Noname manuscript No.
(will be inserted by the editor)

An improved demand curve for analysis of food or drug
consumption in behavioral experiments: Supplementary
information

Mark Newman - Carrie R. Ferrario

1 Software for demand curve analysis

In the accompanying online materials (http://umich.edu/ mejn/demandcurve) we
provide a software program that performs the analyses described in the main
paper using the proposed demand curve of Eq. (20). Here we describe the use
of this program. The same information can also be found in the form of a video
tutorial, also in the accompanying materials.

1.1 Installation

The program is called demand.py. To install it, simply download it from the web
address given above and place it in the folder or directory containing the data you
wish to analyze.

The program is written in the Python computer language. Running it requires
that you also have the Python language installed. Many computers come with
Python already installed, but if yours does not, Python is free to download from
the web. There are various versions available, but we recommend the “Anaconda”
Python distribution, which contains everything you will need in one single package.
Anaconda is available for free from www.anaconda.com. Two versions are currently
available, version 2 (actually version 2.7 at the time of writing) and 3 (version 3.7
at the time of writing). Our program will work with either but we recommend
installing version 3 simply because it is the most up-to-date.

If you wish to install Python by another route (for instance using a pack-
age manager), then you should, at a minimum, install the Python language itself
(either version 2 or version 3), plus the packages “scipy” (for curve fitting) and
“matplotlib” (for graphics).

Mark Newman
Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, USA

*Carrie R. Ferrario (corresponding author, ferrario@umich.edu)
Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA

2 Mark Newman, Carrie R. Ferrario

Fig. S1 Example of the format of the input data. The first column (column A) represents
prices, which can be in any units. (Ours are in responses per milligram.) Second and subsequent
columns, of which there can be any number, represent responses at each price point for separate
animals, sessions, or data sets. In this case the file has columns for three different sessions
(columns B, C, and D). Our responses are whole numbers, since they represent lever presses
by individual animals, but one can also use responses averaged over several animals or sessions,
in which case the values need not be whole numbers. When complete, the spreadsheet should

be saved in CSV (comma-separated value) format with commas as separators between the
fields.

1.2 Data input

The program takes input data in the form of prices and responses. It can handle
an arbitrary number of price points in a single analysis and can analyze data from
multiple animals or multiple sessions in a single run. Data should be prepared
in a spreadsheet as shown in Fig. S1. The first column of the sheet contains the
prices, in any units you choose. Prices can be in any order—they need not be
in increasing (or decreasing) order, though they can be. There must be at least
four different prices for the program to work correctly (i.e., at least four rows in
the spreadsheet), since there are four parameters in the fitted demand curve. (The
number of data points for any fit can never be less than the number of parameters.)
The second and subsequent columns contain the response at each price in terms of
the amount of work (e.g., number of lever presses) done in experimental sessions,
with one column for each session or data set. There can be just a single session
(for a total of two columns—prices and responses) or many (for a total of n + 1
columns if there are n sessions). There should be no blank cells, nor empty rows
or columns, in the spreadsheet, except for the unused rows and columns below
and to the right of the data. (If you wish to analyze data from experiments using
different numbers of price points then you will have to use separate spreadsheets.)

The spreadsheet should be saved in CSV (comma-separated value) format,
using commas as separators between the values and the file extension “.csv”.
(Note that CSV files can be saved with spaces as separators, but this should be
avoided as it will not work with our program.) When using Microsoft Excel, for
instance, saving as a CSV file is a standard option under the “Save as” menu item;
any of the sub-formats listed there (Macintosh, MS-DOS, or CSV) will work. An
example input file, called example.csv, is included in the accompanying online

materials.

Supplementary Information 3

1.3 Running the program

Windows: On an appropriately configured Windows system it will be possible to
run the program from a command prompt window (also known as a “DOS win-
dow”), by changing to the folder where the program file resides and typing either
“py demand.py” or “python demand.py” into the command window (depending on
how the computer is set up). Alternatively, the program can be run inside a Python
development environment such as Jupyter, Idle, or Spyder. The latter are all in-
cluded, for instance, in the Anaconda distribution mentioned above. When Ana-
conda is started it will display a screen offering a choice of environments for use.
Start the environment of choice by double-clicking on its launch icon, then load the
program demand.py and run it. Specific procedure will depend on which environ-
ment you use. See the video tutorial for an example using the Spyder environment.

OSX: On a Mac one can normally open a command window and type “python
demand.py” to run the program, or use any of the several available Python devel-
opment environments—see the instructions for Windows users above.

Linuz: Under Linux one can run the program from the command line with the
command “python demand.py” or from within a development environment.

1.4 Using the program

When first run, the program will ask for the name of the input data file. Type
in the name of the CSV file containing your data. (The name is case-sensitive, so
take care with capitalization.) The file extension “.csv” at the end of the name is
optional and can be omitted. The file name can also be provided to the program as
a command-line argument when the program is run. For instance, under Windows
one might type “py demand.py example.csv’ and the program would use the data
file example.csv. This is a convenient feature when running the program in batch
mode (i.e., unattended).

Once the file name is entered, the program will perform the analysis. It works by
computing consumption levels from the response data then performing a nonlinear
least-squares fit of the logarithms of the consumption values to Eq. (21) from the
main paper. The program automatically calculates parameter values and a range of
other quantities, and takes appropriate precautions so that, for instance, parameter
values cannot become infinite.

The output of a typical run of the program looks like this:

Data read from file example.csv
Price points: 10
Curves: 3

Analyzing curve 1
Analyzing curve 2
Analyzing curve 3

4 Mark Newman, Carrie R. Ferrario

s B C D E \ F \ G \ H [
1 |CURVE QO PO a b Rmax Pmax Normalized Pmax
2 1 3.73479880041 66.7556021893 3.62425289705 1.06517621866 33.5980887878 26.9848642436 100.783038606
3 2 3.23071824185 25.8486530742 2.37193733677 2.01969792201 37.540776139 22.1024534254 71.4067994711
4 3 3.51759956781 18.9630901245 2.37188552895 3.41691227453 41.5827489978 17.2870703917 60.8089913388
g

Fig. S2 Example of the output spreadsheet generated by the program. Columns contain the
parameters Qq, Po, a, and b of the fitted demand curves, plus the derived values Rmax, Pmax,
and Pmax (“Normalized Pmax”), as indicated, and there is one row of the spreadsheet for each
data set in the input file.

The program gives a summary of the data it found in the input file (number of
price points and number of data sets), then lists the demand curves one by one as it
analyzes them. The program may also print out cautionary messages if it believes
there are potential problems with the data. For instance, if the fitted value of Qq
lies well outside the range of observed consumption it will print a message like
this:

Caution: QO = 880 is substantially outside the data range [2.5 to 140]

This could be an indication that the experiment failed to probe the salient portion
of the demand curve near the turning point at which demand falls off.

When the program finishes, which typically takes a few seconds, it will produce
a set of output files in the same folder. First, there will be an output data file. If the
input file was called example.csv, the output file will be called example_params.csv.
This is a CSV spreadsheet containing the best fit values of the parameters Qo, Po,
a, and b for each session in the input file, plus the values of the derived quantities
Rmax, Pmax, and Prax. This file can be opened in Microsoft Excel, Google Docs,
or any similar spreadsheet program. There is one row of the file for each session,
in the same order as the columns of the input file, so that the row for curve 1
corresponds to data in column B of the input file, curve 2 to data in column C,
and so forth. An example output file is shown in Fig. S2.

Second, the program produces a set of output figure files, one for each input
session or data set (i.e., for each column from B onward in the original input
file). An example is shown in Fig. S3. Each figure file contains two graphs: the
left graph shows, as a function of price, the data points for consumption in blue
and the fitted demand curve in green; the right graph shows the original data
for responses in blue and the fitted curve in green. If the input data file is called
example.csv then these figure files will have names example_1.png, example_2.png,
and so forth, numbered in the same order as the columns of the input file.

It is a good idea before using the numerical results of any of the fits to inspect
the corresponding figures to make sure that the fit is a reasonable one. If the data
fluctuate a lot, or if the experiment fails to probe the correct price range, then the
fit may be a poor one. In cases where the data are entirely unlike the expected
demand-curve form of plateau-plus-decline, the fit may fail and the fitted curve
will not resemble the data points. Some thought may be needed to interpret the
results of the procedure in any specific case.

Supplementary Information 5

[]
40+ L)
4 []
35
100 4
30 A
o
c ﬁ 251
2 8
Q
£ § °
2 o 201
f=4 Q
8 10711 «
154
104
()
5
1072 4
T T 0 T T
10t 102 10t 10?2
Price P Price P

Fig. S3 A typical figure produced by the program. Left: data for consumption against price
(points) and the best fit of the demand curve from Eq. (20) of the main paper, as determined
by the program (solid line). Right: the original response data against price (points) and the
corresponding revenue curve determined from the demand curve using Eq. (4) (solid line).
Rmax is the highest value of the revenue curve and Pmax is the price at which that highest
value occurs. In this case we find Rmax = 41.6 responses and Pmax = 17.3 responses per
milligram.

1.5 Initial parameter values

In performing a fit, the program works by guessing approximate initial values of
the four parameters Qo, Py, a, and b and then adjusting them repeatedly until a
good fit is achieved. While the program normally makes sensible initial guesses for
the parameters, there may be occasional instances, particularly with poor-quality
data, where the process fails because the initial guesses are too far from the correct
values, and the program will not generate a sensible fit. For advanced users, we
incorporate an additional feature in the program that allows the user to choose the
starting values themselves, overriding the values chosen by the program. To use
this feature the program should be started from a command line or DOS window
and the desired starting values of Qo, Py, a, and b should be given, in that order, on
the command line, after the name of the CSV file. Thus, for instance, on a suitably
configured Windows system one might type the line “py demand.py example.csv
3.5 30 3 2”. This tells the program to read data from the file example.csv and
initially to set the parameters (for all sessions) to the values Qo = 3.5, Py = 30,
a = 3, and b = 2. In some cases this will allow the program to find a fit to the
data that it would otherwise not be able to find.

How should one go about choosing suitable starting values for the parameters
when using this feature? In the case of Qq, a plot of consumption against price,
as in the left panel of Fig. S3, is often enough to make a useful estimate—one
simply looks for the height of the plateau on the left-hand side of the figure. In

6 Mark Newman, Carrie R. Ferrario

10F T T AF T T 3
e oo -
e
I "\‘\ 1 .. 1
0.1 1k 1
£ 001f @ £ ® \
=
.g 1 1 1 I 1 1
g 10F T T IF T T 3
S ik 1k \ <
e
0.1F 13 :
001F (o) F @ 3
1 10 100 1 10 100

Price (responses/mg)

Fig. S4 The same cocaine self-administration data shown in Fig. 5 of the main paper, along
with best-fit curves using the form proposed in this paper, Eq. (21) (blue curves), and the
exponential form of Eq. (9) (orange curves).

Fig. S3, for example, a value of about Qo = 3 appears sensible. Similarly for Py
one looks for the price at which the consumption starts to drop off—a value of
about Py = 20 looks reasonable for Fig S3. The parameters a and b can be harder
to estimate, but one can often find good values by trial and error. Typical values
for a are between about 1 and 5, and typical values for b are between about 0.5
and 20. In the most difficult cases it may be necessary to run the program more
than once with the same data and different starting parameters to find values that
work well.

2 Additional analysis

Figures 1 and 2 in the paper show fits of the same cocaine self-administration
data to the demand curve form we propose and to the exponential form of Hursh
and Silberberg (2008). In Fig. S4 we show a further comparison of fits to these
two forms. The figure is a modified version of Fig. 5 from the paper, showing the
same data for cocaine self-administration by four different male rats and the same
fits to the form we propose (blue curves). But now we also add best fits to the
exponential form, with the parameter k& once again set equal to the maximum
range of the logarithm of the data over all sessions, which in this case results in
k = 6.62. As the figure shows, the fit to the exponential form is about as good as
to our proposed form in two cases (b and d), a little worse in one case (a), and
significantly poorer in the last case (c).

Figure 5 in the paper shows fits of our proposed demand curve form to data
for cocaine self-administration by four male rats. The data shown are relatively

Supplementary Information 7

10
1
0.1
?
<001
E=
8
54 T T T T T T
§ 10 3 E
=
(=}
Q
1
0.1
0.01
1 1

1 1
1 10 100 1 10 100

Price (responses/mg)

Fig. S5 Cocaine self-administration data for four more male rats, taken from the same ex-
periment as Fig. S4, but this time deliberately picking data of poorer quality, in order to test
our approach. As the figure shows, our proposed demand curve form, as implemented in the
software described here, is still able to find convincing fits to the data. (Previously unpublished
data kindly provided by C. Carr and T. E. Robinson.)

clean examples in which the demand roughly follows the expected plateau-plus-
decline form. In every experiment, however, there are always some sessions in
which animals do not behave as expected and the data are less clean—sometimes
much less so. In Fig. S5 we show four more examples from the same set of cocaine
self-administration experiments, but in this case we have deliberately chosen data
of poorer quality, showing the largest deviation from the expected behavior. As
the figure shows, our procedure (implemented in the software described above)
is still able to find convincing fits to the data, allowing us to extract values for
parameters such as Pmax Or Rmax-

