- α-ketoglutaric acid stimulates muscle hypertrophy and fat loss through OXGR1-dependent adrenal activation

5	
4	Yexian Yuan ^{1, 9} , Pingwen Xu ^{3, 9} , Qingyan Jiang ^{1, 2, 9} , Xingcai Cai ¹ , Tao Wang ¹ , Wentong Peng ¹ ,
5	Jiajie Sun ¹ , Canjun Zhu ¹ , Cha Zhang ¹ , Dong Yue ¹ , Zhihui He ¹ , Jinping Yang ¹ , Yuxian Zeng ¹ ,
6	Man Du ¹ , Fenglin Zhang ¹ , Lucas Ibrahimi ³ , Sarah Schaul ³ , Yuwei Jiang ⁴ , Jiqiu Wang ⁵ , Jia
7	Sun ⁶ , Qiaoping Wang ⁷ , Liming Liu ⁸ , Songbo Wang ¹ , Lina Wang ¹ , Xiaotong Zhu ¹ , Ping Gao ¹ ,
8	Qianyun Xi ¹ , Cong Yin ¹ , Fan Li ¹ , Guli Xu ¹ , Yongliang Zhang ¹ , Gang Shu ^{1, 2, *,†}
9	
10	Appendix
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
50 21	
32	
32	
34	
35	
36	
37	
38	

- **Contents**

41	Appendix Figure S1: The metabolic phenotype of OXGR1 KO mouse on normal chow3
42	Appendix Figure S2. Adrenal specific reexpression of OXGR1 rescues the stimulatory effects of
43	AKG on thermogenesis and lipolysis
44	Appendix Figure S3. Adrenal specific overexpression of OXGR1 enhances stimulatory effects of
45	AKG on thermogenesis and lipolysis7
46	Appendix Table S1. Clinical characteristics of all human subjects
47	Appendix Table S2. PCR primer sequences of related genes10
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63 64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
/b 77	
11	

80 Appendix Figure S1. The metabolic phenotype of OXGR1 KO mouse on normal chow

(A). Schematic representation of OXGR1KO mouse line generation by Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) strategy. The sgRNA sites were located in intron
3 and exon 4 of the OXGR1 gene. The DNA sequences contained sgRNA-binding regions are
labeled with red.

(B). The genomic sequencing of sgRNA target sites in wild-type and OXGR1KO mice. Theorange letter is the sgRNA target sequence.

87 (C). The validation of OXGR1KO mice. The mRNA expression of OXGR1 was determined in the
 88 adrenal glands from male WT control (littermates) or OXGR1KO mice.

89 (D-E). Body weight gain (D) and cumulative food intake (E) of male OXGR1 KO mice and
90 littlermates. Chow fed male mice (8 weeks of age) were monitored for 9 weeks (n = 8 per group).

91 (F-H). Representative images (F) of body composition and fat and lean mass (G) and tissue weight

92 (H) of male OXGR1KO mice after 9-weeks of monitoring (n = 8 per group).

- 93 (I). The body temperature of male OXGR1KO mice after 9-weeks of monitoring (n = 8 per94 group).
- 95 (J-K). Representative images (J) and quantification (K) of BAT thermogenesis induced by 6 hrs
- 96 cold exposure at 4° C in male OXGR1KO mice after 9-weeks of monitoring (n = 8 per group).
- 97 (L-O). Oxygen consumption (L-M) and RER (N-O) in male OXGR1KO mice after 9-weeks of
 98 monitoring (n = 8 per group).
- 99 Data information: Results are presented as mean ± SEM. In (D-E), (L) and (N) data was analyzed
- 100 by two-way ANOVA followed by post hoc Bonferroni tests. In (G-I), (K), (M) and (O), data was
- 101 analyzed by non-paired Student's t-test.
- 102

Appendix Figure S2. Adrenal specific reexpression of OXGR1 rescues the stimulatory effects of AKG on thermogenesis and lipolysis

- 107 (A). Serum E level in male OXGR1KO mice. At 12 weeks of age, male control or OXGR1KO
 108 mice were switched to HFD and received tap water or water supplemented with 2% AKG for 13
 109 weeks (n = 8 per group).
- 110 (B). Immunoblots and quantification of UCP1 protein expression in the BAT of male OXGR1KO
- 111 mice treated with AKG for 13 weeks (n = 4 per group).
- 112 (C-D). Representative images (C) and quantification (D) of iWAT and gWAT HE staining from
- male OXGR1KO mice treated with AKG for 13 weeks (n = 6 per group).

- (E-F). Representative images (E) and quantification (F) of p-HSL DAB staining from male
 OXGR1KO mice treated with AKG for 13 weeks (n = 6 per group).
- 116 (G). The validation of OXGR1 reexpression. The mRNA expression of OXGR1 was determined in
- the adrenal glands from male WT control, OXGR1KO injected with HBAAV2/9-GFP, and
- 118 OXGR1KO injected with HBAAV2/9-OXGR1 (OXGR1RE^{AG}) mice.
- 119 (H). Serum E level in male $OXGR1RE^{AG}$. Male OXGR1KO mice (8 weeks) were 120 adrenal-specifically injected with control HBAAV2/9-GFP or HBAAV2/9-OXGR1. Two weeks 121 after injections, mice were switched to HFD and further divided into two groups, receiving tap 122 water or 2% AKG for 13 weeks. (n = 6 per group).
- 123 (I). Immunoblots and quantification of UCP1 protein expression in the BAT of $OXGR1RE^{AG}$ mice 124 treated with AKG for 13 weeks (n = 4 per group).
- 125 (J-K). Representative images (J) and quantification (K) of iWAT and gWAT HE staining from 126 OXGR1RE^{AG} mice treated with AKG for 13 weeks (n = 6 per group).
- 127 (L-M). Representative images (L) and quantification (M) of p-HSL DAB staining from
- 128 OXGR1RE^{AG} mice treated with AKG for 13 weeks (n = 6 per group).
- 129 Data information: Results are presented as mean \pm SEM. In (A-B), (D), (F), (H-I), (K) and (M),
- different letters between bars indicate p≤0.05 by one-way ANOVA followed by post hoc Turkey's
 tests.
- 132

Appendix Figure S3. Adrenal specific overexpression of OXGR1 enhances stimulatory effects of AKG on thermogenesis and lipolysis

(A). The validation of OXGR1 overexpression. The mRNA expression of OXGR1 was determined
in the adrenal glands from male WT control, WT injected with HBAAV2/9-GFP, and WT injected
with HBAAV2/9-OXGR1 (OXGR1OE^{AG}) mice (n=5 per group).

(B-C). Body weight gain (B) and cumulative food intake (C) of OXGR1OE^{AG}. Male C57BL/6
mice (8 weeks) were adrenal-specifically injected with control HBAAV2/9-GFP or
HBAAV2/9-OXGR1. Two weeks after injections, mice were switched to HFD and further divided
into two groups, receiving tap water or water supplemented with 2% AKG for 12 weeks (n = 8 per
group).

145 (D-E). Representative image of body composition (D) and fat and lean mass index (E) of male 146 OXGR10E^{AG} mice treated with AKG for 12 weeks (n = 8 per group).

- 147 (F-G). Weight index of gWAT (F) and iWAT (G) in male OXGR1OE^{AG} mice treated with AKG for 148 12 weeks (n = 6 per group).
 - 7

149	(H-I). Immunoblots (H) and quantification (I) of p-HSL and ATGL protein in the gWAT of male
150	OXGR1OE ^{AG} mice treated with AKG for 12 weeks ($n = 4$ per group).
151	(J). Immunoblots and quantification of UCP1 protein in the BAT of male OXGR10E ^{AG} mice
152	treated with AKG for 12 weeks ($n = 4$ per group).
153	(K). Serum E level in male $OXGR1OE^{AG}$ mice treated with AKG for 12 weeks (n= 8 per group).
154	(L-O). Oxygen consumption (L-M) and RER (N-O) of male OXGR10E ^{AG} mice treated with AKG
155	for 12 weeks ($n = 8$ per group).
156	(P-Q). Representative images (P) and quantification (Q) of gWAT and iWAT HE staining from
157	male OXGR1OE ^{AG} mice treated with AKG for 12 weeks ($n = 6$ per group).
158	(R-S). Representative images (R) and quantification (S) of p-HSL DAB staining from male
159	OXGR10E ^{AG} mice treated with AKG for 12 weeks ($n = 6$ per group).
160	Data information: Results are presented as mean ± SEM. In (A), ** p≤0.01 by non-paired
161	Student's t test. In (B-C), *p≤0.05, **p≤0.01 by two-way ANOVA followed by post hoc
162	Bonferroni tests. In (E-G), (I-K), (M), (O), (Q) and (S), different letters between bars indicate
163	p≤0.05 by one-way ANOVA followed by post hoc Turkey's tests.
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
	8

Appendix Table S1. Clinical characteristics of all human subjects.

NO.	Gender	Age	Height	Weight	BMI	Fat	VFA	NCF	WCF	HCF	Blood
			(cm)	(kg)	(kg/m^2)	mass	(cm^2)	(cm)	(cm)	(cm)	pressure
				-	-	(%)					(mmHg)
1	F	48	154	61.7	26.02	37.7	111.8	33.9	85.9	99.3	113.5/91
2	F	44	159.5	58.2	22.88	31.6	80.6	33.4	78.5	87.4	106/76
3	F	47	160.5	63.4	24.61	35.3	98.6	36	80	95	114/82
4	F	42	165.5	64.7	23.62	35.3	96.1	33.5	83.5	98.5	113.5/88
5	F	40	176.5	75.3	24.17	38.9	101.4	33	83.5	104.5	113/78
6	F	42	161	66.2	25.54	38.9	105.2	32.5	87	100.9	117/74
7	F	36	168.5	89.8	31.63	41.5	140.5	37	96	113.5	159/107
8	F	32	157.8	66	26.51	37	89.1	35.5	79	100	95/67
9	F	35	168	71.5	25.33	32.1	87.8	36.5	84.5	102	118/87
10	F	36	164.7	75.5	27.83	40.4	110.7	34	84.5	109	112/74
11	F	32	163	65.3	24.58	30.1	74.8	33.5	85	99.5	132/90.5
12	F	28	160	66.2	25.86	30.7	72.3	34	86.5	97	109/71
13	F	31	155.5	63.6	26.3	40.1	97.9	33.9	94	100	101/69
14	F	29	170.5	71.6	24.63	42.1	102.2	34	80	105 5	105/75
15	F	30	161.5	64	24.54	34.4	74.8	32.8	82.5	94	106/75
16	F	31	161.3	71.9	27.64	30 /	100	34	92.5	106	100/75
17	F	30	162.5	72.1	27.04	36.8	08.0	36.5	95	103 5	112/69
18	F	27	164.5	70.1	25.91	36.5	01.8	33	86	105.5	126/82
10	F	31	150	63.5	25.01	36.8	76.1	33.8	70.5	07.0	120/02
20	L.	20	174.9	03.5 87.5	23.12	29.4	126.2	29	00.5	112.5	/
20	Г	29	1/4.0	07.3 76.3	28.04	30.4 41.5	120.2	26	99.5	105	110/78
21	Г	27	162.5	70.3	20.09	41.5	78.0	22	760	105	110/78
22	Г	27 51	161.7	62.2	25.04	247	/ 0.2	24	/0.2	90	125/82
25	Г	31	162	62.2	25.7	24.7	98.4	24	01.3	90.5	11///9
24	Г	49	160.5	03.0	24.69	34	90.2	33	83.3	98.2	130/82
25	F	43	161.5	61.4	23.54	35.2	100.1	34	/8.5	96	104/78
26	F	49	163.5	69.9	26.15	38.1	115.5	33.9	86	103.5	115/78
27	Г	29	160	08.8	20.88	42.7	98	34.5	88	102.9	108/05
28	F	46	162.2	69.5	26.42	43.4	126.8	35.5	92.5	104.5	120/80
29	F	29	169.5	80.1	27.88	36.2	106.5	34.9	93.5	106	114/66
30	F	38	158	81.5	32.65	40.6	144.7	37	99.5	110.5	124/87
31	F	46	167.8	77.2	27.42	35.5	123.6	37.5	91	106.5	116/77
32	F	47	156.2	59.3	24.3	33.2	90.5	31	72.5	98.7	88/61
33	F	43	156.3	70.8	28.98	41.4	126.1	37	87.5	100	123/88
34	M	43	170	78	27	/	/	/	/	/	/
35	F	57	150	50	22	/	/	/	/	/	/
36	M	61	168	58	20.5	/	/	/	/	/	/
37	М	44	163	62	23.3	/	/	/	/	/	/
38	М	52	145	49.5	23.5	/	/	/	/	/	/
39	М	24	160	61	23.8	/	/	/	/	/	/
40	Μ	45	160	65	25.3	/	/	/	/	/	/
41	Μ	71	161	81	31.2	/	/	/	/	/	/
42	М	57	174	77.5	25.6	/	/	/	/	/	/
43	Μ	76	167	65	23.3	/	/	/	/	/	/
44	М	37	151	51.3	22.5	/	/	/	/	/	/
45	F	82	157	60	24.3	/	/	/	/	/	/

 <sup>194
 195
 195
 196
 197
 197
 196
 197
 198
 198
 198
 199
 199
 190
 190
 191
 191
 191
 192
 193
 194
 195
 195
 196
 197
 198
 198
 198
 198
 198
 198
 199
 199
 190
 190
 190
 191
 191
 191
 192
 193
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194
 194</sup>

Gene abbreviation	Forward Primer (5'-3')	Reverse Primer (5'-3')
UCP1	ACTGCCACACCTCCAGTCATT	CTTTGCCTCACTCAGGATTGG
Cidea	TGCTCTTCTGTATCGCCCAGT	GCCGTGTTAAGGAATCTGCTG
Dio2	AATTATGCCTCGGAGAAGACCG	GGCAGTTGCCTAGTGAAAGGT
ATGL	ACACCAGCATCCAGTTCAACCT TC	GACATCAGGCAGCCACTCCAAC
HSL	CTCCTCATGGCTCAACTCC	ACTCCTGCGCATAGACTCC
PPARγ	GGAAGACCACTCGCATTCCTT	GTAATCAGCAACCATTGGGTCA
FASN	CTCCAAGCAGGCGAACACG	CGAAGGGAAGCAGGGTTGAT
ACC	TGATTCTCAGTTCGGGCACT	CTCTGCCTGCACTTTCTCTG
CD137	CACGGAGCTCATCTCTTGGT	GTCCACCTATGCTGGAGAAGG
TBX1	TGGGACGAGTTCAATCAGCT	CACAAAGTCCATCAGCAGCA
TMEM26	ACCCTGTCATCCCACAGAG	TGTTTGGTGGAGTCCTAAGGTC
slc27a1	CGCTTTCTGCGTATCGTCTG	GATGCACGGGATCGTGTCT
CD40	TTGTTGACAGCGGTCCATCTA	CCATCGTGGAGGTACTGTTTG
CITED1	GAGGCCTGCACTTGATGTC	CACGGAGCTCATCTCTTGGT

Appendix Table S2. PCR primer sequences of related genes

JMJD3 CACCCCAGCAAACCATATTATGC CACACAGCCATGCAGGGATT

OXGR1 CTGCCTGCCATTGGTGATAGTGA TGCCTGCTGGAAGTTATTGCTGA C C

PHD1 AAGTGGTATGGGCTGTGACA GTCAACATGCCTCACGTACC

211

212

213

	PHD2	AGGCAACGGAACAGGCTATG	CGCATCTTCCATCTCCATTTG				
	PHD3	ACCTGCAGACGACATCCTAG	TGTGAGGGTTTGGAGGGTAC				
	OCT4	GAGGAGTCCCAGGACATGAA	AGATGGTGGTCTGGCTGAAC				
	ASZ1	AAGTGCTTGTTCTGCTCGTG	CATCCTGGGCGTTAACTTCG				
	Wfdc15a	TGAAGCCAAGCAGCCTCCTA	AGGTTGTCCAGGGTTCCACA				
	TET1AGCTACCCTGAGTTTCACCCTET2TGTGTGGCACTAGATTTCAT		CAATTAGGCGCTGTCTGTCC				
			AGTCTCTGAAGCCTGTTGAT				
	TET3	CAGTGGCTTCTTGGAGTCACCT C	GGATGGCTTTCCCCTTCTCTCC				
	Dazl	TGCAGCCTCCAACCATGATGAA TC	CACTGTCTGTATGCTTCGGTCCA C				
	UTX	AAGGCTGTTCGCTGCTACG	GGATCGACATAAAGCACCTCC				
	β-actin	CCACTGGCATCGTGATGGACTC C	GCCGTGGTGGTGAAGCTGTAGC				
214 215							
216							
217							
219 220							
221							
222 223							
224							
225 226							
220							