Supporting Information

PANI@UiO-66 and PANI@UiO-66-NH₂ Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials

Jordan Shanahan^a Daniel S. Kissel^{a*} and Eirin Sullivan^b

^{a.}Department of Chemistry, Lewis University, One University Pkwy, Romeoville, IL 60455, United States

^{b.}Department of Chemistry, Illinois State University, S University St, Normal, IL 61761, United States

For Table of Contents Only

- 1. Energy Dispersive X-ray Spectroscopy of all composite materials and PANI
- 2. SEM images of x8000 PANI@UiO-66-NH₂ and x5000 PANI
- 3. PXRD of Pristine UiO-66 and UiO-66-NH $_2$
- 4. UV/Vis Example Tauc plot and band gap table summary
- 5. Isotherm Plots and BET Surface Areas of UiO-66 and UiO-66-NH₂

1. Energy Dispersive X-ray Spectroscopy of all composite materials and PANI

1:1 PANI@UiO-66-NH₂

Figure S1: EDS of 1:1 PANI@UiO-66-NH₂ composite

Element	Line	Mass%	Atom%
С	К	36.12±0.70	58.36±1.13
N	К	4.56±0.64	6.32±0.89
0	К	19.67±0.79	23.86±0.96
Cl	К	9.04±0.47	4.95±0.25
Zr	L	30.60±0.92	6.51±0.20
Total		100.00 100.00	
		Fitting ratio 0.0551	

Table S1: Elemental Analysis of 1:1 PANI@UiO-66-NH2 EDS Spectra

1:1 PANI@UiO-66

Figure S2: EDS of 1:1 PANI@UiO-66 composite

Element	Line	Mass%	\tom%	
С	К	46.27±0.50	65.84±0.71	
Ν	к	2.89±0.37	3.53±0.45	
0	К	21.54±0.57	23.01±0.61	
Cl	К	7.25±0.29	3.50±0.14	
Zr	L	22.05±0.55	4.13±0.10	
Total		100.00 100.00		
		Fitting ratio 0.0392		

Table S2: Elemental Analysis of 1:1 PANI@UiO-66 EDS Spectra

3:1 PANI@UiO-66-NH2

Figure S3: EDS of 3:1 PANI@UiO-66-NH₂ composite

Element	Line	Mass%	Atom%
С	К	47.95±0.56	67.18±0.79
Ν	к	6.85±0.61	8.23±0.74
0	К	15.52±0.55	16.32±0.58
Cl	К	9.61±0.36	4.56±0.17
Zr	L	20.07±0.57	3.70±0.10
Total		100.00 100.00	
		Fitting ratio 0.0357	

Table S3: Elemental Analysis of 3:1 PANI@UiO-66-NH2 EDS Spectra

Figure S4: EDS of 3:1 PANI@UiO-66 composite

Element	Line	Mass%	Atom%
С	К	67.16±0.53	75.21±0.59
Ν	к	12.62±0.89	12.12±0.85
0	К	10.91±0.50	9.17±0.42
Cl	К	9.17±0.34	3.48±0.13
Zr	L	0.14±0.08	0.02±0.01
Total		100.00 100.00	
		Fitting ratio 0.0194	

Table S4: Elemental Analysis of 3:1 PANI@UiO-66 EDS Spectra

2:1 PANI@UiO-66-NH2

Figure S5: EDS of 2:1 PANI@UiO-66-NH₂ composite

Element	Line	Mass%	Atom%
С	К	42.39±0.50	61.42±0.73
Ν	к	7.99±0.60	9.92±0.74
0	К	18.52±0.56	20.14±0.61
Cl	К	8.59±0.32	4.22±0.16
Zr	L	22.51±0.57	4.29±0.11
Total		100.00 100.00	
		Fitting ratio 0.0378	

Table S5: Elemental Analysis of 2:1 PANI@UiO-66-NH2 EDS Spectra

Figure S6: EDS of 2:1 PANI@UiO-66 composite

Element	Line	Mass%	Atom%	
C	К	65.21±0.49	72.89±0.54	
Ν	к	12.27±0.84	11.76±0.80	
0	к	14.98±0.56	12.57±0.47	
Cl	К	7.17±0.30	2.72±0.11	
Zr	L	0.36±0.09	0.05±0.01	
Total		100.00	100.00	
Spc_003		Fitting ratio 0.0157		

Table S6: Elemental Analysis of 2:1 PANI@UiO-66 EDS Spectra

Figure S7: EDS of pure PANI

Element	Line	Mass%	Atom%
С	К	68.87±0.57	77.01±0.64
Ν	к	17.99±1.09	17.25±1.04
0	К	1.65±0.21	1.38±0.18
Cl	К	11.49±0.39	4.35±0.15
Total		100.00 100.00	
Spc_002		Fitting ratio 0.0266	

Table S7: Elemental Analysis of PANI EDS Spectra

2. SEM images of x8000 PANI@UiO-66-NH₂ and x5000 PANI

Figure S8: SEM of 3:1 PANI@UiO-66-NH $_2$ taken at x8000 magnification coated with 5 nm Au nanoparticles.

Figure S9: SEM of PANI taken at x5000 magnification at x5000 magnification

Figure S10: SEM of UiO-66 single crystal showing octahedral topology

Figure S11: SEM of UiO-66 aggregate cluster

3. PXRD of Pristine UiO-66 and UiO-66-NH₂

Figure S12: PXRD of UiO-66 consistant with pattern reported by Cavka et al.¹⁴

Figure S13: PXRD of UiO-66-NH₂ consistant with pattern reported by Cavka et al.¹⁴

4. UV/Vis Example Tauc plot and band gap table summary

Figure S14: Example Tauc Plot of direct band gap measurements done for UiO-66, UiO-66-NH $_2$ (shown above), and PANI.

Table S8: Band Gaps Measured of All Pure Materials

Material	Band gap (ev)		
UiO-66	4.04		
UiO-66-NH ₂	2.95		
PANI	3.54		

5. Isotherm Plots and BET Surface Areas of UiO-66 and UiO-66-NH₂

Figure S15: N_2 isotherms of UiO-66 and UiO-66-NH₂

Material	BET Surface Area (m ² /g)
UIO-66	1261
UIO-66-NH ₂	1203

Table	59:	BFT	Surface	Areas	of	Pure	Materials
TUDIC	55.		Junuce	/ 11 C U J	01	i uic	Widteriuis

Figure S16: N_2 isotherms of PANI@UiO-66 and PANI@UiO-66-NH₂ composites.