
Supplementary Table 2: spontaneous mouse mutations resulting in experimentally relevant immune phenotypes. 

Gene/Locus 

symbol 

Gene/Locus 

name 

Chr Function Mutation or 

allelic variant 

symbol 

Mutation or allelic 

variant name 

Mutation or allelic variant 

detail 

Original/affected 

strain/stock 

Phenotype Human disease 

models 

Btk Bruton 

agammaglobulin

emia tyrosine 

kinase 

X tyrosine-protein kinase; B cell 

development, differentiation, 

and activation; BCR signal 

transduction; regulation TLRs 

signaling in B cells; high-

affinity IgE receptor signal 

transduction on mast cell; 

regulation of neutrophilic 

granulocyte maturation and 

function. 

Btkxid X-linked immune 

deficiency 

single point mutation; C-to-

T transition; arginine to 

cysteine substitution at 

position 28; LOF; X-linked 

recessive inheritance. 

CBA/HN Immune: homozygous females and hemizygous males; 

defective B cell development, differentiation, and activation 

(including T-independent B lymphocytes); profound B-1 cell 

deficiency; impaired IgM and IgG production in response to 

thymus-independent TI-2 antigens (impaired T-independent B 

cell response); impaired granulocyte maturation and function; 

abnormal regulation of TLRs signaling; defective mast cells 

degranulation and proinflammatory cytokines production upon 

high-affinity IgE receptor engagement; severe 

hypogammaglobulinemia (especially IgM and IgG3).1-5 

 

Other: N/A. 

 

Bruton-type 

agammaglobulinemia; 

X-linked 

immunodeficiency 

Cacnb4 calcium channel, 

voltage-

dependent, beta 

4 subunit 

2 cytoplasmic β subunit of 

voltage-dependent calcium 

channels; important role in 

calcium channel function by 

modulating G protein 

inhibition, increasing peak 

calcium current, controlling 

the α1 membrane pore subunit, 

and shifting the voltage 

dependence of 

activation/inactivation. 

 

Cacnb4lh lethargic insertion mutation; 4 bp; 

splice donor site; exon 

skipping; translational 

frameshift; protein 

truncation with loss of the 

α1 subunit binding site; 

LOF; hypomorphic; 

recessive inheritance. 

BALB/cGn Immune: immunodeficiency possibly resulting from a stress 

response; early thymic involution at 3 to 4 weeks; reduced 

lymphoid organs size; severe leukocytopenia and anemia; 

defective cell-mediated immune functions; increased levels of 

serum IgG1.6-9 

 

Other: early lethality (approx. 50 days of age); ataxia and 

lethargy followed by seizures; absence epilepsy (petit mal 

seizures); no evidence of pathological changes in the CNS or 

skeletal muscles; dyskinetic motor behavior; pituitary-adrenal 

hypercorticism.9-11 

idiopathic generalized 

epilepsy (IGE); 

juvenile myoclonic 

epilepsy (JME); 

episodic ataxia, type 5 

Csf1 

 

colony 

stimulating 

factor 1 

 

3 cytokine; 

differentiation/maturation and 

activation of monocytes and 

Mφs; maintenance of bone 

marrow progenitor cells; 

innate immunity; 

inflammation. 

Csf1op 

 

osteopetrosis 

 

insertion mutation; single 

nucleotide (T); 262 bp 

downstream from the 

initiation codon; frameshift 

with premature stop codon; 

LOF; recessive inheritance. 

B6;DW-Pou1f1dw 

 

Immune: perturbed bone marrow microenvironment with 

defective hematopoiesis; impaired differentiation and survival 

of cells of the mononuclear phagocyte system; impaired B 

lymphopoiesis; generalized deficiency in normal tissue-

resident Mφs including osteoclasts, microglia and Kuppfer’s 

cells; attenuated tumorigenesis due to defects in development 

of pro-tumorigenic M2 polarized TAMs.9,12-15 

 

Other: high rate of lethality around weaning; severe growth 

retardation; osteopetrosis resulting in abnormal skeletal 

development; craniofacial deformities (shortened snout and 

domed skull); unerupted incisors; shortened extremities; optic 

nerve compression; hearing impairment due to abnormal 

ossicle formation and reduced tympanic bullae volume; 

obliteration of bone marrow cavity; dysfunctional satellite cells 

in skeletal muscles; reduced fertility in females; defective 

mammary gland development and lactation; no phenotype 

rescue following transplant of normal bone marrow cells (not 

intrinsic defect of hematopoietic cells).9,16-18 

 

osteopetrosis 

 

Dock2 

 

dedicator of 

cytokinesis 2 

 

11 guanine nucleotide exchange 

factor; regulation of Rac 

signaling; chemotaxis; 

leukocyte response to 

chemokines; cytoskeletal 

rearrangements; lymphocyte 

migration; plasmacytoid DC 

homing and function. 

 

Dock2m1Hsd 

 

mutation 1, Harlan 

 

duplication and nucleotides 

substitution; duplication of 

exons 28 and 29; frameshift 

mutation after exon 29 with 

premature stop codon; 

LOF; hypomorphic; 

recessive inheritance.  

C57BL/6NHsd (from 

specific breeding 

facilities) 

Immune: (compared to other C57BL/6 substrains including 

C57BL/6NClr, C57BL/6NJ or C57BL/6NTac) increased 

numbers of CD8+ T cells; decreased follicular B cell number; 

impaired development of splenic marginal zone B cells; 

abnormal activation of B cells; defective development and 

function of plasmacytoid DC.19,20 

 

Other: hearing impairment; cochlear degeneration.21 

 

immunodeficiency 40 

Eef1a2 eukaryotic 

translation 

elongation factor 

1 alpha 2 

 

2 α subunit of the elongation 

factor-1 complex; tissue 

specific (e.g. neurons, cardiac 

and skeletal muscle); 

enzymatic delivery of 

aminoacyl tRNAs to the 

ribosome. 

Eef1a2wst wasted intragenic deletion; 

promoter and first exon of 

the gene; LOF; recessive 

inheritance. 

HRS/J Immune: immunodeficiency likely resulting from a stress 

response; marked lymphoid atrophy/depletion in the spleen, 

thymus, and lymph nodes; leukopenia; defects in mucosal 

immunity resulting from reduced number of IgA plasma cells 

in the entire large and small intestine; decreased number of DP 

thymocytes; increased sensitivity of T cells to ionizing 

ataxia telangiectasia 
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name 

Chr Function Mutation or 
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radiation; cytokine imbalance (decreased IL5 and increased 

IL1, IL2, IFNγ, and TGFβ1);9,22,23 

 

Other: early lethality (approx. 30 days of age); tremors and 

ataxia at weaning; progressive motor neuron degeneration and 

loss accompanied by gliosis, generalized muscle wasting and 

paralysis;9,23,24 

 

Fas TNF receptor 

superfamily 

member 6 

 

19 death receptor ; extrinsic 

apoptotic pathway; peripheral 

tolerance; AICD; cytotoxic T 

cell and NK cell-mediated 

apoptosis. 

Faslpr 

 

Faslpr-cg 

Faslpr: 

lymphoproliferation 

 

Faslpr-cg: 

lymphoproliferation 

complementing gld 

 

Faslpr: transposon insertion; 

ETn; intron 2; premature 

termination of transcription; 

aberrant mRNA splicing; 

leaky mutation; low levels 

of full-length transcripts 

and functional receptor 

formation; LOF; 

hypomorphic; recessive 

inheritance. 

 

Faslpr-cg: single point 

mutation; T-to-A 

transversion; replacement 

of a highly conserved 

isoleucine with an 

asparagine; extracellular 

domain; LOF; recessive 

inheritance. 

 

Faslpr: MRL/MpJ 

 

Faslpr-cg: CBA/KlJms 

Immune: generalized autoimmune and lymphoproliferative 

disorder; thymus (T cell) dependent (neonatal thymectomy 

associated with phenotype rescue); progressive splenomegaly 

and lymphadenopathy; secondary lymphoid organs with 

expansion of DN and B220+ T cells; defective CTL activity; 

autoimmunity; loss of AICD; unregulated B cell activation in 

GC; multisystemic infiltrate of activated lymphoid cells; 

production of autoantibodies including anti-DNA and anti-IgG; 

immune complex GN; polyarthritis; vasculitis; dysfunctional 

M1 Mφ-mediated tumor immunity; Faslpr-cg autoimmune 

phenotype less severe than Faslpr mice.25-31 

 

Other: defective neuronal branching; impaired regulation of 

spermatogenesis.32-34 

autoimmune 

lymphoproliferative 

syndrome; Sjogren's 

syndrome; systemic 

lupus erythematosus 

Fasl Fas ligand 1 death receptor ligand; extrinsic 

apoptotic pathway; peripheral 

tolerance; activation-induced 

cell death; cytotoxic T cell and 

NK cell-mediated apoptosis. 

Faslgld generalized 

lymphoproliferative 

disease 

single point mutation; T-to-

C transition; replacement of 

a highly conserved 

phenylalanine with a 

leucine; LOF; recessive 

inheritance. 

C3H/HeJ Immune: generalized autoimmune and lymphoproliferative 

disorder; thymus (T cell) dependent (neonatal thymectomy 

associated with phenotype rescue); progressive splenomegaly 

and lymphadenopathy; secondary lymphoid organs with 

expansion of DN and B220+ T cells; defective CTL activity; 

autoimmunity; loss of AICD; unregulated B cell activation in 

GC; multisystemic infiltrate of activated lymphoid cells; 

production of autoantibodies including anti-DNA and anti-IgG; 

immune complex GN; polyarthritis; vasculitis.25-27,35,36 

 

Other: impaired neuronal branching; impaired regulation of 

spermatogenesis; enhanced intestinal tumorigenesis with 

reduced neutrophilic influx.32,34,37 

 

autoimmune 

lymphoproliferative 

syndrome; systemic 

lupus erythematosus 

Fcer2a Fc receptor, IgE, 

low affinity II, 

alpha 

polypeptide 

8 CD23, low-affinity receptor 

for IgE, negative regulation of 

IgE levels, allergy and 

resistance to parasites. 

Fcer2aHie hyper IgE multiple point mutations; 

decreased levels of 

membranous expression; 

LOF; hypomorphic; 

dominant inheritance. 

 

NZB, 129P1/ReJ, 

129/SvJ 

Immune: increased levels of IgE; exaggerated IgE response; 

enhanced resistance and protection against parasitic 

infestations.38,39 

 

Other: N/A. 

N/A 

Foxn1 forkhead box N1 11 Forkhead/winged-helix family 

of transcription factors; 

differentiation of 

keratinocytes; development of 

the thymus; regulation of 

keratin gene expression; 

regulation of genes involved in 

antigen processing and 

thymocyte selection. 

Foxn1nu nude intragenic deletion; single 

bp; exon 3; frameshift with 

premature stop codon; 

LOF; recessive inheritance. 

albino stock Immune: thymus agenesis/dysgenesis; developmental failure of 

the thymic anlage; cystic changes of the thymic epithelial 

rudiments; reduced numbers of mature and functional T cells; 

extrathymic T cell lymphopoiesis with functional T cells 

development (especially in old mice exposed to “dirty” 

environment); partial defect in B cell development and 

function due to absence/paucity of functional T helper cells; 

increased number and cytotoxic capability of NK cells and 

Mφs; normal intraepithelial γδ T cell repertoire at mucosal sites 

and skin;9,40-44 autoimmunity; production of autoantibodies 

including anti-nuclear antibodies; systemic immune complex 

disease with glomerular involvement;9,45 high susceptibility to 

infection by a broad spectrum of bacterial and viral 

pathogens;42,46 

 

DiGeorge syndrome; T 

cell 

immunodeficiency; 

congenital alopecia 
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symbol 
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Other: grossly hairless (hence the term “nude”); normally 

cycling hair follicles; defects in follicular and epidermal 

keratinization; impaired hair shaft formation and eruption;9,47,48 

poor breeders; males with decreased serum levels of LH and 

FSH and impaired spermatogenesis; females with decreased 

serum levels of estradiol, progesterone, and thyroxine.9,49,50 

 

Foxp3 forkhead box P3 X forkhead/winged-helix family 

of transcriptional regulators; 

development and function of 

regulatory T cells; immune 

tolerance (especially self-

tolerance). 

Foxp3sf scurfy insertion mutation; 2 

adenosine residues into 

exon 8, frameshift with 

premature stop codon; 

truncated protein lacking 

the carboxy-terminal 

forkhead domain; LOF; X-

linked recessive 

inheritance. 

 

MR stock Immune: scaling and crusting dermatitis; CD4+ T cell-

mediated autoimmune disorder; infiltrations of activated 

immune cells consisting of lymphocytes, DCs, Mφs, and 

eosinophils into several organs including skin, lungs, kidneys 

and liver; marked enlargement of peripheral lymph nodes and 

splenomegaly with proliferation/infiltration of activated 

lymphocytes, DCs, and Mφs; autoimmune hemolytic anemia; 

hypergammaglobulinemia; inability to properly regulate CD4+ 

T cell activation and function; overexpression of 

proinflammatory cytokines; impaired peripheral immune 

tolerance.51-53 

 

Other: failure to thrive; early lethality (approx. 20-50 days of 

age); male infertility; significantly reduced expression of 

pituitary gonadotropins; arrested spermatogenesis; lack of 

transcriptional regulation of ErbB2 oncogene with increased 

incidence of spontaneous mammary carcinomas; impaired 

megakaryopoiesis.54-56 

 

immune dysregulation-

polyendocrinopathy-

enteropathy-X-linked 

syndrome (IPEX); 

Wiskott-Aldrich 

syndrome 

Hc hemolytic 

complement 

2 complement system; innate 

immunity; C5a anaphylatoxin 

with spasmogenic and 

chemotactic activity; C5b 

subunit of the membrane 

attack complex. 

 

Hc0 hemolytic 

complement 

deficient 

intragenic deletion; 2 bp 

deletion near the 5' end of 

the gene; frameshift with 

premature stop codon 4 

bases after the deletion; 

truncated transcript; LOF; 

recessive inheritance. 

A/HeJ, AKR/J, 

DBA/2J, NZB/B1NJ, 

SWR/J, and 

B10.D2/oSnJ 

 

Immune: impaired leukocyte chemotaxis; impaired bacterial 

and fungal clearance during opportunistic infections; defective 

granulomatous response; increased susceptibility to viral 

infections and DSS-induced colitis; decreased susceptibility to 

CIA, experimental airway inflammation, EAE, and 

autoimmune GN.57-68 

 

Other: impaired liver regeneration; decreased susceptibility to 

reperfusion injury; delayed bile duct ligation-induced 

hepatobiliary fibrosis; delayed fracture healing.69,70 

 

complement 

component 5 

deficiency (C5D) 

 

Hr hairless 14 histone demethylase; 

demethylation of Lys9 on 

histone H3; transcriptional 

corepressor of multiple nuclear 

receptors including thyroid 

hormone receptor, the retinoic 

acid receptor-related orphan 

receptors, and the vitamin D 

receptors; regulation of hair 

cycle, epidermal maturation, 

neural activity, and cell cycle. 

Hrhr 

 

Hrrh 

Hrhr: hairless 

 

Hrrh: rhino 

Hrhr: retroviral integration; 

intron 6; leukemia proviral 

sequences; aberrant 

splicing; LOF; recessive 

inheritance. 

 

Hrrh: unknown mutation; 

mutant Hrrh allele identified 

by a negative 

complementation test with 

hrhr phenotype. 

Hrhr: HRS/J 

 

Hrrh: RHJ/LeJ 

Immune: early thymic cortical atrophy; impaired splenic T cell 

activation and expansion; defective splenic response to T-

dependent antigens; defective Mφ activation; autoimmunity; 

hypergammaglobulinemia; production of autoantibodies 

including anti-nuclear antibodies; systemic immune complex 

disease with glomerular, hepatic, splenic, and skin 

involvement.9,71-73 

 

Other: normal first hair cycle followed by rapid and complete 

hair loss/alopecia including vibrissae and cilia (eyelashes); 

dysregulation of catagen phase of hair cycle; failure of 

trichilemmal keratinization in the developing club hair; 

abnormal pylosebaceous units; hair follicle degeneration into 

utriculi and deep dermal cysts; sebaceous gland hyperplasia 

associated with deep dermal cysts; pyogranulomatous 

dermatitis; severe epidermal thickening/hyperplasia (mainly 

associated with the Hrrh mutation); high incidence of thymic 

lymphoma; increased sensitivity to UV and chemically induced 

skin tumors.9,71,74 

 

alopecia universalis 

congenita; atrichia 

with papular lesions; 

Marie Unna hereditary 

hypotrichosis 

 

Il2 interleukin 2 3 secreted cytokine; clonal 

expansion of B and T cells; 

immune cell activation 

including NK cells; 

development of regulatory T 

cells, effector T cells, and 

Il2m1 

 

mutation 1 

 

undefined mutation; 

hypoactive variant Il2 gene; 

smaller polyglutamine tract 

with shortening of the 

binding site; LOF; 

MRL/MpJ, SJL/J, and 

NOD/ShiLtJ  

 

Immune: defective T cell activation; impaired AICD with 

decreased susceptibility to Fas-mediated apoptosis; 

predisposition to autoimmune conditions.75 

 

Other: N/A. 

N/A 
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memory T cells; immune 

tolerance; adaptive cell-

mediated immunity. 

 

hypomorphic; recessive 

inheritance. 

 

Kit KIT proto-

oncogene 

receptor tyrosine 

kinase 

5 receptor tyrosine kinase 

protein; regulation of 

haematopoietic stem cell 

survival, differentiation, and 

proliferation; gametogenesis; 

mast cell development, 

migration, and function; 

melanogenesis. 

 

KitW 

 

KitW-v 

KitW: dominant 

spotting 

 

KitW-v: viable 

dominant spotting 

 

KitW: single point mutation; 

G-to-A transition; disrupted 

splice donor site; exon 

skipping; aberrantly spliced 

transcripts; LOF; 

semidominant inheritance. 

 

KitW-v: C-to-T transition at 

nucleotide 2007; threonine 

to methionine substitution 

at codon 660; LOF; 

semidominant inheritance. 

KitW: C57BL/6J, 

WB/ReJ 

 

KitW-v: C57BL/6J, 

MWT/Le, NFR/N, 

NFS/N, and WB/ReN 

 

KitW/KitW-v (compound 

mutant): WB/ReJ × 

C57BL/6J F1 

(WBB6F1) hybrid 

background 

Immune: hematologic disorders, including macrocytic anemia, 

due to impaired pluripotent hematopoietic stem cell 

differentiation and expansion; impaired resistance to parasitic 

infection; mast cells deficiency.9,76-78 

 

Other: early lethality (approx. 7 days of age) in KitW 

homozygotes; KitW-v homozygotes survive till maturity; 

defective gametogenesis due to impaired maturation of 

primordial germ cells during embryonic development; 

defective melanogenesis due to impaired melanoblasts 

migration and differentiation during embryonic development; 

homozygous mutants with diffusely unpigmented coat and 

normal eye pigmentation; heterozygous mutant with white 

spotting of the coat; hearing impairment due to abnormal 

development of intermediate cells in the stria vascularis.9,76,79-82 

 

macrocytic anemia 

Lep leptin 6 hormone; endocrine regulation 

of energy balance; central 

appetite-regulating factor; 

neutrophil activation and 

chemotaxis; Mφ phagocytosis; 

NK cytotoxicity; TH1 immune 

response; lymphocyte 

development. 

Lepob obese single point mutation; C-to-

T transition; codon 105; 

premature termination of 

the transcript; LOF; 

recessive inheritance. 

 

C57BL/6J, C57BL/KsJ 

 

Immune: decreased neutrophil activation and chemotaxis; 

impaired Mφ phagocytic capacity; defective DC development 

and maturation; deficient TH1 immune response; defective B 

and T cells development and survival; impaired NK cell 

cytotoxicity; reduced inflammatory mediators synthesis; 

enhanced starvation-induced immunosuppression; reduced 

susceptibility to experimental autoimmune conditions.83-88 

 

Other: hyperphagy; obesity; type II diabetes mellitus; 

osteosclerosis/increased bone mass; hypogonadism.89,90 

 

obesity, type 2 

diabetes mellitus, 

metabolic syndrome 

 

Lepr Leptin receptor 4 hormone receptor; endocrine 

regulation of energy balance; 

central appetite-regulating 

factor; neutrophil activation 

and chemotaxis; Mφ 

phagocytosis; NK cytotoxicity; 

TH1 immune response; 

lymphocyte development. 

Leprdb 

 

diabetes 

 

single point mutation, G-to-

T transversion; abnormal 

splicing with premature 

termination of the 

transcript; loss of signal 

transduction function; LOF; 

recessive inheritance.  

 

C57BL/KsJ 

 

Immune: decreased neutrophil activation and chemotaxis; 

impaired Mφ phagocytic capacity; defective DC development 

and maturation; deficient TH1 immune response; defective B 

and T cells development and survival; impaired NK cell 

cytotoxicity; reduced inflammatory mediators synthesis; 

enhanced starvation-induced immunosuppression; reduced 

susceptibility to experimental autoimmune conditions.85,86,91-93 

 

Other: hyperphagy; obesity; type II diabetes mellitus; 

osteosclerosis/increased bone mass; hypogonadism.90,94,95 

 

obesity, type 2 

diabetes mellitus, 

metabolic syndrome 

 

Lyst lysosomal 

trafficking 

regulator 

 

13 regulation of 

lysosome/endosomes 

intracellular trafficking. 

Lystbg-J 

 

beige Jackson 

 

intragenic deletion; 3 bp, 

exon 54, codon 3741; 

highly conserved isoleucine 

loss, carboxy terminus; 

LOF; recessive inheritance. 

 

C57BL/6J 

 

Immune: immune cell and leukocyte dysfunction; disorder of 

lysosome/secretory granule formation and function in different 

cell types including granulocytes, Mφs, NK, and cytotoxic T 

cells; evidence of giant lysosomes/secretory granules in 

granulocytes, lymphocytes, and mast cells; defective leukocyte 

chemotaxis; impaired phagolysosome formation; impaired 

MHC class II antigen presentation; defective leukocyte lytic 

granules exocytosis and release of bactericidal enzymes; 

increased susceptibility to opportunistic bacterial infections.96-

99 

 

Other: oculocutaneous hypopigmentation; abnormal 

enlargement, clumping, and distribution of melanin granules; 

evidence of giant lysosomes/secretory granules in various 

tissues/cell types including hepatocytes, renal proximal 

tubules, neurons, exocrine and endocrine pancreas, thyroid 

follicles, and type II pneumocytes; anemia and hemorrhagic 

diathesis due to dysfunction of platelet’s α and δ granules; 

progressive neurological disorder accompanied by nearly 

complete loss of Purkinje cells.99 

 

Chediak-Higashi 

syndrome 
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Map3k14  

 

mitogen-

activated protein 

kinase kinase 

kinase 14 

 

11 serine/threonine protein-

kinase; promotion of canonical 

and non-canonical NF-κB 

signaling cascade; 

development of secondary 

lymphoid organs. 

 

Map3k14aly 

 

alymphoplasia 

 

single point mutation; G-to-

A transition; replacement of 

a highly conserved glycine 

for an arginine at position 

855; LOF; recessive 

inheritance. 

 

C57BL/6J Immune: generalized aplasia of secondary lymphoid organs 

including lymph nodes, splenic white pulp, Peyer’s patches, 

and isolated lymphoid follicles; lack of normal 

corticomedullary differentiation in the thymus; high 

susceptibility to opportunistic infections; defects of somatic 

hypermutation and immunoglobulin class switching; 

hypogammaglobulinemia; impaired humoral and cell- 

mediated immune response; progressive autoimmune condition 

with CD4+ T cell-rich infiltrates affecting exocrine glands (e.g. 

pancreas, salivary glands, and lacrimal glands) and other 

organs.100-107 

 

Other: impaired mammary gland development and lactation.108 

 

Sjogren’s 

syndrome 

 

Mitf melanogenesis 

associated 

transcription 

factor 

 

6 transcription factor; master 

regulator of eye and neural 

crest development; fate and 

differentiation of melanocyte, 

RPE, osteoclast, and mast cell; 

regulation of tyrosinase and 

tyrosinase-related protein 1 in 

melanocytes. 

 

MitfMi 

 

microphthalmia 

 

intragenic deletion; highly 

conserved arginine loss; 

impaired DNA binding; 

LOF; semidominant 

inheritance. 

unspecified Immune: impaired monocyte/Mφ, NK cell, basophil, and mast 

cell function; decreased Mφ chemotaxis.9,109,110 

 

Other: alteration of skin and eye pigmentation; white spotting 

on the head, tail, and belly, reduced iris pigment (heterozygous 

mutants); complete absence of skin and eye pigmentation, lack 

of incisors (homozygous mutants); inner ear defects and 

deafness; colobomatous micropthalmia; impaired development 

of dorsal root ganglia and adrenal medulla;9,110 osteopetrosis; 

dysfunctional osteoclasts due to cathepsin K and TRAP 

downregulation (both transcriptional target of Mitf); impaired 

endocrine control of calcium and phosphate 

metabolism/homeostasis.9,111-113 

 

Waardenburg 

syndrome type 2A; 

Tietz albinism-

deafness syndrome; 

coloboma; 

osteopetrosis; 

microphthalmia; 

macrocephaly; 

albinism; deafness 

Mitf melanogenesis 

associated 

transcription 

factor 

 

6 transcription factor; master 

regulator of eye and neural 

crest development; fate and 

differentiation of melanocyte, 

RPE, osteoclast, and mast cell; 

regulation of tyrosinase and 

tyrosinase-related protein 1 in 

melanocytes. 

Mitfmi-vit 

 

vitiligo single point mutation; G-to-

A transition; codon 222; 

aspartate to asparagine 

substitution in the helix 1 

region of the protein; LOF; 

recessive inheritance. 

 

C57BL/6J 

 

Immune: decreased number of Langerhans’ cells in the 

interfollicular epidermis; attenuation of allergic contact 

dermatitis; decreased number of peritoneal mast cells. 

 

Other: congenital white spotting of the back and abdomen; 

progressive depigmentation with each hair molt resulting in 

complete pigment loss by 2 years of age; degeneration of 

follicular melanocytes without inflammation; iris pigment 

dispersion; degeneration and loss of melanocytes within the 

choroid; expansion of dysfunctional RPE cells with progressive 

retinal degeneration.9,114-116 

 

vitiligo 

Mx1 

 

MX dynamin-

like GTPase 1 

 

16 Mx GTPase protein family; 

innate immunity; IFNα an 

IFNβ-mediated response to 

intranuclear viruses including 

orthomyxoviruses and Thogoto 

virus; inhibition of viral 

replication. 

 

Mx1s1 

 

Mx1s2 

 

Mx1r 

Mx1s1: myxovirus 

susceptibility 1 

 

Mx1s2: myxovirus 

susceptibility 2 

 

Mx1r : myxovirus 

resistant 

Mx1s1: exon 9 to 11 deletion 

compared to the resistant 

(Mxr) allele; LOF; recessive 

inheritance. 

 

Mx1s2: exon 10; nonsense 

mutation resulting in a null 

allele; LOF; recessive 

inheritance. 

 

Mx1s1: most inbred 

strains including A/J, 

BALB/cJ, C57BL/6J, 

C3H/HeJ, and 

DBA/2J. 

 

Mx1s2: CBA/J, CE/J, 

I/LnJ, and PERA/Ei. 

 

Mxr: A2G, SL/NiA, 

T9, and CAST/Ei. 

 

Immune: (compared to feral mice carrying the Mx1r allele) 

increased susceptibility to viral infections including 

orthomyxoviruses; ineffective IFNα an IFNβ-mediated 

response to viral infections.117,118 

 

Other: N/A. 

susceptibility to viral 

diseases including 

orthomyxoviral 

infectons 

 

Mx2 MX dynamin-

like GTPase 2 

 

16 Mx GTPase protein family; 

innate immunity; IFNα an 

IFNβ-mediated response to 

intracytoplasmic viruses 

including vesicular stomatitis 

virus and bunyaviruses (e.g. La 

Crosse virus and Hantaan 

virus); inhibition of viral 

replication. 

 

unspecified 

 

unspecified insertion mutation; open 

reading frames (ORFs); 

single nucleotide (C) at 

position 1366 of Mx2 

mRNA; frameshift with 

premature termination of 

the transcript; LOF; 

recessive inheritance.   

 

functional only in 

some feral mice (i.e. 

Mus musculus 

musculus and Mus 

spretus) 

 

Immune: (compared to feral mice expressing the functional 

form of Mx2) increased susceptibility to viral infections 

including vesicular stomatitis virus and hantaviruses; 

ineffective IFNα an IFNβ-mediated response to viral 

infections.118-120 

 

Other: N/A. 

susceptibility to viral 

diseases including 

vesicular stomatitis 

and hantaviruses 

infections 
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Oas1b 

 

2'-5' 

oligoadenylate 

synthetase 1B 

 

5 oligoadenylate synthetase 

family; dsRNA-activated 

antiviral enzyme; innate 

immunity; IFNα and IFNβ-

mediated response to viral 

infections; synthesis of 2',5'-

oligoadenylates (2-5As); 

activation of latent 

ribonuclease L (RNase L); 

viral and endogenous RNA 

degradation; inhibition of viral 

replication. 

 

Oas1bFlv-mr 

 

Oas1bFlv-s 

 

Oas1bFlv-r 

 

Oas1bFlv-mr: minor 

flavivirus resistance 

 

Oas1bFlv-s: 

flavivirus 

susceptibility 

 

Oas1bFlv-r: 

flavivirus resistance 

 

Oas1bFlv-mr: nucleotide 

substitutions; 14 amino acid 

substitutions; LOF; 

hypomorphic; dominant 

inheritance. 

 

Oas1bFlv-s: single point 

mutation; C-to-T transition; 

premature stop codon; 

protein lacking 30% of the 

C-terminal region; LOF; 

dominant inheritance. 

 

Oas1bFlv-mr: wild-

derived strain 

MOLD/RkJ 

 

Oas1bFlv-s: most of the 

laboratory mouse 

strains 

 

Oas1bFlv-r: most wild-

derived strains 

including BSVR, 

BRVR, CASA/RK, 

and CAST/Ei. 

 

Immune: (compared to the wild-derived strains carrying the 

Oas1bFlv-r allele) partial (Oas1bFlv-mr) and full (Oas1bFlv-s) 

susceptibility to flaviviral infections including Yellow Fever, 

Murray Valley Encephalitis virus, Dengue Fever, West Nile 

Fever, Japanese Encephalitis, and St. Louis Encephalitis.121-123 

 

Other: N/A. 

susceptibility to viral 

diseases including 

flaviviruses infections 

 

Ostm1  

 

osteopetrosis 

associated 

transmembrane 

protein 1 

 

10 melanocyte development; 

melanosome maturation; 

osteoclasts development; 

osteoclast ruffled border 

function; lysosome biology. 

Ostm1gl 

 

grey-lethal 

 

Intragenic deletion; 5' 

region of the gene including 

promoter, first exon and 

part of first intron; evidence 

of transposon insertion at 

the deletion breakpoint; 

LOF; recessive inheritance. 

 

STOCK Tyrc-e Immune: immunodeficiency likely resulting from a stress 

response; thymus atrophy and lymphocyte depletion.9 

 

Other: early lethality (approx. 20 to 40 days of age); failure to 

thrive; coat color defect; osteopetrosis resulting in abnormal 

skeletal development; unerupted incisors; absence of marrow 

cavities in long bones; decreased circulating leukocyte counts; 

poorly regenerative anemia; dysfunctional osteoclasts 

(impaired acidification of Howship's lacuna); parafollicular C 

cells hyperplasia associated with hypocalcemia, 

hypophosphatemia, and vitamin D metabolism; 

neurodegeneration associated with neuronal accumulation of 

autophagosomes and lysosomal storage disorder.124-126 

 

autosomal recessive 

osteopetrosis 

 

Pou1f1 

 

POU domain, 

class 1, 

transcription 

factor 1 

 

16 transcription factor; pituitary 

development; transcriptional 

activation of pituitary 

somatotropes, lactotropes, and 

thyrotropes. 

Pou1f1dw 

 

Pou1f1dwJ 

 

Pou1f1dw: Snell 

dwarf 

 

Pou1f1dwJ: dwarf-J 

Pou1f1dw: single point 

mutation; G-to-T 

transversion; codon 261; 

tryptophan to cysteine 

conversion in the 

homeodomain; LOF; 

semidominant inheritance. 

 

Pou1f1dwJ: chromosomal 

inversion or insertion of 

greater than 4kb in the 

gene; LOF; semidominant 

inheritance. 

 

Pou1f1dw: DW/J 

 

Pou1f1dwJ: C3H/HeJ 

 

Immune: delayed immune system maturation and development 

of immunocompetence; impaired T and B cell development 

and function; hypoplasia/atrophy of primary and secondary 

lymphoid organs (mainly affecting the T cell domains); partial 

rescue of immune defects via hormonal therapy (GH, IGF-I, 

prolactin, thyroxin).127-134 

 

Other: growth retardation; adenohypophysis hypoplasia; 

longevity and delayed aging resulting from somatotropic 

(GH/IGF-I) axis deficiency, lactotropes and thyrotropes 

deficiency; enhanced resistance to oxidative stress; reduced 

frequency of spontaneous tumor development; deafness with 

abnormal development and degeneration of Corti's organ; 

abnormal cerebellar and hippocampal development.135-143 

 

panhypopituitary 

dwarfism; combined 

pituitary hormone 

deficiency 2 

Prkdc 

 

protein kinase, 

DNA activated, 

catalytic 

polypeptide 

 

16 

 

catalytic subunit of the DNA-

dependent protein kinase; 

sensor for DNA damage; DNA 

NHEJ; DSB repair; V(D)J 

recombination. 

 

Prkdcscid 

 

Prkdcdxnph 

 

Prkdcscid: severe 

combined 

immunodeficiency 

 

Prkdcdxnph: BALB/c 

 

Prkdcscid: single point 

mutation; T-to-A 

transversion; premature 

stop codon; LOF; recessive 

inheritance. 

 

Prkdcdxnph: single point 

mutations; A-to-G 

transition; methonine to 

valine substitution at codon 

3844; C-to-T transition; 

arginine to cysteine 

substitution at codon 2140; 

hypomorphic; recessive 

inheritance. 

 

Prkdcscid: C.B-17 

 

Prkdcdxnph: BALB/c 

 

Immune (only Prkdcscid): V(D)J recombination defect; arrested 

B and T lymphocyte development at the pro-B and the pro-T 

cell stages; lack of mature and functional B cell and T cell; 

inability to mount an adaptive immune response; increased NK 

cell and hemolytic complement activity; leaky phenotype with 

generation of functional B and T cells clones (especially in old 

mice exposed to “dirty” environment); increased susceptibility 

to opportunistic bacterial infections.144-149 

 

Other: dysfunctional DSB repair mechanism; high frequency of 

thymic lymphoma development and increased susceptibility to 

ionizing radiation-induced tumors.150-153 

severe combined 

immunodeficiency, 

autosomal recessive, T 

cell-negative, B cell-

negative, NK cell-

positive 

 

Prop1 

 

paired like 

homeodomain 

factor 1 

 

11 transcription factor; pituitary 

development; transcriptional 

activation of pituitary 

Prop1df 

 

Ames dwarf 

 

single point mutation, T-to-

C transition; serine to 

proline substitution within 

the α1 helix of the 

Goodale large mice x 

pink-eyed stock, 

NFR/N 

 

Immune: T cell depletion from both primary and secondary 

lymphoid organs; reduction in DP T cells in the thymus; 

abnormal presence of DP T cells in the lymph nodes; decrease 

in pre-, pro-, and total B cell numbers; overall impaired cell-

panhypopituitary 

dwarfism, combined 

pituitary hormone 

deficiency 2 



Gene/Locus 

symbol 

Gene/Locus 

name 

Chr Function Mutation or 

allelic variant 

symbol 

Mutation or allelic 

variant name 

Mutation or allelic variant 

detail 

Original/affected 

strain/stock 

Phenotype Human disease 

models 

gonadotropes, somatotropes, 

lactotropes and thyrotropes. 

 

homeodomain (amino acid 

83); LOF; recessive 

inheritance.  

 

mediated and humoral immunity; reduced NK activity; 

adiponectin-dependent reduced level of pro-inflammatory 

cytokines; anti-inflammatory immune skewing; partial rescue 

of immune defects via hormonal therapy (GH, IGF-I, prolactin, 

thyroxin).130,133,134,154-156 

 

Other: growth retardation; longevity and delayed aging 

resulting from somatotropic (GH/IGF-I) axis deficiency; 

lactotropes and thyrotropes deficiency; enhanced resistance to 

oxidative stress; reduced frequency of spontaneous tumor 

development.133,157-159 

 

 

Ptpn6 

 

protein tyrosine 

phosphatase, 

non-receptor 

type 6 

 

6 protein tyrosine phosphatase 

(PTP) family; 

dephosphorylation of diverse 

phospho-proteins for the 

regulation of different 

signaling pathways involved in 

hematopoiesis and immune-

inflammatory cell activation; 

cell growth; proliferation; 

differentiation; regulation of 

glucose homeostasis. 

 

Ptpn6me 

 

Ptpn6me-v 

 

Ptpn6me: motheaten 

 

Ptpn6me-v: viable 

motheaten 

 

Ptpn6me: intragenic 

deletion; single bp; cryptic 

splicing site; aberrant 

splicing; deletion of a 101 

bp segment in the encoded 

transcript; frameshift in the 

encoded protein; LOF; 

recessive inheritance. 

 

Ptpn6me-v:single point 

mutation; T-to-A 

transversion splice 

consensus site; aberrant 

splicing; LOF; recessive 

inheritance. 

 

C57BL/6J 

 

Immune: systemic autoimmune condition; lethal pneumonitis 

(eosinophilic crystalline pneumonia); progressive neutrophilic 

dermatitis with patchy hair loss (hence the term “motheaten”); 

unregulated expansion of activated granulocytes and Mφs; 

abnormal expansion of reactive plasma cells; 

hypergammaglobulinemia; production of autoantibodies 

including anti-nuclear antibodies; systemic immune complex 

disease with glomerular, splenic, and skin involvement; 

eosinophil and mast cell hyper-responsiveness; 

immunodeficiency; early thymic cortical atrophy; splenic white 

pulp loss associated with massive EMH; loss of lymphoid 

follicles in lymph node and Peyer’s patches; defective B and T 

cell maturation, activation, and expansion; overall reduced B 

cell population; expanded population of CD5+ B1a B cells; 

progressive T cell depletion; TH2-biased activation of the 

immune response; defective NK differentiation and 

function.9,160-162 

 

Other: failure to thrive; mean survival time of approx. 4 and 9 

weeks for motheaten and motheaten viable, respectively; 

increased glucose tolerance and insulin sensitivity; depletion of 

Leydig's cells, lowered testosterone levels, and impaired 

spermatogenesis; decreased bone density due to unregulated 

osteoclast activity.9,68,161,163-165 

 

N/A 

Rab27a RAB27A, 

member RAS 

oncogene family 

9 Ras superfamily of GTPases; 

member of the Rab family of 

proteins; secretory granule 

maturation and function; 

regulation of vesicular fusion, 

trafficking and exocytotic 

pathway. 

Rab27aash 

 

ashen single point mutation; A-to-

T transversion; splice donor 

site downstream of exon 4; 

activation of two cryptic 

splice donor sites and the 

addition of an intron; LOF; 

recessive inheritance. 

 

C3H/HeSn Immune: defective secretory granule exocytosis in leukocytes 

including cytotoxic T cells, NK cells, eosinophils, neutrophils, 

and mast cells; hemophagocytic lymphohistiocytosis-like 

syndrome upon LCMV infection.166-170 

 

Other: oculocutaneous hypopigmentation; defective trafficking 

of melanosomes; increased bleeding times; reduction in the 

number of platelet-dense granules; glucose intolerance without 

signs of peripheral insulin resistance or insulin deficiency in 

the pancreas; defective exocytosis of insulin granules in 

pancreatic β cells; impaired release of zymogenic granules 

from the pancreatic acini.166,171-174 

 

Griscelli syndrome 

type 2; 

hemophagocytic 

lymphohistiocytosis; 

Hermansky-Pudlak 

syndrome; platelet 

storage pool deficiency 

Sharpin 

 

SHANK-

associated RH 

domain 

interacting 

protein 

 

15 

 

component of the LUBAC; 

substrates polyubiquitination; 

regulation of NF-κB signaling 

and TNF-induced cell death. 

 

Sharpincpdm 

 

Sharpincpdm-Dem 

 

Sharpincpdm: 

chronic 

proliferative 

dermatitis 

 

Sharpincpdm-Dem: 

chronic 

proliferative 

dermatitis, Peter 

Demant 

 

Sharpincpdm: intragenic 

deletion; single bp in the 3' 

end of exon 1; frameshift 

with premature stop codon; 

LOF; recessive inheritance. 

 

Sharpincpdm-Dem: single point 

mutation and intragenic 

deletion; C-to-A transition; 

near the 5' end of exon 1; 

14 bp deletion of 

nucleotides 438-451; 

frameshift with premature 

Sharpincpdm: 

C57BL/KaLawRij 

 

Sharpincpdm-Dem: 

OcB3/Dem 

 

Immune: chronic progressive proliferative and eosinophilic 

dermatitis; clinically apparent at 3-4 weeks of age; systemic 

eosinophilic inflammation; eosinophilia; defects in secondary 

lymphoid organ development; absent Peyer’s patches; spleen 

and lymph nodes without B cell follicles, follicular DCs and 

germinal centers; poorly defined B and T cell domains in the 

spleen with absence of marginal zone; IgG, IgA and IgE;175,176 

 

Other: N/A. 

atopic dermatitis; 

hypereosinophilic 

syndromes 
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stop codon; LOF; recessive 

inheritance. 

 

Slc11a1 

 

solute carrier 

family 11 

(proton-coupled 

divalent metal 

ion 

transporters), 

member 1 

 

1 Mφ/monocyte-specific 

divalent transition metal 

transmembrane transporter; 

phagosome/phagolysosome 

maturation; regulation of 

intracellular iron metabolism; 

activation of Mφs, DCs, and γδ 

T cells; resistance to 

intracellular/phagocytized 

pathogens including 

Mycobacterium spp, 

Salmonella typhimurium, and 

Leishmania donovani. 

 

Slc11a1s;  

 

Slc11a1r 

 

Slc11a1s : pathogen 

susceptibility 

 

Slc11a1r: host 

resistance 

 

Slc11a1s: single point 

mutation; non-conservative 

replacement of glycine by 

aspartic acid at amino acid 

position 169 (Gly169Asp); 

nonfunctional misfolded 

protein; LOF; recessive 

inheritance. 

 

Slc11a1s: BALB/cJ, 

C57BL/6J, 

C57BL/10J, CE/J, 

DBA/1J, MOLF/Ei, 

and NZW/LacJ 

 

Slc11a1r: 129X1/Sv, 

C3H/HeN 

 

Immune: (susceptible strains compared to resistant ones) 

decreased iron sequestration from phagocytized bacteria; 

impaired phagosome/phagolysosome maturation; impaired 

activation of Mφs, DCs, and γδ T cells; deficient TH1-biased 

immune response; reduced antigen presentation ability of 

bacteria-derived antigens; susceptibility to infection by several 

pathogens, including diverse Mycobacterium species, 

Salmonella typhimurium, and Leishmania donovani;177-180 

 

Other: N/A. 

susceptibility to 

infectious diseases 

such as tuberculosis 

and leprosy; 

susceptibility to 

immunoinflammatory 

conditions such as 

rheumatoid arthritis 

and Crohn's disease. 

Tcirg1 

 

T cell, immune 

regulator 1, 

ATPase, H+ 

transporting, 

lysosomal V0 

protein A3 

 

19 vacuolar H+-ATPase (V-

ATPase), proton pump 

subunit; V-ATPase dependent 

organelle acidification; protein 

sorting; zymogen activation; 

receptor-mediated endocytosis; 

acidification-dependent bone 

resorption by osteoclasts. 

 

Tcirg1oc 

 

osteosclerotic 

 

intragenic deletion; 1579 bp 

region spanning exon 1 to 

3; LOF; recessive 

inheritance. 

 

C57BL/6J-Vps33abf Immune: perturbed bone marrow microenvironment with 

defective hematopoiesis; increased bone marrow 

myelomonocytic differentiation; impaired B lymphopoiesis; 

abnormal expansion of B220+ and CD11b+ hematopoietic 

progenitors; reduced T cell activation; decreased circulating 

leukocyte counts.9,181,182 

 

Other: failure to thrive; early lethality (approx. 30 to 40 days of 

age); dysfunctional osteoclasts (impaired acidification of 

Howship's lacunae); osteopetrosis resulting in abnormal 

skeletal development; craniofacial deformities (shortened snout 

and domed skull); unerupted incisors; clubbed feet; vestibular 

abnormalities; absence of marrow cavities in long bones; 

osteopetrosis combined with rickets-like growth plate changes 

with failure of endochondral ossification (osteopetrorickets); 

parafollicular C cells hyperplasia associated with 

hypocalcemia, hypophosphatemia and impaired vitamin D 

metabolism; gastric hypochlorhydria.9,183,184 

 

autosomal recessive 

osteopetrosis 1; 

clubfoot. 

 

Tlr4 

 

toll-like receptor 

4 

 

4 pattern recognition receptor 

(PRR) family; 

PAMPs/DAMPs recognition; 

activation of innate immunity; 

lipopolysaccharide (LPS); 

gram-negative bacteria; NF-κB 

signaling; synthesis of pro-

inflammatory cytokines and 

chemokines; LPS-independent 

inflammatory responses; free 

fatty acids and oxidized LDL. 

 

Tlr4Lps-d 

 

Tlr4lps-del 

 

Tlr4Lps-d : defective 

lipopolysaccharide 

response. 

 

Tlr4lps-del : defective 

lipopolysaccharide 

response, deletion. 

Tlr4Lps-d: single point 

mutation; C-to-A 

transversion; histidine to 

proline substitution at 

position 712; LOF; 

codominant inheritance. 

 

Tlr4lps-del: intragenic 

deletion, 7472 3bp region 

encompassing the entire 

Tlr4 locus; LOF; recessive 

inheritance. 

 

Tlr4Lps-d: C3H/HeJ 

 

Tlr4lps-del: 

C57BL/10ScN 

Immune: impaired recognition of TLR4-specific PAMPs and 

DAMPs including LPS, free fatty acids, and HSP60; defective 

activation of the innate immunity against specific bacterial, 

fungal and viral infections; abnormal regulation of TH1 vs 

TH2 immune response by DCs in response to TLR4-specific 

PAMPs and DAMPs;9,185-191 protection from experimentally-

induced autoimmune and immunoinflammatory conditions 

including GVHD, EAE, CIA, DSS colitis, and endotoxic 

shock.192-196 

 

Other: protection from experimentally-induced alcoholic 

steatohepatitis, atherosclerosis, diabetes, insulin resistance, 

ischemia-reperfusion injury, metabolic syndrome, myocardial 

infarction, obesity, renal fibrosis, stroke, and traumatic 

injury;197-205 delayed skin wound healing;206 increased 

susceptibility to cutaneous chemical carcinogenesis.207 

 

sepsis; cytokine storm; 

gram negative bacteria 

infections. 

 

Tnf 

 

tumor necrosis 

factor 

 

17 multifunctional 

proinflammatory cytokine; 

TNF superfamily; innate 

immune response; chronic 

inflammation; endogenous 

pyrogen; apoptotic cell death; 

cachexia; acute phase 

response. 

 

TnfBpsm1 

 

bone phenotype 

spontaneous 

mutation 1 

 

retrotransposone insertion 

into the 3' UTR; 

polyadenylation signal with 

premature termination of 

the transcript; GOF; 

dominant inheritance. 

 

unspecified; it involves 

BALB/c, C57BL/6 and 

129/Sv 

 

Immune: deregulated expression of mutant Tnf by myeloid 

derived immune/inflammatory cells; increased TNF signaling 

in synoviocytes; progressive polyarthritis mainly affecting the 

interphalangeal, metacarpophalangeal/metatarsophalangeal, 

carpo-metacarpal/tarso-metatarsal, and carpal/tarsal joints; 

absence of IgM or IgG rheumatoid factors; progressive 

inflammation, thickening, and fibrosis of the aortic and mitral 

valves; aortic root aneurysms (only observed on the BALB/c 

background).208 

 

rheumatoid arthritis 
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Other: N/A. 

 

unknown unknown 1 unknown Dh dominant 

hemimelia 

unknown mutation; 

semidominant inheritance. 

 

crossbred stock Immune: both homozygous and heterozygous mutants affected 

by congenital asplenia; heterozygous characterized by enlarged 

lymph nodes with decreased number of B cells and massive 

expansion of T cells; impaired T cells maturation; 

leukocytosis; thrombocytosis; decreased serum levels of IgM 

and IgG2.209 

 

Other: early postnatal lethality in homozygous; defect in 

splanchnic mesoderm development; gastrointestinal and 

urogenital anomalies; skeletal abnormalities; hind limb 

malformations (hence hemimelia); reduction in the vertebral 

number.9,210,211 

 

congenital asplenia 

unknown unknown Y unknown Yaa accelerated 

autoimmunity and 

lymphoproliferation 

transposition; 

accelerated 

autoimmunity and 

lymphoproliferation 

 

insertion mutation; 4 Mbp 

telomeric segment of the 

chrX translocated into the 

pseudoautosomal region of 

chrY; duplication about 19 

genes including Tlr7; GOF; 

Y-linked inheritance. 

 

BXSB/MpJ  

 

Immune: promoting and/or accelerating autoimmune 

phenotypes in autoimmune-prone backgrounds (e.g. MRL/MpJ 

and NZW/LacJ) and mouse models including MRL/MpJ-Faslpr; 

translocation of Tlr7 from the chrX into the chrY; duplication 

and upregulation/overexpression of Tlr7 (Xist normally 

inactivates one copy of Tlr7 in females); increased TLR7 

signaling in response to single-stranded RNA molecules; 

accelerated onset of autoimmunity in BXSB/MpJ males (50% 

mortality at 6 months) when compared to females (50% 

mortality at 20 months); systemic lupus erythematosus-like 

condition; CD4 T cell expansion and activation; 

overexpression of IL21; unregulated TFH activation resulting 

from defective CD8+ Treg cell function; generalized lymphoid 

hyperplasia (involving both LNs and spleen); overall thymic 

cortical depletion with reduced epithelial network associated 

and lower number of thymocytes; monocytosis; 

hypergammaglobulinemia; hemolytic anemia; production of 

autoantibodies including anti-nuclear and anti-erythrocyte 

antibodies; severe immune complex-mediated GN and 

vasculitis.9,212-218 

 

Other: N/A. 

 

systemic lupus 

erythematosus 

 

Zap70 zeta-chain 

(TCR) 

associated 

protein kinase 

1 member of the protein tyrosine 

kinase family; part of the T 

cell receptor; development of 

T lymphocytes and 

thymocytes; T lymphocyte 

receptor-mediated signal 

transduction. 

Zap70st 

 

strange 

 

single point mutation, C-to-

T transition; arginine to 

cysteine substitution at 

codon 464; disruption of a 

highly conserved motif 

within the kinase domain; 

LOF; recessive inheritance. 

B6.129S2-Cd28tm1Mak/J 

 

Immune: thymus hypoplasia; absence of mature T cells; 

thymocyte development is arrested at the CD4+ CD8+ DP stage 

of differentiation; impaired TCR signaling.219 

 

Other: N/A. 

N/A 

Zap70 zeta-chain 

(TCR) 

associated 

protein kinase 

1 member of the protein tyrosine 

kinase family; part of the T 

cell receptor; development of 

T lymphocytes and 

thymocytes; T lymphocyte 

receptor-mediated signal 

transduction. 

Zap70m1Saka 

 

Shimon Sakaguchi 

 

single point mutation; G-to-

T transversion at nucleotide 

489; tryptophan to cysteine 

substitution at codon 163; 

hypomorphic; LOF; 

recessive inheritance. 

 

BALB/cJ 

 

Immune: altered thymic T cell selection; T cell–mediated 

autoimmune polyarthritis mainly affecting the interphalangeal, 

metacarpophalangeal/metatarsophalangeal, carpo-

metacarpal/tarso-metatarsal, and carpal/tarsal joints; interstitial 

pneumonitis; systemic vasculitis; granulomatous panniculitis; 

high titers of rheumatoid factor; autoantibodies specific for 

type II collagen; severe hypergammaglobulinaemia; high 

concentration of circulating immune complexes; induction of 

severe polyarthritis, interstitial pneumonitis, and ileitis after 

challenge with polysaccharides from Saccharomyces 

cerevisiae.220-222 

 

Other: N/A. 

 

rheumatoid arthritis 

 

 

 



Abbreviations and acronyms used in the table: 

A: adenine, AICD: activation-induced cell death, BCR: B cell receptor, bp: base pair, C: cytosine, Chr: chromosome, CIA: collagen-induced arthritis, CNS: central nervous system, CTL: cytotoxic T lymphocytes, DAMPs: 

damage-associated molecular patterns, DC: dendritic cell, DN: double negative, DSB: double strand break, DSS: dextrane sodium sulfate, EAE: experimental autoimmune encephalitis, EMH: extramedullary hematopoiesis, 

FSH: follicle stimulating hormone, G: guanine, GC: germinal center, GH: growth hormone, GN: glomerulonephritis, GOF: gain of function, GVHD: graft versus host disease, IFN: interferon, Ig: immunoglobulin, IGF-I: 

insulin-like growth factor 1, LCMV: lymphocytic choriomeningitis virus, LH: luteinizing hormone, LOF: Loss of function, LPS: lipopolysaccharide, Mφ: macrophage, LUBAC: linear ubiquitin assembly complex, N/A: not 

applicable, not available, NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, NHEJ: non-homologous end joining, NK: natural killer, PAMPs: pathogen-associated molecular patterns, RPE: retinal 

pigmented epithelium, ssDNA: single strand DNA, T: thymine, TAM: tumor associated macrophage, TCR: T cell receptor, TGF: transforming growth factor, TI: T independent antigen, TLR: Toll-like receptor, TNF: tumor 

necrosis factor. 
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