Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1

Han, Z; Jasnovidova, O; Haidara, N.; Tudek, A.; Kubicek, K; Libri, D; Stefl, R and O. Porrua.

List of supplementary material:

-Appendix Figures S1-S6.

-Appendix Tables S1-S6.

-Supplementary references.

Appendix Figure S1 (related to figure 3): A) Growth tests performed as in figure 3A but using strains harbouring the TAP-tagged versions of *SEN1* indicated on the left at the endogenous locus in the presence of a *URA3* plasmid (pFL38) expressing *SEN1*. **B**) Description of the degron system employed in this study to deplete Sen1. The *SEN1* endogenous locus is modified by inserting the sequence of an AID (auxin inducible degron) tag followed by a cassette for the expression of *Oryza sativa TIR1* (*OsTIR1*), an ubiquitin ligase. In the presence of auxin hormones such as indole-3-acetic acid (IAA), Tir1 recognizes the AID-tag and promotes polyubiquitylation and subsequent degradation of Sen1-AID by the proteasome. A growth test illustrating the inhibition of cell growth upon depletion of Sen1 is shown on the right. **C**) Western blot analysis of HA-tagged versions of Sen1 expressed from a centromeric plasmid in a Sen1-AID strain upon depletion of the chromosomally-encoded copy of Sen1 as in figure 3B. Tubulin is detected as a loading control.

Appendix Figure S2 (related to figure 3): A) Screenshot of a particular mRNA to illustrate the conversions operated on RNAPII (Rpb1) and Sen1 CRAC datasets to increase resolution. B) and C) Additional examples of CUTs exhibiting transcription termination defects upon deletion of the Nter that are exacerbated in the double $\Delta Nter \Delta NIM$ mutant. D) and E) Additional examples of snoRNAs showing transcription termination defects in Sen1 mutants. F-H)

Metagene analysis of the RNAPII distribution at the indicated classes of RNA in the presence of different Sen1 variants. Values on the y axis correspond to the mean coverage. Similar metagene analyses performed on quartiles for mRNAs (I) and CUTs (J), where Q1 represents the 25% of RNAs of the indicated class exhibiting the highest RNAPII occupancy in the wt.

Appendix Figure S3 (related to figure 5): A) Deletion of the Sen1 N-terminal domain does not affect the interaction of Sen1 with the S7P-CTD or with the unphosphorylated CTD. CoIP experiments using TAP-Sen1 as the bait. Sen1 proteins were expressed from pGAL in the presence of galactose. The Rpb3 subunit of RNAPII is detected as a control. Protein extracts were treated with RNaseA before immunoprecipitation. Samples correspond to the same experiment and were loaded in three different gels run. **B)** Western blot analysis of HA-tagged versions of the chimeric Sen1 proteins indicated from a centromeric plasmid in a Sen1-AID strain upon depletion of the chromosomally-encoded copy of Sen1 as in figure 3B. Tubulin is detected as a loading control.

Appendix Figure S4 (related to figure 6): A) Schematic of the main steps in a CRAC experiment. B) Results of the two purification steps of the different HTP (His₆-TEV-ProteinA)-tagged Sen1 variants in a typical CRAC experiment. Representative gels corresponding to one out of two independent biological replicates. Top: western blot showing results of the IgG-affinity purification step. E, eluates after cleavage of the protein A moiety using the TEV protease. B, protein remaining associated with IgG beads. Proteins were revealed using the PAP antibody. Bottom: silver-stained denaturing gel showing the results of the Ni-affinity purification step. M, molecular-weight marker. An asterisk indicates Sen1 proteolytic fragments of size similar to that of Sen1∆Nter that we typically obtain in all Sen1 purifications.

Appendix Figure S5 (related to figure 6): A-C) Metagene analysis of the normalized distribution of different Sen1 variants at the indicated classes of RNA. Values on the y axis correspond to the mean coverage. Similar metagene analyses performed on quartiles for mRNAs (D) and CUTs (E), where Q1 represents the 25% of RNAs of the indicated class exhibiting the highest wt Sen1 occupancy.

Appendix Figure S6: Analysis of the role of S5 phosphorylation for NNS-dependent transcription termination. Northern blot analyses of two well-characterized NNS-targets in either a *kin28* thermosensitive (ts) mutant (left) or a Rpb1-anchor away strain carrying a plasmid expressing either the wt or S5A versions of *RPB1* (right). Kin28 was inactivated by incubation at 37°C for the indicated times. Note that growth at 37°C induces mild termination defects in the control strain due to the presence of the *Δrrp6* mutation, which also confers a thermosensitive phenotype. The Rpb1-anchor away strains were treated for 2h with rapamycin to induce the nuclear depletion of the chromosomally-encoded Rpb1. The intermediate phenotype of this strain compared to the *kin28 ts* suggests incomplete depletion of the wt version of Rpb1 during the timeframe of the experiment. The expected RNA species resulting from inefficient termination (RT for readthrough species) are indicated. The *ACT1* mRNA is detected to provide a readout of the general decrease in transcription provoked by the inhibition of S5 phosphorylation. U4 RNA is used as a loading control. Representative gels of one out of two independent experiments. Probes used for RNA detection are described in table S14.

	Sen1 NIM			Trf4 NIM
_	Ko	d (µ	M)	Kd (μM)
wt	1.2	±	0.02	0.9 ± 0.02
L20D	16.9	±	1.5	13.4 ± 1.2
K21D	8.0	±	0.8	6.1 ± 0.4
S25D	76.1	±	14.2	53.9 ± 8.2
R28D	78.2	±	11.5	63.4 ± 4.0
I130A	7.6	±	0.3	4.5 ± 0.2
I130K	36.7	±	4.6	14.1 ± 1.2
1130N	8.9	±	0.5	6.1 ± 0.3
M126A	1.4	±	0.07	1.1 ± 0.02
R133A	1.8	±	0.08	1.4 ± 0.02
R133D	2.0	±	0.1	1.2 ± 0.05
R133G	1.6	±	0.04	1.3 ± 0.04

Appendix Table S1: Equilibrium binding of Nrd1 CID to Sen1 and Trf4 NIMs monitored by fluorescence anisotropy.

Appendix Table S2: NMR and refinement statistics for the Nrd1 CID–Sen1 NIM

complex

	Nrd1 CID-Sen1 NIM complex
NMR distance & dihedral constraints	
Distance restraints	
Total NOEs	2499
Intra-residue	654
Inter-residue	1845
Short	1273
Medium	645
Long	581
Hydrogen bonds	100
Intermolecular distance restraints	65
Total dihedral angle restraints ^a	222
Structure statistics ^b	
Violations (mean and s.d.)	
Number of distance restraint violations > 0.5 Å	0.05 ± 0.22
Number of dihedral angle restraint violations > 15°	1.1 ± 1.2
Max. dihedral angle restraint violation (°)	29.03 ± 27.63
Max. distance constraint violation (Å)	0.027 ± 0.12
Deviations from idealized geometry ^b	
Bond lengths (Å)	0.0037 ± 0.00008
Bond angles (°)	1.673 ± 0.013
Average pairwise r.m.s.d (Å) ^b	
Nrd1 CID (6-82.91-135.143-147.149-153)	
Heavy atoms	1.1
Backbone atoms	0.7
Sen1 NIM (2052-2063)	0.1
Heavy atoms	19
Backbone atoms	1.3
Complex	
All complex heavy atoms	25
All complex hackbone atoms	2.0
Ramachandran nlot statistics ^c	2.0
Residues in most favoured regions (%)	96 7
	00.1
Residues in allowed regions (%)	32
	0.2
Residues in generously allowed regions (%)	0.1
Residues in disallowed regions (%)	0.0

^a α-helical dihedral angle restraints imposed for the backbone based on the CSI.
^b Calculated for an ensemble of the 20 lowest energy structures.
^c Based on Procheck analysis (Laskowski et al., 1996).

Appendix Table S3: Antibodies used in this work.

Name	Reference/provider	Working dilution	Use
Anti-HA F7	Sc-7392/ Santa Cruz	1:1000	Sen1-HA detection in figures 1A, 1C-D, 5A
Anti-HA 12CA5	11 666 606 001/ Sigma	2.5 ug/reaction	Sen1 coIP in figure 1D
Anti-CBP, calmodulin binding protein	07-482/ Millipore	1:1000	Nrd-CBP detection in figure 1A, Sen1-CBP detection in figure 5B
Anti-Air2	S. Vanacova	1:1000	Air2 detection in figure 1A
Anti-Rpb1 y80	Santa Cruz (not available any more)	1:1000	Rpb1 detection in figure 5A, 5B
Anti-phospho- CTD Ser5 clone 3E8	04-1572/ Millipore	1:1000	Detection of S5P-CTD of RNAP II in figure 5B
Anti-phospho- CTD Ser2 clone 3E10	04-1571/ Millipore	1:1000	Detection of S2P-CTD of RNAP II in figure 5B
Anti-phospho- CTD Ser7 clone 4E12	04-1570/ Millipore	1:1000	Detection of S7P-CTD of RNAP II in figure S3
Anti-phospho- CTD Thr4 clone	61362/Active motif	1:500	Detection of T4P-CTD of RNAP II in Appendix Figure S3
Anti-CTD 8WG16	Ab817/abcam	1:1000	Detection of the unphosphorylated CTD preferentially.
PAP, peroxidase anti- peroxidase	P1291-1ML/ Sigma	1:3000	Used for Protein A detection on TAP tag.
Anti-Nrd1	Covalab	1:3000	Nrd1 detection in figures 1 and 5
Anti-Nab3	Covalab	1:3000	Nab3 detection in figures 1 and 5
Anti-His	H1029,Sigma	1:2000	His ₆ -GST-Sen1 Cter and His ₆ - GST in figure 5E

Appendix Table S4: Yeast strains used in this work.

Number	Name	Genotype	Source
DLY17	W303	ura3-1, ade2-1, his3-11,5, trp1-1, leu2-3,112, can1-100	(Thomas and Rothstein, 1989)
DLY467	KIN28	kin28::URA, [pSF19-KIN28, CEN, TRP]	(Cismowski et al., 1995)
DLY468	kin28 ts16	kin28::URA, [pSF19-kin28-ts16 CEN, TRP]	(Cismowski et al., 1995)
DLY671	BMA	as W303, ∆trp1	F. Lacroute
DLY814	Δrrp6	as W303, rrp6::KAN	(Porrua et al., 2012)
DLY1657	sen1-HA	as BMA, Sen1::HA::KAN	(Tudek et al, 2014
DLY2014	nrd1 ∆CID-TAP, sen1-HA	as BMA, nrd1ΔCID (Δ6- 150)::TAP::HIS3	Tudek et al, 2014
DLY2769	sen1∆NIM	as BMA, sen1ΔNIM (Δ2052-2063)	This work
DLY2982	sen1∆NIM-HA	as BMA, sen1ΔNIM (Δ2052- 2063)::HA::KAN	This work
DLY1737	nrd1-TAP, sen1-HA	as BMA, NRD1::TAP::HIS5 Sen1::HA::KAN	(Tudek et al, 2014)
DLY2622	nrd1-TAP, sen1∆NIM-HA	as BMA, NRD1::TAP::HIS5, sen1∆NIM (∆2052-2063)::HA::KAN	This work
DLY2657	sen1∆Cter-HA	as BMA, sen1∆Cter (∆1930- 2231)::HA::KAN	This work
DLY2658	nrd1-TAP, sen1∆Cter-HA	as BMA, NRD1::TAP::HIS5, sen1ΔCter (∆1930-2231)::HA::KAN	This work
DLY2695	sen1ΔCter-HA, Δrrp6	as BMA, sen1∆Cter (∆1930- 2231)::HA::KAN, rrp6::URA	This work
DLY2694	sen1-HA, Δrrp6	as BMA, sen1::HA::KAN, rrp6::URA	This work
DLY2770	sen1ΔNIM, Δrrp6	as BMA, sen1∆NIM, rrp6::KAN	This work
DLY2767	<i>∆sen1/</i> pFL38-SEN1	as BMA, sen1::KAN, harbouring plasmid pFL38-SEN1	This work
DLY1656	P _{GAL1-} TAP-SEN1	as BMA, TRP1::Pgal::TAP::SEN1	(Porrua et al., 2012)
DLY2778	P _{GAL1-} TAP-sen1∆NIM	as BMA, TRP1::Pgal::TAP::sen1ΔNIM (Δ2052-2063)	This work
DLY2692	P _{GAL1-} TAP-sen1∆Nter	as BMA, TRP1::Pgal::TAP::sen1∆Nter (∆1- 975)	This work
DLY2779	P _{GAL1-} TAP-sen1ΔNter ΔNIM	as BMA, TRP1::Pgal::TAP::sen1∆Nter (∆1- 975) ΔNIM (Δ2052-2063)	This work
DLY2060	P _{GAL1-} TAP-SEN1, Δrrp6	as BMA, TRP1::Pgal::TAP::SEN1, rrp6::KAN	(Porrua et al., 2012)
DLY2780	P _{GAL1-} TAP-sen1ΔNIM, Δrrp6	as BMA, TRP1::Pgal::TAP::sen1ΔNIM (Δ2052-2063), rrp6::KAN	This work
DLY2698	P _{GAL1-} TAP-sen1ΔNter,Δrrp6	as BMA, TRP1::Pgal::TAP::sen1∆Nter (∆1- 975), rrp6::KAN	This work

DLY2781	P _{GAL1} - TAP-sen1ΔNterΔNIM, Δrrp6	as BMA, TRP1::Pgal::TAP::sen1ΔNter (Δ1- 975) ΔΝΙΜ (Δ2052-2063), rrp6::KAN	This work
DLY2782	sen1-AID	as BMA, SEN1-AID::KAN::OsTIR1	This work
DLY2788	sen1-AID, Δrrp6	as BMA,SEN1-AID::KAN::OsTIR1, rrp6::URA	This work
DLY2724	TAP-sen1/pFL38-SEN1	as BMA, TAP::SEN1, harbouring plasmid pFL38-SEN1	This work
DLY2725	<i>TAP- sen1ΔNter /</i> pFL38- <i>SEN1</i>	TAP::sen1∆Nter (∆1-975), harbouring plasmid pFL38-SEN1	This work
DLY2726	<i>TAP- sen1ΔNterΔNIM</i> /pFL38-SEN1	as BMA, TAP::sen1∆Nter (∆1-975) ΔNIM (Δ2052-2063), harbouring plasmid pFL38-SEN1	This work
DLY3152	P _{GAL1-} TAP-SEN1, Δnrd1/ pRS316-NRD1	as BMA, TRP1::Pgal::TAP::SEN1, nrd1::KAN; harbouring plasmid pRS316-NRD1	This work
DLY3187	P _{GAL1-} TAP-SEN1, Δnab3/ pFL38-Nab3	as BMA, TRP1::Pgal::TAP::SEN1, nab3::KAN; harbouring plasmid pFL38-NAB3	This work
DLY3081	rpb3-FLAG	as BMA, RPB3::3xFLAG::natMX6	This work
DLY3151	rpb3-FLAG, sen1-AID	as BMA, SEN1-AID:KAN::OsTIR1, RPB3::3xFLAG::natMX6	This work
DLY3361	sen1-AID, rpb1-HTP	as BMA, Sen1::AID, KAN::OsTIR1, rpb1-HTP::URA	This work
yFR1499	Rpb1 anchor away + Rpb1- CTD wt-3xFLAG	ade2-1, trp1-1, can1-100, leu2- 3,112, his3-11,15, ura3, GAL, psi+, tor1-1, fpr1∆::NAT, RPL13A- 2xFKBP12::TRP1, RPB1- FRB::KanMX6, [pFR482 (CEN, HIS3, RPB1-CTDWT-3xFLAG)]	(Collin et al., 2019)
yFR1503	Rpb1 anchor away + Rpb1- CTD S5A-3xFLAG	ade2-1, trp1-1, can1-100, leu2- 3,112, his3-11,15, ura3, GAL, psi+, tor1-1, fpr1∆::NAT, RPL13A- 2xFKBP12::TRP1, RPB1- FRB::KanMX6, [pFR490 (CEN, HIS3, rpb1-CTDS5A-3xFLAG)]	(Collin et al., 2019)
DLY3423	Δ <i>rrp6,</i> Rpb1 anchor away + Rpb1-CTD wt-3xFLAG	as yFR1499, rrp6::URA	This work
DLY3424	<i>Δrrp6,</i> Rpb1 anchor away + Rpb1-CTD S5A-3xFLAG	as yFR1503, rrp6::URA	This work
DLY3417	KIN28, ∆rrp6	as YDL467, rrp6::KAN	This work
DLY3419	kin28 ts16, ∆rrp6	as YDL468, rrp6::KAN	This work

Appendix Table S5: plasmids used in this work.

Name	Description	Source
pBS1761	Ap ^r , <i>ori</i> ColE1; plasmid bearing cassette for N-terminal tagging with PGAL1-TAP	(Finoux and Séraphin, 2006)
pDL708 (pU6H3HA)	Ap ^r , <i>ori</i> ColE1; plasmid bearing cassette for C-terminal tagging with HA	(Finoux and Séraphin, 2006)
pDL772	Ap ^r ; <i>ori</i> ColE1; derivative of pFL38 (URA) bearing yeast SEN1	F. Lacroute
pDL693	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast SEN1	F. Lacroute
pDL703	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1</i> ⊿ <i>NIM</i>	This work
pETM30	Kan ^r ; oriColE1; vector for overexpression of proteins from the T7 promoter	R. Stefl
pDL834	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1</i> ⊿ <i>Nter</i>	This work
pDL835	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1</i> Δ <i>Nter</i> Δ <i>NIM</i>	This work
pDL846	Kan ^r ; oriColE1; derivative of pETM30 carrying the C-terminal domain of Sen1 (aa 1931-2231) under the control of the T7 promoter	This work
pDL848	Kan ^r ; oriColE1; derivative of pETM30 carrying the Δ NIM version of the C-terminal domain of Sen1 (aa 1931-2231) under the control of the T7 promoter	This work
pDL856	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast se <i>n1-HA</i>	This work
pDL858	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆NIM-HA</i>	This work
pDL857	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆Nter-HA</i>	This work
pDL859	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆Nter∆NIM-HA</i>	This work
pDL876	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>nrd1CID</i> (aa 1- 153) - <i>sen1∆Nter</i>	This work
pDL887	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>nrd1CID</i> (aa 1- 153) - <i>sen1∆Nter-HA</i>	This work
pDL965	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>pcf11CID</i> (aa 1-137) - sen1 Δ Nter	This work
pDL966	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast se <i>n1-HTP</i>	This work
pDL967	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast <i>sen1∆NIM -HTP</i>	This work
pDL968	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast <i>sen1∆Nter -HTP</i>	This work
pDL991	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>pcf11CID</i> (aa 1-137) - <i>sen1∆Nter-HA</i>	This work
pRS_NC	Ap ^r ; oriColE1; plasmid bearing CID-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_L20D	Kan ^r ; oriColE1; plasmid bearing CID(L20D)-His6 under the control of the T7 promoter	(Vasiljeva et al., 2008)
pRS_NC_K21D	Kan ^r ; oriColE1; plasmid bearing CID(K21D)-His6 under the control of the T7 promoter	(Vasiljeva et al., 2008)
pRS_NC_S25R	Ap'; oriColE1; plasmid bearing CID(S25R)-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_R28D	Ap ^r ; oriColE1; plasmid bearing CID(R28D)-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_I130A	Ap ^r ; oriColE1; plasmid bearing CID(I130A)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_I130K	Ap ^r ; oriColE1; plasmid bearing CID(I130K)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_I130N	Ap'; oriColE1; plasmid bearing CID(I130N)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_R133A	Ap'; oriColE1; plasmid bearing CID(R133A)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_R133G	Ap'; oriColE1; plasmid bearing CID(R133G)-His6 under the control of the T7 promoter	This work
pRS_NC_R133D	Ap'; oriColE1; plasmid bearing CID(R133D)-His6 under the control of the T7 promoter	This work

Appendix Table S6: List of oligonucleotides used in this work.

Name	Sequence (5'-3')	Information/use
DL1119	AAGTGACGAAGTTCATGCTA	Forward oligo to generate by PCR a probe to detect snR13 read-through region.
DL1367	GGCCCAACAGTATATTCATATCC	Reverse oligo to generate by PCR a probe to detect snR13 read-through region.
DL474	GCAAAGATCTGTATGAAAGG	Forward oligo to generate by PCR a probe to detect NEL025C.
DL480	ATCTGACCAGGTCAAGCTAC	Reverse oligo to generate by PCR a probe to detect NEL025C.
DL2505	GTGTGTGGACAATCGATTTGC	Forward oligo to generate by PCR a probe to detect snR33 3'precursor and read-through region
DL2506	GCATTGGCTCGATTGTCAAC	Reverse oligo to generate by PCR a probe to detect snR33 3'precursor and read-through region
DL1154	CCTATAACAACAACAACATG	Forward oligo to generate by PCR a probe to detect snR47 RNA.
DL1157	ATAGCCATTAGTAAGTACGC	Reverse oligo to generate by PCR a probe to detect snR47 RNA.
DL2627	ATTCAAAAGCGAACACCGAATTGAC CATGAGGAGACGGTCTGGTTTAT	Reverse oligo used as oligo probe to detect U4 snRNA
DL377	ATGTTCCCAGGTATTGCCGA	Forward oligo to generate by PCR a probe to detect <i>ACT1</i> RNA.
DL378	ACACTTGTGGTGAACGATAG	Reverse oligo to generate by PCR a probe to detect <i>ACT1</i> RNA.

Supplementary references:

Cismowski, M.J., Laff, G.M., Solomon, M.J., and Reed, S.I. (1995). KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. *15*, 2983–2992.

Finoux, A.-L., and Séraphin, B. (2006). In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. J. Biol. Chem. *281*, 25940–25947.

Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR *8*, 477–486.

Thomas, B.J., and Rothstein, R. (1989). The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics *123*, 725–738.