:GFP (green); H2B-mCherry 

transgenics (red), at 78 hpf. Note that at 78 hpf (and later, not shown) BRE:GFP drives high levels 

of expression in individual cells (arrowheads) in the fin fold adjacent to the endoskeletal disc in a 

pattern different to the gradient considered in this study. All shadowing in graphs, s.e.m. per 

relative position. n represents number of fins analysed. All fin images: anterior, left; distal, down. 

Region of interest (ROI midline), white highlight. BRE:GFP transgene used: BRE:d2GFP (Collery 

and Link, 2011) (E-I); BRE:eGFP (Laux et al., 2011) (L-P, T-U). Scale bars, 50µm (A-B, E,G,J-K, 

M-N, P-R, T); 20µm (R). 

  



 
 

 

 



 
 

 

 

Figure S2. Cartesian system to measure the gradients and scaling. Related to Figures 1 

and 3.  

A DV fin lengths (from live imaging of H2B-mCherry transgenics), at different developmental 

stages. Note that there is no growth along the DV axis in the stages considered in this study. B 

Average intensities of BRE:GFP at different developmental stages versus relative position (ROI 

midline). C Intensity of individual BRE:GFP profiles versus relative position (ROI midline) from 48 

to 78 hpf. D Fin of double transgenic BRE:GFP (green) and Histone2b-mCherry (red) from Fig. 

1A. Region of interest (ROI), with midline (blue). 𝑃𝐷 length, distance between the proximal base 

of the fin and its distal tip along the PD axis. 𝐴𝑃 length, distance between the anterior-most part 

of the fin to its posterior-most position (white lines). Cartoon indicates fin axes and endoskeletal 

disc (ed). Scale bar, 50µm. E-F BRE:GFP intensity profiles versus x (E) or y (F) position for the 

posterior gradient in D, with respective decay lengths (λ, slope), ± s.e.m. Here 𝑥 = 0 (E) or 𝑦 = 0 

(F), position of peak signal as indicated in D (black dots). Black lines, exponential fits with 

respective goodness of fit (R2). G-J Decay lengths 𝜆 from exponential fits obtained from BRE:GFP 

intensity profiles in x versus PD length (G-H) or in y versus AP length (I-J). Slope (𝜙) values ± 

s.e.m. are shown. Lines, linear fits with goodness of fit (R2). K-M Gradient signalling levels 

decrease along ROI midline, at 60 hpf. K Comparison between BRE:GFP average intensity per 

cell in proximal and distal areas of the gradient. L Comparison between the percentage of H2B-

mCherry positive cells which are positive for BRE:GFP in proximal and distal areas of the gradient. 

M Nuclear density measured by H2B-mCherry signal along the ROI midline, showing that cell 

density is approximately homogeneous along the endoskeletal disc. Light blue, individual fin 

profiles; dark blue line, average intensity; shadowing, s.e.m. per relative position. Black dash 

indicates the most distal position in ROI, where density is similar to proximal positions. For all 

statistical analyses: ***P<0.0001; two-tailed, unpaired, non-parametric Mann–Whitney tests. 

Mean ± s.e.m. are shown in all graphs. n represents number of fins analysed, except in K, where 

n equals number of cells. BRE:GFP transgene used: BRE:eGFP (Laux et al., 2011).   



 
 

 

 



 
 

 

Figure S3. Smoc1 expression pattern in the pectoral fin. Related to Figure 4.  

A-B, D-E, G-H Smoc1 immunostainings in pectoral fins at different times. Blue area, ROI. C,F,I 

Average intensity of normalized Smoc1 immunostaining signal versus relative position (along ROI 

midline). Light blue, individual profiles; dark blue, mean; shadowing, s.e.m. per relative position, 

Anterior, left; distal, down. J-K smoc1 transcript pattern in pectoral fins (in situ hybridization using 

antisense probe) at 48 hpf. Dashed line, fin border. Asterisk highlights distal region of higher 

smoc1 expression. L RT-PCR of cDNA of 24 hpf embryos in different conditions, including wildtype 

and two different concentrations of the splicing morpholino. Arrowheads, amplicons corresponding 

to the event of splicing block. M Sequences of wildtype, Smoc1 heterozygotes and Smoc1 

homozygotes. Red box highlights nucleotide affected. N Western blots using mCherry (left) and 

Smoc1 (right) antibodies, performed in extracts from WT embryos and overexpression embryos 

injected with indicated mRNAs. Green asterisk highlights residual mCherry translation in embryos 

injected with smoc1ug104-mCherry mRNA, which recapitulates the mutation of the CRISPR mutant. 

Because mCherry is C-terminal, this indicates a low level of read-through across the mutation 

caused by CRISPR, as previously reported (Schueren and Thoms, 2016). Green arrowheads 

indicate that the antibody against human Smoc1 recognizes the overexpressed zebrafish Smoc1. 

Anti-panActin antibody for the loading control. O-T Embryos highlighting the eye regions (dash) 

for different experimental conditions, at 30 hpf. U Average eye area for the conditions tested in O-

T. For all statistical analyses: ***P<0.0001; two-tailed, unpaired, non-parametric Mann–Whitney 

tests. Mean ± s.e.m. are shown in all bar graphs. n represents number of fins analysed, except in 

U, where n equals number of eyes. Scale bars, 50µm. 

  



 
 

 

 



 
 

 

 

Figure S4. Smoc1ug104 mutant and morphants scaling phenotype. Related to Figures 3 and 

5.  

A-H Gradient collapse analysis. Relative BRE:GFP concentration profiles 𝐶(𝑟, 𝑡)/𝐶0(𝑡) versus 

relative position in ROI, from 48 to 78 hpf, in wildtype (A, C) and Smoc1-/- mutants (E, G). Blue 

line represents the average curve of the profiles; standard deviation (shadows) per relative 

position is shown. B, D, F, H Density plots of the gradients in A, C, E, F. LUT corresponds to the 

fraction of normalized gradients passing through a certain bin. Bin size: 0.05 for ordinates and 

0.05 for abscissas. I-J Phospho-Smad1/5/9 immunostainings showing gradients in Smoc1 

homozygote mutants (J) and wildtype controls (I) displayed as straightened ROI, like in Fig. 1D, 

at 60 hpf. K-L Decay length 𝜆 versus ROI half-length (𝐿) of Phospho-Smad1/5/9 anterior (K) and 

posterior (L) wildtype gradients. Pink dots, individual data; black dots, average from length bins ± 

s.e.m. Lines, linear fits with goodness of fit: 𝜙𝐴 𝑅2=0.50; 𝜙𝑃 𝑅2=0.51. M Comparison of slope 

values, 𝜙 = 𝜆/𝐿 from Phospho-Smad1/5/9 gradients in wildtype or Smoc1-/- conditions. N-O 

Decay length 𝜆 versus ROI half-length (𝐿) in anterior (N) or posterior (O) Phospho-Smad1/5/9 

gradients, in Smoc1-/- mutants (black and blue). Blue dots, individual data; black dots, average 

from length bins ± s.e.m. Black lines, linear fits with goodness of fit: 𝜙𝐴 𝑅2=0.22; 𝜙𝑃 𝑅2=0.48. Pink 

lines correspond to wildtype data from K-L. P Comparison of offsets from linear fits of scaling plots 

of BRE:GFP (from Fig. 3C-D, Fig. 5D-E) or Phospho-Smad1/5/9 (from K-L, N-O) gradients in 

wildtype and Smoc1-/- mutants. Q-V Gradient analysis in smoc1 morphants. Q,T SEM images of 

pectoral fins of larvae injected with control morpholino (Q) or the smoc1 splicing morpholino (T). 

Anterior on the left, distal down. R-S, U-V Decay length, 𝜆, versus ROI half-length (𝐿), in control 

morphants (R-S) or smoc1 morphants (U-V). Lines, linear fits with goodness of fit: in controls 𝜙𝐴 

𝑅2=0.53; 𝜙𝑃 𝑅2=0.56; smoc1 morphants 𝜙𝐴 𝑅2=0.05; 𝜙𝑃 𝑅2=0.59. Note that the s.e.m. for the 

slope of the anterior smoc1 morphant gradient is compatible with abolished scaling (slope = 0). 

W-X Decay length 𝜆 versus ROI half-length (𝐿) in anterior (W) or posterior (X) BRE:GFP gradients 

of Smoc1-/- mutants (Figure 5C-D with individual data); Lines, linear fits with goodness of fit: 

𝜙𝐴 𝑅2=0.02; 𝜙𝑃 𝑅2=0.26. In all scaling plots: slope (𝜙) values ± s.e.m. are shown. Mean ± s.e.m. 

are shown in all bar graphs. n represents number of fins analysed. For all statistical analyses: 

**P<0.01, *P<0.05; two-tailed, unpaired, non-parametric Mann–Whitney tests. BRE:GFP 

transgene used: BRE:eGFP (Laux et al., 2011). Scale bars: 20µm (I, J), 50µm (Q,T).   

 

  



 
 

 

 



 
 

 

Figure S5. Smoc1ug104 mutant rescue leads to gradient over-scaling. Related to Figure 5.   

A-B Decay length 𝜆 versus ROI half-length (𝐿) in anterior (A) or posterior (B) gradients of      

Smoc1-/- mutants injected with 20pg smoc1 mRNA (rescue; blue fit lines and dots). Slope (𝜙) 

values for rescue ± s.e.m. are shown. Lines, linear fits with goodness of fit: Smoc1-/- rescue 

𝜙𝐴 𝑅2=0.49; 𝜙𝑃 𝑅2=0.51. Green corresponds to wildtype data from Fig. 3C-D; black represents 

Smoc1-/- data from Fig. 5D-E. BRE:GFP transgene used: BRE:eGFP (Laux et al., 2011). C-K 

Smoc1 (magenta) and mCherry (yellow) immunostaining expression in wildtype (C-E), Smoc1-/- 

mutants (F-H) or in Smoc1-/- mutants injected with 20pg of smoc1-mCherry mRNA (rescue) (I-K), 

at 48 hpf. Anterior on the left, distal down. L-M Average intensity of normalized Smoc1 (L) or 

mCherry (M) immunostainings versus relative position (ROI midline) in wildtype (blue), or     

Smoc1-/- mutants injected with 20pg smoc1-mCherry mRNA (rescue, yellow). Intensities were 

normalized to the wildtype maxima for comparison. Shadowing corresponds to s.e.m. per relative 

position. n represents number of fins analysed. Scale bars, 50µm. 
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Data S1. Western blot source data. Related to STAR Methods and Fig. S3N.  

Uncropped scans with size marker indications for Fig. S3N. A Uncropped scans of anti-mCherry 

and anti-Smoc1 blots. B Uncropped scan of loading control anti-panActin. 

 

 



 
 

 

 

Data S2. Scaling of BMP signalling gradients (full datasets). Related to STAR Methods and 

to Figs. 3, 5, S4, S5.  

A-B 𝑅2 statistical analysis of BRE:GFP gradients. 𝑅2 values obtained from linear fits in scaling 

plots (decay length, 𝜆, vs. fin length, 𝐿) versus 𝑅2 cut-off of individual BRE:GFP exponential fits, 

in wildtype (A) or Smoc1-/- mutants (B). Dashed lines, 𝑅2 cut-off in which the quality of the scaling 



 
 

 

plot fit improves considerably. Based on this, we considered for the scaling plot analysis only the 

profiles whose exponential gradients presented 𝑅2 ≥ 0.8. The estimation of decay length from fits 

with 𝑅2 < 0.8 is likely to be inaccurate. C-E Decay length versus ROI half-length (𝐿) in wildtype 

(C, E) and Smoc1 homozygote mutants (D, F). Black lines, linear fits to individual data, with 

goodness of fit, 𝑅2. Black dots, average from length bins ± s.e.m. Slope (𝜙) and offset values ± 

s.e.m. are shown. n represents number of fins analysed. BRE:GFP transgene used: BRE:eGFP 

(Laux et al., 2011). 

 

 

 

 

Methods S1. Theoretical Framework. Related to Figs. 3, 5, S3, S4, S5.  

1. Growth control and gradient scaling in two-dimensional geometries; 2. Amplitude power-law 

and growth control by relative time derivative of signaling; 3. Theory for ubiquitous expression of 

smoc1. 

 



1. Growth control and gradient scaling in two dimensional geometries

I. HOMOGENEOUS AND ANISOTROPIC TISSUE GROWTH

We consider a tissue in three dimensions described by a coordinate system with the x-axis

along the proximal-distal (PD) axis, the y-axis along the anterior-posterior (AP) axis and the

z-axis along the dorsal-ventral (DV) axis. We discuss tissue growth that is is homogeneous

and anisotropic and focus on the simple case where no growth occurs along the z-axis. The

tissue size is characterized by the extensions along the main axies: Lx denotes the tissue

size along the PD axis, Ly the size along the AP axis and Lz along the DV axis.

The area growth rate is

g =
Ȧ

A
(1)

The area growth rate can also be written as

g =
L̇x
Lx

+
L̇y
Ly

(2)

where the dot denotes a time derivative. For homogeneous isotropic growth in the x-y plane,

the cell velocity field is given by

vx =
g

1 + ε
x (3)

vy =
gε

1 + ε
y (4)

Here ε characterizes the growth anisotropy. For ε = 1 growth is isotropic, for ε = 0 growth

is solely along the x-axis and in the limit of large ε growth is solely along the y-axis. The

rates of change of tissue size then obey

L̇x =
g

1 + ε
Lx (5)

L̇y =
gε

1 + ε
Ly (6)

If ε is constant, the tissue sizes then scale as Lx ∼ L1/ε
y .

II. GROWTH CONTROL BY RELATIVE RATES OF CONCENTRATION IN-

CREASE

We have recently proposed a general principle of growth control based on the idea that

increases in growth factor or morphogen levels stimulate growth at a rate that is proportional



to the relative rate of increase in concentration (Wartlick et al., 2011, 2014). A given cell uses

receptors on its surface and a signaling pathway to detect changes in the concentration ccell =

c(xcell, ycell) at the position (x, y) = (xcell, ycell) of the cell. Here c(x, y) is the morphogen

concentration profile in space of a growth factor.

The growth at a rate g is generated as signaling output of the system with

g = β−1 ċcell

ccell

(7)

where

ċcell = ∂tc(x, y, t) + v · ∇c(x, y, t) (8)

is obtained using a time derivative in the reference frame that moves with the cells at velocity

v = (vx, vy). It was shown before in a simpler case of one dimensional gradients that growth

resulting from this growth control rule is spatially homogeneous if morphogen profiles scale

(Wartlick et al., 2011, 2014).

III. SCALING OF THE MORPHOGEN PROFILE

We consider a morphogen profile that varies along the x axis only. Scaling of the mor-

phogen profiles implies that if the tissue length Lx is rescaled by the tissue extension in x

direction, the shape of the profile is not changed but the overall amplitude can be time-

dependent. Scaling of the morphogen profile implies that it can be written as

c(x, y, t) = C0(t) Ξ

(
x

Lx(t)

)
(9)

Here C0(t) is the time dependent amplitude and the shape function Ξ(rx) with rx = x/Lx is

independent of time. If the profile c scales and growth is homogeneous, we have ċcell = Ċ0.

In this case the growth rate becomes

g = β−1 Ċ0

C0

(10)

independent of position in the three dimensional tissue.

If the amplitude C0(t) increases with system size as a power law with exponent q, we

have

C0 ∼ Lqx ∼ Lq/εy (11)



we then find
Ċ0

C0

= q
L̇x
Lx

=
q

ε

L̇y
Ly

(12)

Using Eq. (2) we then have

g =
1 + ε

q

Ċ0

C0

(13)

This is consistent with the growth rule if β = q/(1 + ε). Thus the signature of homogeneous

growth due to a scaling morphogen profile is that the amplitude C0(t) increases with system

size with an exponent q.

A. Scaling in the pectoral fin of the zebrafish

In order to test whether the profiles c(x, y, t) observed in the fin actually scale during

growth, we consider concentration profiles along the center line of a curved region of interest

(ROI). The centerline shape can be defined as a time independent scaling function y =

Lyf(x/Lx) which for given value of x provides the y coordinate of the ROI centerline. We

then consider the linear profiles along the ROI centerline

cx(x, t) = c(x, Lyf(x/Lx)) (14)

cy(y, t) = c(Lxf
−1(y/Ly), y) (15)

where f−1 denotes the inverse of the function f . If the profiles c(x, y, t) scale, then

cx(x, t) = C0(t)ξ(x/Lx) (16)

cy(y, t) = C0(t)ξ(f−1(y/Ly)) (17)

and the normalized profiles cx/C0 = ξ(rx) and cy/C0 = ξ(f−1(ry)) collapse each on a single

curve. Fitting exponential functions cx/C0 ' exp(−rx/λ̄x) and cy/C0 ' exp(−ry/λ̄y) with

fit parameters λ̄x and λ̄y to these collapsed profiles provides the scaling of decay lengths in

x and y directions with system sizes λx ' λ̄xLx and λy ' λ̄yLy.

IV. GROWTH CONTROL AND GRADIENT SCALING IN TWO DIMENSIONS

We consider a morphogen that is secreted within a localized source, diffuses isotropically

and is degraded

∂tc+ vx∂xc+ vy∂yc = D∂2
xc+D∂2

yc− (k + g)c+ s(x) = 0 (18)



Here k denotes the degradation rate and D is a diffusion coefficient. Here the source is a

stripe along the y-axis with s(x) = νθ(wx − x)θ(wx + x), where wx is the half source width

and θ denotes the Heavyside function. We consider growth regulated by relative changes of

concentration perceived by a cell in the dynamic tissue

g =
1

β

∂tc+ vx∂xc+ vy∂yc

c
(19)

If growth is homogeneous, the velocity fields are

vx =
g

1 + ε
x (20)

vy =
gε

1 + ε
y (21)

The system sizes in x was and y directions grow as

L̇x =
g

1 + ε
Lx (22)

L̇y =
gε

1 + ε
Ly (23)

We are looking for solutions to the dynamic equations with homogeneous growth that scale

with system size

c(x, y, t) = C0(t)ξ(
x

Lx
) (24)

We thus have

0 =
D

L2
x

∂2
rxξ(rx, ry)− (k + g(1 + β))ξ(rx) + s(rx)/C0(t) (25)

where rx = x/Lx . We can also write this as

0 = ∂2
rxξ −

kgL
2
x

D
ξ +

sL2
x

DC0

(26)

where kg = k + g(1 + β). Scaling solutions exist for C0 ∼ L2
x and kg ∼ L−2

x . We thus find

the solutions

c(x, t) =
ν

k + g(1 + β)

(
1− sinh(Lx/λ− wx/λ))

sinh(Lxλ)

)
cosh(x/λ) (27)

for x < wx, and

c(x, t) =
ν

k + g(1 + β)

sinh(wx/λ))

sinh(Lxλ)
cosh((Lx − x)/λ) (28)

for x > w, where

λ =

(
D

k + g(1 + β)

)1/2

. (29)



We thus have C0 ∼ ν/(k + g(1 + β)). The growth law implies βg = d logC0/dt. Since we

also have g = (1 + ε)d logLx/dt and C0 ∼ L2
x, scaling solutions exist for a specific value of

β = βc with βc = 2/(1 + ε).

2. Amplitude power-law and growth control by relative time

derivative of signalling

Below is a summary of some theoretical considerations discussed in previous reports

(Aguilar-Hidalgo et al., 2018; Wartlick et al., 2011, 2014), which are relevant to this work

and presented here for convenience. We find an empirical power-law relationship between

the gradient amplitude and the length of the organ as C0 ∼ Lx
q, with Lx the tissue length

along the x axis. Because of scaling, the concentration of the morphogen in any cell in the

tissue remains proportional to the amplitude, C0 ∼ Ccell and therefore also Ccell ∼ Lx
q. The

time derivative of this expression gives gx = 1
q
Ċcell

Ccell
, with gx the linear growth rate along

the x axis, i.e. gx = L̇x

Lx
; and Ċcell the time derivative of morphogen concentration in a

cell. Considering a constant growth anisotropy ε = gy/gx, then the area growth rate is

g = gx + gy = (1 + ε)gx. Therefore g = (1+ε)
q

Ċcell

Ccell
.

To calculate the relative increase in cellular morphogen concentration α = ∆Ccell/Ccell

during a cell cycle of duration θ, we approximate Ċcell ≈ ∆Ccell/θ and θ ≈ log(2)/g. These

approximations are fair, since Ċcell and g change in time scales which are longer than θ.

We then plug these approximations in the g equation above to obtain log(2)
θ

= 1+ε
q

∆Ccell/θ
Ccell

,

from where α = ∆Ccell/Ccell ≈ log(2) q
(1+ε)

. In the fin bud, with q = 0.9 and ε = 0.65, then

α = 0.38. Therefore, fin cells divide when their BMP signaling levels increase by 38% from

the beginning of the cell cycle.

3. Theory for ubiquitous expression of smoc1

In the main text, we showed that in Smoc1-/- mutants injected with smoc1 mRNA, the

gradient length scale expands as the tissue grows and appears to scale. The scaling factor

in this experiment was larger than the one in control fins (Fig. 5F and Fig. S5A-B). In



this section we develop a theoretical framework within which to interpret these observations.

Our logic is based on the assumption that Smoc1 acts as an expander of the morphogen

by repressing its degradation as proposed in the expander-repression model by (Ben-Zvi,

D. and Barkai, 2010). In the original expander-repression model, the expander forms an

approximately flat profile and accumulates in the tissue over time because its production

is repressed by the morphogen, it diffuses very fast and its degradation is negligible. Here,

we show that this mRNA overexpression experiment recapitulates the circumstances of an

expander-repression circuit.

Let us consider an expander molecule, E, that is transcribed everywhere in a tissue. The

dynamics of E are then described by,

DtE = ∇(DE∇E)− (kE + g)E + sE (30)

Where DE is the diffusion coefficient of E, kE is the degradation rate of E, g is the tissue

growth rate and sE is the source term that captures the production rate of E. For the

purposes of our analysis we assume that the diffusion coefficient is very large so that the

expander is uniform in space. Under these conditions Eq. (30) can be rewritten as,

∂tE0(t) =
1

L

∫ L

0
[−(kE + g)E0(t) + sE] dx (31)

We can evaluate the integral on the RHS to obtain,

∂tE0(t) = −(kE + g)E0(t) +
wE νE
L

(32)

Where E0(t) = E(0, t). We can integrate Eq. (32) and use E0(t) = 0 to obtain the following

expression for the time dependent concentration of E0(t),

E0(t) =
wEνE

L(kE + g)

(
1− e−(kE+g)t

)
(33)

For small (kE + g) we can use the approximation e−(kE+g)t ≈ 1− (kE + g)t which leads to,

E0(t) =
wEνEt

L
(34)

Following the original expander-repression model (Ben-Zvi, D. and Barkai, 2010), we assume

that the expander degradation is negligible. At the same time, the growth rate in our system

is very slow. It follows that Eq. (34) is approximately true. We are further assuming that



the expander is produced everywhere in the tissue (the mRNA is ubiquitously expressed) so

wE = L and Eq. (34) reduces to,

E0(t) = νEt (35)

It follows that the concentration of the expander accumulates over time. According to

the expansion-repression model, the morphogen degradation rate, k , is regulated by the

expander so that k decreases as the expander accumulates. We can therefore write the time

dependent decay length of the morphogen as,

λ =

√
D

k(E0(t))
(36)
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Methods Image 1. Theory of apparent scaling due to mRNA injection. The blue line

shows the relationship λ =
√

D
A
νE
v

[
L(t)− L̂

]
for

√
D
A
νE
v = 0.5 and L̂ = 10µm.

At the same time, the embryo grows continuously during development so that its size is an

increasing function of time, L(t) (and therefore time is an increasing function of length, t(L)).

It follows that λ becomes an increasing function of size which could in principle lead to the

expansion of the gradient over time and approximate scale (as observed in the experiments).

Methods Image 1 shows the predicted decay length versus size for a particular case where

k = A
E0(t)2

and L(t) = L̂ + vt for some constants A, L̂ and v. In principle, qualitatively

similar results are expected for other choices for the functions k(E0(t)) and L(t) as long as k



remains a decreasing function of the expander concentration and L is an increasing function

of time.

In summary, we show that overexpressing smoc1 by mRNA injection leads to the accu-

mulation of the expander over time and could in principle scale the gradient. The dynamics

of increasing expander concentration is in accordance with the expander-repression theory

proposed by (Ben-Zvi, D. and Barkai, 2010). Much like in the expander-repression model,

the mRNA injection leads to an increased concentration of the expander with the size of

the tissue. This is expected to expand the gradient as the tissue grows since the expander

suppresses the degradation of the morphogen.


