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S1 Optimal Causation Entropy in a Nutshell1

Suppose that we are given a set of time series {Xi(t)} from a multivariate stochastic process
(i = 1, . . . ,n). Each Xi(t) could represent, for example, the vector position of one bird within a
flock at time t. Making the usual assumption of Markovity, we can assume that X j(t), for some
specific j, is determined completely by the set {Xi(t−1)}. Due to the complex interdependence
of these processes on one another, it is quite likely that much of the information flowing into
X j(t) is redundant and that there is some reduced set St−1 ⊂ {Xi(t−1)} such that

P(X j(t)|St−1) = P(X j(t)|{Xi(t−1)}). (1)

In general, there are likely many such sets that fulfill the above condition, but our goal is to2

identify the smallest such set. The members of that set are called the “causal parents” of X j(t).3

If the system described by {Xi(t)} is in a stationary state, then X j will have the same causal4

parents S at all times.5

It can be shown that finding the set of causal parents S for each process X j(t) is equivalent
to finding the smallest subset S′t−1 of {Xi(t−1)} that maximizes the so-called “unconditional”
causation entropy

CS′→ j ≡MI(X j(t); S′t−1). (2)

Note that this unconditional causation entropy differs from the standard causation entropy de-6

fined in Eq. (14) of the main text. Finding the smallest set S′ that maximizes this information7

theory metric is a nonconvex optimization problem, but a simple, two-stage algorithm, dubbed8

the optimal causation entropy (oCSE) algorithm, has been shown to suffice.9

The first, forward stage of the oCSE algorithm iteratively finds, one at a time, the process10

Xi(t − 1) that maximizes the incremental reduction of uncertainty with regards to the target11

variable X j(t), until no further reduction is possible. The outcome of the first stage is a set12

of candidate causal parents that includes the true causal parents but may also contain other13

members of {Xi(t−1)} that are “false positives”. In the second, backward stage, the algorithm14

examines each member of the candidate set to remove those that are redundant. When the exact15

distributions and entropies are known, the resulting set returned by the algorithm is the true set16

of causal parents. In practical applications where these distributions and entropies must also be17

estimated from the data, the outcome of the oCSE algorithm only provides an estimate of the18

true causal parents.19
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S2 Aggregating data: an example from the ant model20

Aggregating group data across different time points or agents can be a useful trick for achieving21

a large sample size from a limited amount of experimental data, but oftentimes this cannot be22

done because the distributions underlying the random variables of interest are nonstationary or23

differ from agent to agent. In the ant model, for example, most of the distributions generally de-24

pend upon both the time t and the ant index n, thereby severely reducing the amount of available25

data for computing any IT metrics of interest. For the mutual information MI(Xn(t);Xn(t−1))26

computed in section 2.2 of the main text (see figure 3 B), we can get around this issue by noting27

several important properties of the model. First, for t ≤ n, the MI is equal to (1/2) log t and28

thus depends only on time. Second, because the random variables in this model are all normally29

distributed, the entropies needed to compute the MI will depend only on the variances of the30

corresponding probability distributions and not their means [1]. As a result of these properties,31

we can shift the values of the ant positions so that Xn(t) is distributed about zero mean for all32

n and t and then, for each time point, pool together the shifted positions of each ant for which33

n > t. In most real systems, this degree of “inside” knowledge would not be available, and the34

potential benefits of aggregating data to improve sampling would have to be weighed carefully35

against the potential costs of wrongly comparing apples to oranges.36
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