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1 Deterministic and stochastic modeling of synaptic and free virus
transmission

1.1 Deterministic modeling: a review

Here, we review a previously published mathematical modeling framework to study the role of
synaptic and free virus transmission in HIV dynamics [5, 3, 4]. This modeling approach is based on
ordinary differential equations, which means that perfect mixing of populations occurs with both
transmission modes, i.e. synaptic transmission is not spatially restricted. This is a severely limiting
factor, however the ODE model also provides a framework that allows for mathematical analysis
that is not possible with only the agent-based model. Let xi(t) be the population of cells infected
with i copies of the virus at time t. Let γmj be the parameter characterizing the rate at which cells
infected with m viruses transmit j viruses per synapse, and let β represent the rate of free virus
transmission. Let N be the maximum number of copies of the virus that a single cell can contain,
known as the maximum infection multiplicity. No such maximum is needed in the agent-based
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model, but here it simplifies solving the ODE model. The model equations with both free virus
and synaptic transmission pathways are

ẋ0 = λ− dx0 − βx0
N∑
m=1

xm −
N∑
m=1

xm

N∑
j=1

γmj x0, (1)

ẋi = β(xi−1 − xi)
N∑
m=1

xm +
N∑
m=1

xm

( i∑
j=1

γmj xi−j − xi
N−i∑
j=1

γmj

)
− axi, (2)

where λ is the constant production rate of uninfected target cells, d is the death rate of uninfected
cells, and a is the death rate of infected cells. Note that in contrast to the agent-based model, the
present model assumes that both free virus and synaptic transmission are non-spatial processes.
Further, this model assumes that kinetic parameters are independent of infection multiplicity, be-
cause there is currently no evidence to the contrary.

Let us denote

γ =
N∑
m=1

N∑
j=1

γmj ,

as the total rate of synaptic transmission. The model given by equations (1-2) is characterized by
two outcomes / equilibria. The disease-free equilibrium is given by

x0 =
λ

d
, xi = 0 for 1 ≤ i ≤ N. (3)

Virus persistence is described by the following equilibrium expressions:

x0 =
a

β + γ
, z =

λ

a
− d

β + γ
, (4)

where z denotes the sum of all infected cell sub-types. Additionally, one can calculate the steady
state value for each individual infected population, see [5] for details.

An important measure in virus dynamics is the basic reproductive ratio of the virus, R0, de-
noting the average number of newly infected cells produced by a single infected cell when placed
into a pool of susceptible cells [8, 9]. In a deterministic model, if R0 > 1, the virus successfully
establishes an infection, and if R0 < 1, virus extinction occurs. For the model written down here,
the basic reproductive ratio of the virus is given by R0 = (β+γ)λ

ad . Setting γ = 0, we reproduce
the expression for R0 derived from the basic model of virus dynamics in the absence of multiple
infection and synaptic transmission [8, 9]. The reason for this is that kinetic parameters, such as
the rate of virus production or the rate of virus-induced cell death, are assumed to be independent
of infection multiplicity.

As done in [5], this model can be extended to include competition between two or more virus
strains. Let xij(t) be the population of cells infected with i copies of virus strain A and j copies of
virus strain B at time t. Let γmkqp be the probability for a cell infected with m copies of virus strain
A and k copies of virus strain B to transmit q copies of virus strain A and p copies of virus strain
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B. The model equations for competition between two strains are

ẋ00 = λ− dx00 − βx00
N∑
m=0

N−m∑
k=0

m+k>0

xmk − x00
N∑
m=0

N−m∑
k=0

m+k>0

xmk

N∑
q=0

N−q∑
p=0
p+q>0

γmkqp , (5)

ẋij = β
( m

m+ k
xi−1,j +

k

m+ k
xi,j−1 − xij

) N∑
m=0

N−m∑
k=0

m+k>0

xmk

+
N∑
m=0

N−m∑
k=0

m+k>0

xmk

( i∑
q=0

j∑
p=0
p+q>0

xi−q,j−pγ
mk
qp − xij

N−i∑
q=0

N−i−j−q∑
p=0
p+q>0

γmkpq

)
− axij . (6)

In equation (6), we assume i+j > 0 and i+j ≤ N . We also assume for all of the double summations
that the two indices are not zero simultaneously. These equations can be extended naturally to
include competition between any number of additional strains. As shown in [5], the outcome of
this competition depends on the relative value of R0 of the two virus strains. If the values of R0

are identical, the strains are neutral with respect to each other, and an infinite number of equilibria
exists, depending on the initial conditions. If the two strains have different values of R0, then the
strain with the higher R0 wins and excludes the other strain.

1.2 A model with density-dependent target cell production

In order to match the standard ordinary differential equation model to our agent-based model, we
need to employ a scaling of the rate parameters, as well as a density-dependent production term of
target cells. This is because the agent-based model describes the system on a finite N by N grid.
The model equations with the appropriate scalings are

ẋ0 = λ
(
N 2 − x0 −

N∑
m=1

xm

)
− dx0 −

β

N 2
x0

N∑
m=1

xm −
N∑
m=1

xm

N∑
j=1

γmj
N 2

x0, (7)

ẋi =
β

N 2
(xi−1 − xi)

N∑
m=1

xm +
N∑
m=1

xm

( i∑
j=1

γmj
N 2

xi−j − xi
N−i∑
j=1

γmj
N 2

)
− axi. (8)

The adjustments of λ to λ(N 2−x0−
∑N

m=1 xm) and γmj to
γmj
N 2 need to be made from the standard

ODE model to match the agent-based model. For instance, in the standard model λ represents
the constant production rate of uninfected cells, however in the agent-based model λ represents
the probability that a randomly chosen empty grid point becomes an uninfected cell, as we do not
produce uninfected cells from anywhere else.

Here, we chose to work with the assumptions underlying the agent-based model, i.e. assuming
that production of cells depends on cell concentration. Complex regulatory systems have been de-
scribed for the hematopoietic system [11], so we consider this a biologically reasonable assumption.
At the same time, we point out that there is uncertainty about the laws of target cell production,
and more data are required to couple such assumptions more closely to reality.

This adjusted model is characterized by a similar solution structure and a similar bifurcation
behavior as the basic model (1-2), but the expressions become somewhat different. For example,

for model (7-8), we have R0 = (β+γ)λ
a(λ+d) , and the steady state value corresponding to equation (4)

becomes z = N 2((β+γ)λ−λa−da)
(β+γ)(λ+a) .
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Figure S1: All mutation processes possibilities between the types, together with their probabilities.

1.3 Modeling mutations and recombinations

Figure S1 presents all the (forward and backward) mutation processes that can occur between the
four types. Figure S2 presents all possible recombination events that can happen in the presence
of two types of mutations. Only two events result in types different from either of the recombining
types: the creation of a double hit mutant when mutant A recombines with mutant B, and the
destruction of a double hit mutant (making it into a single mutant) when it recombines with the
wild type virus.

1.4 Spatial stochastic simulations

Figure S3 shows a comparison of the stochastic, agent based model with the deterministic ODE
model. The left panel shows numerical solutions of the ordinary differential equations together
with the agent based simulation. The ODE solution is represented with dotted lines and a single
typical agent based simulation is represented with the solid lines. The different colors represent the
number of cells infected with the respective number of copies of the virus. The right panel shows
a comparison of agent based simulations for two neutral virus strains (upper right panel) versus
two non-neutral strains (lower right panel). In the neutral case, drift is observed with the eventual
fixation of one of the virus strains. In the non-neutral case, we assume that strain A has higher
fitness over strain B. As a result, strain A will fixate.

Figure S4 shows snapshots of a typical stochastic spatial simulation with infection by a single
virus strain. The left panels show a simulation which includes only free virus transmission, whereas
the right panels show a simulation which includes only cell-to-cell transmission. The top panels
show the status of each grid point, where red grid points denote infected cells. The bottom panels
show the multiplicity of infection of each cell, with darker colors representing higher multiplicity.
While non-spatial free virus transmission leads to mostly singly infected cells uniformly spread out
across the grid, we see here that cell-to-cell transmission leads to spatial clumps of superinfected
cells. This is because cell-to-cell transmission leads to the repeated infection of nearby cells, where
each time an infection events occurs, multiple copies of the virus are passed.

2 Generation of double mutants

In this section we show that a combination of free virus and cell-to-cell transmission results in faster
generation of double mutants by recombination. To study double-hit mutant generation, we ran
the simulation repeatedly and recorded the time at which the double mutant was first generated,
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Figure S2: All recombination possibilities between the types, including when the infecting strand is
the same as one of the parental strands. If the two strands are of the same strain then recombination
is trivial. We define the recombination rate ρ as the probability that a new exchange happens
between the strands, and the resulting infecting strand is different from both of the parental strands.
This is because the most interesting recombination events are when ab+AB → Ab or aB and when
Ab + aB → ab or AB. For this reason, the recombination rate ρ is capped at 1

2 in the context of
our agent-based model.

at which point the simulation was terminated. The average time of double mutant generation for
various combinations of synaptic and free virus transmission is shown in figure S5.

In the absence of recombination, double mutant generation occurs fastest with purely synaptic
transmission and takes longer as the contribution of free virus transmission is increased. This is
because each time a synaptic infection event occurs, multiple viruses are transferred from the source
cell to the target cell, thus increasing the number of mutation events that can occur during reverse
transcription.

In the presence of recombination, however, we observe that double mutant generation occurs
fastest for a mixture of free virus and synaptic transmission (figure S5). The reason is the existence
of a tradeoff. Free virus transmission is efficient at bringing together two distinct virus strains
(single mutant A and single mutant B) in the same cell, which is essential for recombination (cre-
ating the double hit mutant) to occur. Once in the same cell, however, the two virus strains are
likely to disperse to different target cells rather than being repeatedly co-transmitted, which limits
opportunities for recombination. In contrast, synaptic transmission promotes the co-transmission
of two different virus strains once they have come together into the same cell [6], which generates
more opportunities for recombination to occur. At the same time, however, the spatial nature of
this process makes it less likely that they come together in the same cell to start with. The observed
optimum thus presents the best solution to this tradeoff.

The same general trends hold if both one-hit mutants and double mutants are advantageous or
disadvantageous (not shown).

3 Dynamics of mutant generation and spread

In this section we provide details of modeling generation and spread of double hit mutants, both
advantageous and disadvantageous.
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Figure S3: Left: comparison of the ODE, equations (7-8) (dotted lines), and agent based models
(solid lines) for infection with a single strain. The numerical solutions for the ordinary differential
equations match the agent based simulation and equilibrium values for each virus population. Here
we include only free virus transmission, and parameters are N = 9, λ = 0.88, β = 0.7, γ = 0, a =
0.2, d = 0.1 and N = 100. We initialize the grid by including an uninfected cell at each grid
point. Right: comparison of agent based simulations for two neutral virus strains versus two non-
neutral strains. Here we include only free virus transmission, and parameters are λ = 0.5, β =
0.1, γ = 0, a = 0.08, d = 0.01 and N = 100. We initialize the grid by including an uninfected cell
at each grid point. Above: neutral virus strains with the same fitness. Below: strain A has higher
fitness over strain B. The fitness of strain A is 1 and the fitness of strain B is 0.95.
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Figure S4: Example of stochastic simulations on a 40 by 40 grid at time T = 100. The panels on
the left correspond to the same simulation with only free virus transmission. The panels on the
right correspond to the same simulation with only synaptic cell-to-cell transmission. The panels
on top show the infection where white grid points are empty, gray grid points are uninfected cells,
and red grid points are infected cells. The panels on the bottom show the number of copies of
virus each cell is infected with, where darker colors represent higher numbers. Other parameters
are λ = 0.5, β + γ = 0.1, a = 0.08, d = 0.01, and S = 3.
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Figure S5: Generation of double mutants. (a) Time to double mutant generation, as a function
of the rate of synaptic transmission, with β + γ = 0.1. Higher recombination rates lead to faster
times to first double hit mutant generation. Standard error bars are shown. Each point represents
the average over at least 12,280 runs. With a positive recombination rate ρ� µ a combination of
free virus and cell-to-cell transmission optimizes the time to first double hit mutant generation. (b)
Contour plot for the time to recombinant, plotted against the probability of free virus transmission
(β) and the probability of cell-to-cell transmission (γ). Darker colors represent faster (lower) time
to the creation of a recombinant virus. Diagonal lines with slope −1 and intercept c represent
fixed β + γ = c. For fixed c, a combination of both free virus (β) and cell-to-cell transmission (γ)
minimizes the time to the creation of recombinant virus. Contour plot was made by running the
simulations for many points on the lines with fixed c for c ∈ [0.09, 0.2] (for c < 0.09, the simulated
infections go extinct with relatively higher probabilities). We used ρ = 0.2; enough simulations were
run such that the averages with their respective standard error did not overlap. Other parameter
values are S = 3, λ = 1, d = 0.01, a = 0.02, N = 100, µ = 3 × 10−5, and we initially infect
randomly with only the wild type.
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3.1 Advantageous mutants: the time series

In the case of advantageous mutants, a reasonable measure of double mutant success is the time
it takes for the double hit mutant to reach 90% of all infected cells. Figure S6 presents examples
of typical infection dynamics with (right) and without (left) recombination, both for relatively low
(top) and high (bottom) mutant advantage. We can see that at first, populations of single mutants
rise, and at some point produce a double hit mutant, which eventually rises to domination, dis-
placing other populations. Parameters of the system define the typical timing of this process.

In the presence of double hit mutant advantage, the following factors trade-off to determine
where recombinations boost or suppress double mutant spread: (i) the constructive force of double
hit mutant creation by recombinations (which enhances double hit mutant production), (ii) the
destructive force of recombination that breaks down double mutants (which delays double mutant
spread); and (iii) the strength of selection of the double mutant, which defines the how long the
previous two factors are at play.

Consider the case where the mutant advantage (s) is relatively low (figure S6, top panels).
For a stretch of time, two single mutant strands coexist in the population at low levels. During
this period, in the absence of recombinations, a double hit mutant is created by mutations and
eventually rises to domination. In the presence of recombination, double hit mutants are created
at a faster rate through recombinations between single strand mutants, but since the advantage
is low, they remain at low levels for a long time, which contributes to frequent breakage events
through recombinations with the abundant wild type. This destructive force of recombinations is
what makes recombinations delay the domination of double hit mutants.

When the mutant advantage is relatively high (figure S6, bottom panels), all the same processes
take place, but their relative contributions shift. Once a double hit mutant is created, it rises
relatively fast due to larger selection force, leaving the “breaking” recombinations less time to
operate. On the other hand, recombinations between the two single strains still accelerate double
mutant production, thus resulting in a net positive, accelerating effect of recombination on double
hit mutant domination dynamics.

3.2 Measuring the level of disadvantageous mutants

In the disadvantageous mutant scenario, mutant populations are less fit than wild-type viruses and
do not invade. Rather, they steadily approach a balance between selection and mutation. Thus,
in the long run, the double mutants converge to fluctuating around an equilibrium, the magnitude
of which is determined by the mutation rate and the degree of the selective disadvantage. In the
main text, a measure of double mutant relative abundance is used to assess its prominence.

To measure the relative abundance, we numerically determined the average double mutant frac-
tion at an arbitrary time point T = 105 over many simulation runs. However, we also developed
a different measure of double mutant success that yields very similar results. This measure is a
temporal moving average for a single run, rather than considering averages at a fixed time point
over many runs. Here, only one simulation is done at each parameter combination. The temporal
moving average is calculated by (i) determining the relative fraction of cells infected with the dou-
ble mutant over the total number of infected cells at each time step and then (ii) calculating the
average of this fraction over the number of time steps elapsed. If the infection dies out (which only
happens very rarely), results from that simulation are discarded and a new, more typical simulation
is used.

The advantage of this approach is that only a single simulation is needed at each combination.
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Figure S6: Advantageous mutants: the dynamics of cell populations, typical time-series. (a): slight
advantage s = 0.005, no recombination ρ = 0 (b): slight advantage s = 0.005, recombination
rate ρ = 0.2 (c): large advantage s = 0.2, no recombination ρ = 0 (d): large advantage s = 0.2,
recombination rate ρ = 0.2. The other parameters are: S = 3, λ = 1, β + γ = 0.1, d = 0.01, a =
0.02, N = 100, µ = 3 × 10−5, α = 0.75, 40% free-virus transmission, and initial infection with
only the wild type at equilibrium levels.
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The disadvantages are that (i) single simulations need to run to at least the 106 time step (ii) the
fraction of double mutant abundance needs to be calculated at each time step (slowing the speed
of the simulation) and (iii) this measure only has relevance when a selection mutation balance is
achieved. In the neutral case, when only drift occurs, this measure is not useful.

3.3 Using ODEs to study selection mutation balance

As stated in the previous section, in the case of disadvantageous mutants, mutant populations are
maintained by a balance between selection and mutation. It is reasonable to use ODEs to approx-
imate this balance, and to determine whether or not recombination is a helpful force in the spread
of the double hit mutant population.

The presence of recombination results in a more complex dependence between double-hit mutant
creation and destruction, which can promote its spread. The key is the abundance of the single-hit
mutants, compared to the abundances of double mutants and the wild types. Let us denote the
abundance of single mutants of type A (or B) as at time t as Y1, and the abundances of double
mutants and the wild types as Y2 and Y0 respectively. From Supplemental Figure S2, the rate of
“breaking” recombinations, is

ρ(3/4)Y0Y2 + ρ(1/2)Y1Y2 + ρ(1/2)Y1Y2.

Similarly, from Supplemental Figure S2, the rate of “making” recombinations, is

ρ(1/4)Y0Y2 + ρ(1/4)Y1Y1 + ρ(1/2)Y1Y2 + ρ(1/2)Y1Y2.

Therefore, by setting these expressions equal to one another, we have balance at time t if

Y 2
1 = 2Y0Y2. (9)

If the left hand side of (9) is larger, then recombination between single mutants is more likely,
which leads to the net creation of double mutants. If the right hand side of (9) is larger, then
most recombination events will destroy the double mutant through recombination with wild-type,
leading to the net loss of double mutants.

To implement these ideas, we use ODEs that do not explicitly include recombination. Instead,
we look at the balance of Y 2

1 = 2Y0Y2 at time T in an ODE system without recombination (thus
neglecting all recombination events up to time T ).

To define the ODE system, we assume the same 4 strains, where each strain can (forward or
back) mutate at site a/A and/or at site b/B during each infection event. Let xi,j,k,l(t) be the
number of cells infected with i copies of wild type, j copies of mutant strain A, k copies of mutant
strain B, and l copies of the double mutant at time t. Let W, A, B, D be the density of all
populations infected with the wild type, mutant strain A, mutant strain B, and double hit mutant
AB respectively at time t, that is

W (t) =
∑

0<i+j+k+l≤N

i

i+ j + k + l
xi,j,k,l(t),

A(t) =
∑

0<i+j+k+l≤N

j

i+ j + k + l
xi,j,k,l(t),

B(t) =
∑

0<i+j+k+l≤N

k

i+ j + k + l
xi,j,k,l(t),

D(t) =
∑

0<i+j+k+l≤N

l

i+ j + k + l
xi,j,k,l(t).
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Let Z be the sum of all infected populations. We then have that

Z(t) =
∑

0<i+j+k+l≤N
xi,j,k,l(t) = W (t) +A(t) +B(t) +D(t).

The wild type mutates into mutant strain A with probability µ(1− µ), which represents mutation
at point A and no mutation at point B. Similarly, the wild type mutates into mutant strain B with
probably (1− µ)µ and into the double mutant with probability µ2. This means the wild type does
not mutant with probability 1−2µ+µ2. Similar mutation probabilities follow for the other strains.
The ODE system is

x0,0,0,0 = λ(N 2 − Z − x0,0,0,0)−
β

N 2
Zx0,0,0,0 −

γ

N 2
Zx0,0,0,0 − dx0,0,0,0 (10)

xi,j,k,l =
β

N 2

(
fW (W (1− 2µ+ µ2) +A(µ(1− µ)) +B((1− µ)µ) +D(µ2))xi−1,j,k,l

+ fA(W (µ(1− µ)) +A(1− 2µ+ µ2) +B(µ2) +D((1− µ)µ))xi,j−1,k,l

+ fB(W ((1− µ)µ) +A(µ2) +B(1− 2µ+ µ2) +D(µ(1− µ)))xi,j,k−1,l

+ fD(W (µ2) +A((1− µ)µ) +B(µ(1− µ)) +D(1− 2µ+ µ2)xi,j,k,l−1 − Zxi,j,k,l
)

+
γ

N 2

(
fW (W (1− 2µ+ µ2) +A(µ(1− µ)) +B((1− µ)µ) +D(µ2))xi−S,j,k,l

+ fA(W (µ(1− µ)) +A(1− 2µ+ µ2) +B(µ2) +D((1− µ)µ))xi,j−S,k,l

+ fB(W ((1− µ)µ) +A(µ2) +B(1− 2µ+ µ2) +D(µ(1− µ)))xi,j,k−S,l

+ fD(W (µ2) +A((1− µ)µ) +B(µ(1− µ)) +D(1− 2µ+ µ2)xi,j,k,l−S − Zxi,j,k,l
)
− axi,j,k,l

(11)

where any population with a negative index is 0 and infection does not occur if it would result in
a cell being infected with more than maximum infection multiplicity N viruses.

In order to evaluate whether recombination is beneficial for a given parameter set and fitness
landscape, we calculate the number of each type of virus in the system at time T = 105. If
Y 2
1 > 2Y0Y2 then recombination is beneficial, otherwise it is not. The predictions from the ODE

system do not perfectly match the results from the stochastic system because of many factors,
including (i) the ODEs do not take into account the spatial nature of cell-to-cell transmission, (ii)
the ODEs are deterministic, (iii) recombination is neglected until time T , and (iv) a maximum
infection multiplicity N must be used in order to solve the ODEs.

While they do not match perfectly, as seen in Figure S7 the ODEs do successfully qualitatively
predict that for any parameter set with significant fitness difference s, recombination promotes
double mutants under extreme negative epistasis (α close to 0) and suppresses them for extreme
positive epistasis (α close to 1). This is again because for extreme positive epistasis, single mutants
are less abundant, and “breaking” events dominate, resulting in recombinations suppressing double
hit mutants. If on the other hand we have extreme negative epistasis, then the double hit mutants
are extremely rare, and “making” events dominate, thus rendering recombination an enhancing
force. The mathematical analysis of these ODEs and the differences between deterministic and
stochastic simulations of these systems is an interesting question and a main topic of ongoing work.

4 A model with a lower multiplicity of infection

The model described in the main text is characterized by a relatively high equilibrium multiplicity
of infection. Figure S8 shows a typical simulation where the mean multiplicity of all infected cells
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Figure S7: Results of the stochastic simulations (dots) versus the prediction from the ODE system
(10-11) (crosses). The horizontal axis is ∆1 and the vertical axis is ∆2, which are the relative log
fitness values of single and double mutants, respectively (compare to figure 1(c) of the main text).
Red (blue) corresponds to runs where double hit mutants are more (less) abundant at T = 105 in
simulations with recombinations than without. We assumed 40% free-virus transmission; the rest of
the parameters are S = 3, λ = 1, β + γ = 0.1, d = 0.01, a = 0.02, N = 100, µ = 3×10−5, N = 30
and initial infection with only the wild type at equilibrium levels.
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Figure S8: Mean multiplicity of infection as a function of time. The two top lines correspond to
the model used in the main text (parameters as in figure 2 of the main text, except µ = 0). The
bottom two lines correspond to the limited multiplicity model, see figure S9. Results for synaptic
only and free-virus only transmission are presented. Here we use ν = 0.5.

is plotted as a function of time. We can see that for parameters used in figure 2 of the main text,
under purely free virus transmission, a typical mean multiplicity of infection is about 4 viruses
per cell, while under purely synaptic transmission, it is about 14 viruses per cell. In order to
investigate how results change if infection multiplicity is lower, we designed a model with limited
multiplicity. In this model, we keep track of the time, τ , that has passed since the first time a
cell gets infected. The longer this time, the less likely it is that the cell gets superinfected. This
is because after the initial infection, the virus eventually down-regulates the receptor required for
viral entry, preventing further superinfection events from occurring [2]. We assumed that after
the first infection event, each subsequent infection event for a given cell can be aborted with a
probability P = 1− e−ντ , which grows to its limiting value of 1 as τ increases. In this model, un-
der purely free virus transmission, a typical mean multiplicity of infection is just slightly over one
virus per cell, while under purely synaptic transmission, it is less that 4 viruses per cell, see figure S8.

Typical results of the limited multiplicity model are presented in figure S9. The patterns that
are observed for the limited multiplicity model are very similar to those reported in the main text
for the basic model.

Disadvantageous mutants. Simulations for disadvantageous mutants are presented in panels
(a,b) of figure S9, and should be compared with figure 2(c,d) of the main text.

• For disadvantageous mutants under higher infection multiplicities, recombination increased
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double mutant fractions at equilibrium under negative epistasis (panel (a)) and suppressed
them under positive epistasis (panel (b)) if free virus transmission is dominant. This result
is unchanged compared with the basic model.

• If synaptic transmission is dominant, we observed a reversal for higher multiplicities: re-
combination always increased double mutant fractions, even for positive epistasis. For low
multiplicity, this reversal is not observed, i.e. double mutant levels are lower in the presence
compared to the absence of recombination even at 100% synaptic transmission (figure S9(b)).
We do find, however, that this reduction in double mutant levels in the presence of recombi-
nation is significantly less pronounced when synaptic transmission becomes more prevalent.
Hence, the conclusion that synaptic transmission protects the double mutant against the
detrimental effects of recombination continues to hold under low infection multiplicities.

• The larger the percentage of synaptic transmission, the higher the level of double mutants.
This is similar to the basic model, and in some sense more pronounced, as this pattern holds
for near 100% synaptic transmission.

Advantageous mutants. Simulations for advantageous mutants are presented in panels of figure
S9 (c,d,e), and should be compared with figure 2(a,b) of the main text.

• For negative and zero epistasis, recombinations play an enhancing role in double mutant
spread (panels (c,d)), as in the basic model.

• For large positive epistasis and a range of fitness advantage, recombinations become detrimen-
tal for double mutant spread (panel (e)), similar to the basic model. This effect, although
statistically significant, is weaker in the limited multiplicity model compared to the basic
model.

• The larger the percentage of synaptic transmission, the slower the spread of mutants. This
is similar to the basic model, and in some sense more pronounced, as this pattern holds over
all combinations of synaptic and free virus transmission.

Neutral mutants. Simulations for neutral mutants are presented in panel (f) of figure S9 and
should be compared with figure 3(a) of the main text.

• Recombinations result in a higher level of double mutants, as in the basic model.

• A mixture of free virus and synaptic transmission is optimal for double mutant spread, as in
the basic model.

5 Recombinations, epistasis, and transmission mode: additional
information

5.1 The role of recombinations under different transmission modes

Figure S10 contains graphs supplementing Figure 4 of the main text, in the case of advantageous
mutants. We show in the main text (figure 1(b) of the main text) that for advantageous mutants,
under a mixture of free virus and synaptic transmission modes, recombinations mostly enhance
double mutants except for a region of intermediate fitness advantages and relatively strong positive
epistasis, where recombinations delay the spread of mutants.

It turns out that these results for advantageous mutants remain very similar under different
mixtures of free virus and synaptic transmission. This is illustrated in figure S10, which show the

15



Figure S9: System with limited multiplicity: a comparison between models with (red) and without
(black) recombination. (a,b) Disadvantageous mutants: the fraction of mutants (the temporal
average at selection-mutation balance) as a function of the fraction of free virus transmission, under
negative and positive epistasis (see figure 2(c,d) of the main text for other parameter values). (c,d,e)
Advantageous mutants: the time until mutants reach 90%, for negative epistasis, no epistasis, and
positive epistasis (see figure 2(a,b) of the main text for other parameter values). (f) Neutral
mutants: the level of mutants as a function of the fraction of free virus transmission (see figure
3(a) of the main text for other parameter values). Vertical bars represent standard error and are
too small to be seen. The additional parameter ν used in the limited multiplicity model was taken
to be ν = 0.5.

16



Figure S10: The role of recombinations under different transmission modes for advantageous mu-
tants. Shown is the time for the double mutant to reach 90%. Red denotes simulations with
recombination and black without recombinations. (a) Free virus transmission only, (b) synaptic
transmission only. s = 0.05, and the other parameters are as in figure 2 of the main text. Each
simulation was run at least 30,000 times. Error bars (based on standard errors) are plotted but are
too small to see.

time to double mutant invasion with (red) and without (black) recombinations, under free virus
transmission only (a) and under synaptic transmission only (b). The time of mutant spread is pre-
sented as a function of parameter α (where α < 0.5 corresponds to negative epistasis and α > 0.5
to positive epistasis). We can see that recombination becomes disadvantageous for mutants (by
delaying the time of spread) for high values of α. In figure 1(b) of the main text, a similar outcome
can be seen by looking along diagonal straight lines connecting points ∆1 = A on the horizontal
axis and ∆2 = A on the vertical axis, where A = | ln(1− s)| = | ln(1− 0.05)| ≈ 0.05129.

Figure S11 contains graphs supplementing Figure 4 of the main text, in the case of disadvan-
tageous mutants. In particular, panels (a) and (b) correspond to free virus transmission only and
are similar to figure 4(a) of the main text, except they contain simulations for smaller (s = 0.005)
and larger (s = 0.075) fitness disadvantage values compared to that of the main text (s = 0.05).
Further, panels (c) and (d) correspond to synaptic transmission only (β = 0) and are similar to
figure 4(b) of the main text; again, they correspond to a smaller and a larger fitness disadvantage.
We observe that there is no qualitative differences for different values of fitness disadvantage.

5.2 Optimal epistasis to promote double mutants

Using the results presented above and in the main text, we can investigate what level of epistasis is
optimal for double mutant spread, given the transmission mode, with and without recombinations.

Figure S10 suggests that for advantageous mutants, intermediate values of epistasis (α) are
optimal to minimize the time until double mutant fixation. In order for the double mutant pop-
ulation to fixate past the 90% threshold, first the intermediate mutants need to overtake the wild
type, and second the double hit mutant strain needs to overtake both of the intermediate mutant
strains. For the mutants to quickly overtake the wild type, the intermediate mutant strains need
to have a significant fitness advantage over the wild type, that is α < 1. For the double mutant
strain to quickly overtake the intermediate mutant strains, the double hit mutant needs to have a
significant fitness advantage over the intermediate mutant strains, that is α > 0. If the double hit
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Figure S11: The role of recombinations under different transmission modes for disadvantageous
mutants. Red denotes simulations with recombination and black without recombinations. (a,b)
Free virus transmission (s = 0.005 and s = 0.075). (c,d) Synaptic transmission only (s = 0.005 and
s = 0.075). Other parameters are as in figure 2 of the main text. The graphs show the temporal
average of the double mutant at selection-mutation balance. Error bars (based on standard error)
are plotted, but are too small to be visible.

mutant has no fitness advantage over the intermediate mutants, so α = 0, all mutant strains have
the same fitness and it takes longer for the double hit mutant strain to drift and fixate past the
90% threshold. This is true both in the absence and presence of recombination, and both under
free virus and synaptic transmission. Figure S12 is a heat map showing this for a combination of
free virus and synaptic transmission and a range of fitness differences s.

A different result is observed for disadvantageous mutants, see figure S11 and also figure 4 of
the main text. As before, decreasing α ∈ [0, 1] leads to higher intermediate mutant fitness. On the
other hand, decreasing α also leads to higher ratios of cells infected with the double hit mutant.
This is because as the intermediate mutant fitness decreases, it becomes increasingly unlikely that
the double hit mutant strain will be generated at all, either by mutation or recombination between
the intermediate strains. Therefore, α = 0 produces the largest level of double mutants. Again, this
trend holds in the absence and presence of recombination, and both under free virus and synaptic
transmission.
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Figure S12: The optimal level of epistasis for double mutant spread. (a) Contour plot for the
advantageous mutants with no recombination. The colors represent the time until double hit
mutant fixation past a threshold of 90%. Lines with slope −1 and intercept | ln(1 − s)| represent
fixed s with α ∈ [0, 1]. Contour plots were made by running the simulations for many points on lines
with fixed s for s ∈ [0.001, 0.16]. The total number of points is 517. The number of simulations at
each point was chosen such that the averages with and without recombination with their respective
standard error did not overlap. (b) Same with recombination rate ρ = 0.2. Other parameters are
as in figure 2 of the main text.

5.3 Variation vs standard error

In the main text, figures 2 and 4 present the averages over many stochastic simulations for differ-
ent conditions. Each average is plotted with a standard error bar, which is very small because of
the large number of simulations. Here we show in figures S13 and S14 the same plots as in the
main text figures 2 and 4 but plotted with the standard deviation instead of the standard error.
The standard deviations are relatively large, which is typical for stochastic populations with small
mutation rates. Statistical significance, however, depends on the number of simulations, which is
expressed in the standard error. In general, the variation and standard deviation are larger in the
absence of recombination.

5.4 Parameter values and robustness of the results

Simulation parameters used in our studies are defined in table 1, and their values/ranges are given.
In this paper we performed a very systematic study of the role of (i) synaptic and/or free virus
transmission (parameters γ and β), under (ii) different fitness landscapes (parameters s for ad-
vantage/disadvantage and α for epistasis), (iii) with and without recombination (parameter ρ).
Hundreds of parameter combinations have been tested and comprehensive results presented.

Other parameters, however, were kept constant throughout most of this analysis, such as the
production rate of uninfected target cells λ and death rate d of uninfected target cells, and the
death rate a of infected cells. The value for the death rate of infected cells, a = 0.02hr−1, was
chosen to match the experimentally measured mean lifespan of HIV-infected cells of about 2 days,
see [10]. Parameters λ, β, and d were selected to give the correct order of magnitude for R0, as
described in the main text.
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Figure S13: The role of recombination in (a,b) advantageous and (c,d) disadvantageous mutant
dynamics. Red: with recombinations, and black: without recombination. (a-b) The time until the
advantageous mutant reaches 90%, as a function of the fraction of free virus transmission. The
means and standard deviation bars are shown. (a) s = 0.005, α = 0.75. (b) s = 0.2, α = 0.75.
(c-d): The fraction of disadvantageous mutants at time T = 105, as a function of the fraction of
free virus transmission. The means and standard deviation bars are shown. (c) s = 0.005, α = 0.25
(d) s = 0.005, α = 0.75. The parameters are: β+γ = 0.1, S = 3, λ = 1, d = 0.01, a = 0.02, N =
100, µ = 3× 10−5. All averages are based on at least 104 simulations.
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Figure S14: The role of recombinations under different transmission modes, for disadvantageous
mutants. Shown is the temporal average of the fraction of double mutants at selection-mutation
balance, as a function of that parameter α, defining the nature and extent of epistasis. Red denotes
simulations with recombination and black without recombinations. (a) Free virus transmission
only, (b) synaptic transmission only. s = 0.05, and other parameters are as in figure S13. Standard
deviation bars are also plotted at each point.

Selective simulations with different values for these and other parameters have been performed,
but we did not attempt an exhaustive analysis of the entire parameter space, due to the computa-
tional non-feasibility of this problem. Examples of alternative parameter values include: grid size
N = 40; λ = 0.5hr−1vol−1 and λ = 0.88hr−1vol−1; d = 0.1hr−1; a = 0.2hr−1 and a = 0.08hr−1. In
all simulations, qualitatively similar results are observed. We note here that a single value of the
mutation rate, µ, was used, because this value is known for HIV [7]. Further, parameter S (the
number of viruses transferred per synapse) was not varied (except setting it to S = 1 for compar-
ison with the free-virus transmission model). Instead, to limit the mean multiplicity of infection,
we used a superinfection regulation parameter, ν, which provided a more realistic and biologically
based approach (see [1]) to achieve the same result as lowering S.
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Notation Description Usual value/range (if applicable)

N linear size of agent-based model grid 100

λ production of uninfected cells 1.0hr−1vol−1

d death rate of uninfected cells 0.01hr−1

a death rate of infected cells 0.02hr−1

β rate of free virus transmission [0, 0.1]hr−1vol−1, multiple values

γ rate of synaptic cell-to-cell transmission [0, 0.1]hr−1vol−1, multiple values

S number of viruses transferred per synapse 3

µ mutation rate 3× 10−5

ρ recombination rate {0, 0.1, 0.2, 0.5}
s selection coefficient [0.001, 0.2], multiple values

α epistasis parameter [0, 1], multiple values

ν superinfection regulation parameter {0, 0.5}hr−1

γmj probability for a cell infected with m viruses ODE model only

to transmit j viruses per synapse

N maximum infection multiplicity ODE model only

ab wild type strain N/A

Ab and aB single mutant strains N/A

AB double mutant strain N/A

Table 1: Description of model parameters, symbols, and values/ranges. Curly brackets denote a
set of several specific values used; square brackets denote a range, within which many values were
used. For alternative values, see text.
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