SUPPLEMENTARY DATA

Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents

Zsolt Szűcs, Viktor Kelemen, Son Le Thai, Magdolna Csávás, Erzsébet Rőth, Gyula Batta, Annelies Stevaert, Evelien Vanderlinden, Lieve Naesens, * Pál Herczegh* and Anikó Borbás*

Table of Contents

NMR Data for glycopeptide derivatives (Tables S1-S5, Figures S1-S9)	S2
Table of anti-coronavirus activity (Table S6)	S20
Elementary analysis data for glycopeptide derivatives (Table S7)	S21
NMR spectra of compounds	S22

	chemical shifts in ppm					
	1	3	1	4	1	7
assignment	^{13}C	^{1}H	^{13}C	^{1}H	^{13}C	^{1}H
<u>x1</u>	56.9	6.11	56.9	6.11	56.9	6.10
x2	55.5	5.00	55.5	5.00	55.5	4.98
<u>x3</u>	57.8	5.31	57.8	5.32	57.8	5.32
<u>x4</u>	54.5	5.65	54.5	5.66	54.5	5.66
<u>x5</u>	53.4	4.34	53.4	4.34	53.4	4.34
x6	60.8	4.12	60.8	4.13	60.8	4.10
x7	59.1	4.30	59.1	4.32	59.0	4.30
1e	118.2	6.92	118.1	6.94	118.2	6.92
2e	124.8	7.23	124.8	7.23	124.8	7.22
<u>3b</u>	109.7	6.34	109.7	6.34	109.7	6.33
<u>3f</u>	102.2	6.50	102.1	6.49	102.1	6.50
4b	107.8	5.59	107.8	5.59	107.8	5.58
<u>5f</u>	125.1	6.65	125.2	6.65	125.2	6.64
6b	128.3	7.86	128.3	7.86	128.4	7.86
<u>7f</u>	107.7	6.50	107.7	6.49	107.8	6.49
z6	75.4	5.43	75.7	5.40	75.0	5.46
<u>z2 (z'2)</u>	36.8	2.78/3.26	36.8	2.77/3.25	36.9	2.77/3.24
GlcNAc 1	98.6	4.39	98.9	4.38	98.3	4.40
GlcNAc CH ₃	22.8	1.84	22.9	1.84	22.8	1.83
<u>MI 2,5</u>	165.2	-	165.9	-	165.9	-
MI 3,4	135.3	-	n.d.	-	n.d.	-
Propyl 1		_	_	_	32.7	3 25/3 15
Propyl 2					23.7	1 56
Propyl 3		_	_		12.5	0.92
1100915					12.5	0.92
Butyl 1, 1'	30.4	3.19/3.25	_	_	_	_
Butyl 2, 2'	31.7	1.53	-	-	-	-
Butyl 3, 3'	20.6	1.34	-	-	-	-
Butyl 4, 4'	13.1	0.86	-	-	-	-
· · ·						
Hexyl 1, 1'	-	-	30.7	3.19/3.23	-	-
Hexyl 2, 2'	-	-	29.7	1.53	-	-
Hexyl 3, 3'	-	-	27.1	1.32	-	-
Hexyl 4, 4'	-	-	30.4	1.22	-	-
Hexyl 5, 5'	-	-	21.7	1.23	-	-
Hexyl 6, 6'	-	-	13.6	0.84	-	-
Dodecyl 1	-	-	-	-	30.8	3.23/3.17
Dodecyl 2	-	-	-	-	29.7	1.55
Dodecyl 3	-	-	-	-	27.4	1.32
Dodecyl 4-9	-	-	-	-	29.1-28.1	1.25-1.20
Dodecyl 10	-	-	-	-	31.1	1.22
Dodecyl 11	-	-	-	-	21.9	1.25
Dodecyl 12	-	-	-	-	13.7	0.85

Table S1. ¹H and ¹³C NMR data for teicoplanin pseudoaglycon bis-alkylthio maleimide
derivatives 13, 14 and 17 (Series 1)

Figure S1. Atom numberings of teicoplanin pseudoaglycon for NMR assignment (used for all derivatives)

Figure S2. Atom numberings of Series 1 side chains for NMR assignment

	chemical shifts in ppm				
		28			
assignment	$^{1}\mathrm{H}$	¹³ C			
x1	64.1	7.06			
x2	55.5	4.87			
x3	58.4	5.39			
x4	54.7	5.62			
x5	53.6	4.36			
хб	60.9	4.14			
x7	59.3	4.32			
1b	119.6	7.01			
1e	119.1	6.94			
1f	125.7	6.83			
2b	131.0	7.19			
2e	125.2	7.15			
2f	129.3	7.62			
3b	110.1	6.33			
3d	105.0	6.36			
3f	104.0	6.54			
4b	108.1	5.52			
4f	104.6	5.08			
5e	116.6	6.65			
5f	125.5	6.63			
бb	128.5	7.85			
6e	123.4	7.26			
6f	128.2	7.25			
7d	101.7	6.30			
7f	107.9	6.50			
<u>Z6</u>	76.1	5.40			
<u></u> <u>Z2/Z^2</u>	36.4	2.83/3.27			
GleNAc1	99.1	4.37			
GICNAC2	<u> </u>	3.51			
GICNAC3	/3.4	3.39			
GICNAC4	/0.0	3.22			
GICNACS	/6.9	3.08			
GICNACO	60.3	3.60			
GICNAC CH ₃	23.0	1.84			
Triozola 4	141.0				
Triazole 5	141.9	- 7.60			
	125:0	7:09			
M 2 5	165.7				
<u> </u>	135.8	<u>_</u>			
M CH ₂	33.5	4 59			
	55.5	T.37			
Hexvl 1 1'	31.1	3.22			
Hexvl 2. 2'	29.9	1.54			
Hexvl 3, 3'	27.4	1.32			
Hexvl 4, 4'	30.6	1.23			
Hexyl 5. 5'	21.9	1.23			
Hexyl 6, 6'	13.8	0.83			

 Table S2. ¹H and ¹³C NMR data for the triazole linked bis-alkylthio maleimide derivative 28 of teicoplanin pseudoaglycon (Series 2)

		chemical s	hifts in ppm	
	2	6		27
assignment	¹³ C	$^{1}\mathrm{H}$	¹³ C	$^{1}\mathrm{H}$
x1	64.4	7.01	64.4	7.04
x2	55.3	4.93	55.5	4.88
x3	58.6	5.35	58.5	5.37
x4	54.6	5.59	54.8	5.61
x5	53.5	4.35	53.7	4.34
хб	60.9	4.11	61.1	4.13
x7	59.4	4.28	59.5	4.30
1e	118.9	6.87	119.2	6.92
2e	124.5	7.04	125.0	7.11
3b	109.8	6.30	110.2	6.32
3f	103.8	6.57	104.1	6.53
4b	107.9	5.53	108.1	5.52
5f	125.3	6.61	125.6	6.64
6b	128.5	7.85	128.7	7.84
7f	108.0	6.49	108.1	6.48
z6	75.4	5.44	76.3	5.38
z2/z'2	2.81/3.23	36.9	36.6	2.86/3.28
GlcNAc1	98.7	4.37	99.5	4.35
GlcNAc CH ₃	23.0	1.83	23.1	1.85
Triazole 4	141.8	-	142.0	-
Triazole 5	123.3	7.67	123.1	7.66
M 2 5	165.6	_	165.8	_
M 3.4	135.6	-	135.8	-
M CH ₂	33.5	4.60	33.6	4.59
- U				
Propyl 1, 1'	33.0	3.20	-	-
Propyl 2, 2'	23.4	1.56	-	-
Propyl 3, 3'	12.8	0.91	-	-
D . 11.11			20.0	2.22
Butyl I, I	-	-	30.9	5.22
Butyl 2, 2	-	-	32.2	1.50
Butyl 3, 3	-	-	21.1	1.31
Butyl 4, 4'	-	-	13.4	0.83

Table S2. (continued) ¹ H	H and ¹³ C NMR data* for the triazole linked bis-alkylthio male	eimide
derivati	tives 26, 27 of teicoplanin pseudoaglycon (Series 2)	

	29			30	31	
assignment	¹³ C	¹ H	¹³ C	¹ H		1 <u>1</u> H
x1	64.6	7.05	64.7	7.01	64.0	7.07
x2	55.6	4.90	55.4	4.95	55.3	4.85
x3	58.7	5.37	58.9	5.34	58.4	5.39
x4	54.9	5.62	54.7	5.57	54.8	5.63
x5	53.9	4.35	53.6	4.36	53.7	4.34
хб	61.2	4.15	61.0	4.15	61.0	4.13
x7	59.6	4.31	59.6	4.26	59.2	4.31
1e	119.2	6.92	118.9	6.85	119.0	6.95
2e	125.0	7.11	124.6	6.99	125.3	7.14
3b	110.1	6.33	110.0	6.30	110.0	6.33
3f	104.0	6.56	103.8	6.56	103.9	6.53
4b	108.1	5.54	108.0	5.53	108.0	5.53
5f	125.6	6.65	125.5	6.62	125.4	6.63
6b	128.7	7.86	128.7	7.80	128.5	7.86
7f	108.1	6.49	108.1	6.47	107.9	6.50
z6	76.1	5.40	76.4	5.37	75.7	5.42
z2/z'2	36.7	3.27/2.85	37.3	2.78/3.21	36.1	2.88/3.29
GlcNAc1	99.3	4.38	99.7	4.34	98.9	4.38
GlcNAc CH ₃	23.1	1.84	23.2	1.84	22.9	1.83
T4	141.8	-	142.1	-	141.9	-
T5	123.2	7.70	123.3	7.64	122.9	7.65
M 2,5	165.7	-	165.8	-	165.5	-
<u>M 3,4</u>	135.8	-	135.9	-	135.6	-
M CH ₂	33.5	4.59	33.6	4.58	33.3	4.58
Alkyl α/α'	31.1	3.22	31.3	3.21	-	-
Alkyl β/β'	30.0	1.55	30.1	1.53	-	-
Alkyl γ/γ'	27.8	1.33	27.8	1.31	-	-
Alkyl bulk**	28.5	1.22	29.1	1.21	-	-
Alkyl ω-2/ω-2'	31.3	1.21	31.4	1.21	-	-
Alkyl ω-1/ω-1'	22.1	1.23	22.2	1.23	-	-
Alkyl ω/ω'	14.0	0.84	14.0	0.83	-	-
α-G1	-	-	-	-	95.8	5.38
α-G2	-	-	-	-	69.7	4.31
α-G3	-	-	-	-	70.2	4.59
α-G4	-	-	-	-	71.0	4.20
α-G5	-	-	-	-	67.3	3.80
α-G6	-	-	-	-	31.3	3.44 / 3.26
α-G-C _q	-	-	-	-	108.0/108.6	-
« C CII	-	-	-	-	25.6	1.28
u-U-UH3 —	-	-	-	-	24.4	1.23

Table S2. (continued) ¹H and ¹³C NMR data* for the triazole linked bis-alkylthio maleimide derivatives **29-31** of teicoplanin pseudoaglycon (Series 2)

*only signals that are crucial for identification are listed ** δ to ω -3 methylene groups of alkyl substituents

Figure S3. Atom numberings of Series 2 side chains for NMR assignment (This structure is only an illustration)

			42		
assignment	$^{1}\mathrm{H}$	¹³ C	assignment	$^{1}\mathrm{H}$	¹³ C
x1	7.07	64.3	GlcNAc1	4.39	98.8
x2	4.91	55.4	GlcNAc2	3.52	55.9
x3	5.36	58.5	GlcNAc3	3.37	73.5
x4	5.61	54.7	GlcNAc4	3.20	69.9
x5	4.35	53.6	GlcNAc5	3.08	76.9
x6	4.13	61.0	GlcNAc6	3.58	60.3
x7	4.30	59.4	GlcNAc CH ₃	1.83	23.0
1b	6.99	119.8			
1e	6.89	119.0	TEG a	4.44	63.4
1f	6.80	125.7	TEG h	3.49	66.9
2b	7.17	130.8	TEG i	3.55	37.8
2e	7.10	124.8	TEG bulk	3.48-3.38	70.0-69.0
3b	6.32	109.9			
3d	6.33	104.8	Triazole 4	-	143.7
3f	6.56	103.9	Triazole 5	7.71	124.2
4b	5.53	108.0			
4f	5.08	104.6	M 2,5	-	166.1
5e	6.61	116.5	M 3,4	-	135.5
5f	6.63	125.4			
6b	7.84	128.6	Hexyl 1, 1'	3.23	31.1
6e	7.25	123.3	Hexyl 2, 2'	1.55	30.0
6f	7.25	128.0	Hexyl 3, 3'	1.34	27.4
7d	6.27	101.6	Hexyl 4, 4'	1.24	30.7
7f	6.49	108.1	Hexyl 5, 5'	1.24	22.0
z6	5.43	75.7	Hexyl 6, 6'	0.84	13.9
z2/z'2	3.28/2.85	36.7			

Table S3. ¹H and ¹³C NMR data for the triazole-tetraethylene glycol linked bis-alkylthio maleimide derivative **42** of teicoplanin pseudoaglycon (Series 3)

		chemical sl	nifts in ppm	
	4	0	4	1
assignment	^{13}C	^{1}H	^{13}C	^{1}H
x1	64.3	7.06	64.1	7.07
x2	55.4	4.90	55.3	4.89
x3	58.5	5.37	58.3	5.37
x4	54.7	5.61	54.6	5.61
x5	53.7	4.34	53.5	4.35
xб	61.0	4.12	60.8	4.14
x7	59.2	4.32	59.3	4.29
1e	119.1	6.90	118.9	6.91
2e	124.6	7.10	124.8	7.11
3b	110.0	6.32	109.9	6.32
3f	104.0	6.57	103.8	6.55
4b	108.1	5.54	107.9	5.53
5f	125.4	6.63	125.2	6.63
6b	128.6	7.86	128.4	7.84
7f	108.2	6.52	107.9	6.48
zб	75.2	5.44	75.8	5.41
z2/z'2	36.7	2.86/3.28	36.5	2.86/3.28
GlcNAc1	98.4	4.39	98.9	4.38
GlcNAc CH ₃	23.1	1.84	22.9	1.83
Triazole 4	143.7	-	n.d.	-
Triazole 5	124.2	7.71	124.5	7.72
M 2,5	166.0	-	n.d.	-
M 3,4	135.4	-	n.d.	-
TEG a	63.4	4.44	63.2	4.43
TEG h	66.9	3.50	66.7	3.49
TEG i	37.8	3.55	37.7	3.55
TEG bulk	70.2-69.2	3.49-3.41	69.8-68.8	3.49-3.41
Propyl 1, 1'	33.0	3.22	-	-
Propyl 2, 2'	23.5	1.59	-	-
Propyl 3, 3'	12.8	0.93	-	-
Butyl 1, 1'	-	-	30.7	3.23
Butyl 2, 2'	-	-	32.0	1.54
Butyl 3, 3'	-	-	20.9	1.36
Butyl 4, 4'	-	-	13.3	0.85

Table S3. (continued) ¹H and ¹³C NMR data* for the triazole-tetraethylene glycol linked bisalkylthio maleimide derivatives of teicoplanin pseudoaglycon **40-46** (Series 3)

		chemical sh	nifts in ppm	
	4	13	4	4
assignment	^{13}C	^{1}H	^{13}C	^{1}H
x1	64.6	7.04	64.2	7.08
x2	55.4	4.96	55.5	4.87
x3	58.8	5.35	58.4	5.39
x4	54.7	5.59	54.8	5.63
x5	53.6	4.35	53.7	4.34
x6	61.0	4.16	61.1	4.12
x7	59.5	4.27	59.1	4.33
1e	119.0	6.88	119.2	6.95
2e	124.7	7.03	125.0	7.17
3b	110.0	6.31	110.2	6.34
3f	103.9	6.56	104.1	6.54
4b	108.0	5.53	108.2	5.54
5f	125.8	6.63	125.6	6.64
6b	128.7	7.81	128.7	7.85
7f	108.1	6.50	107.8	6.45
z6	76.4	5.36	75.8	5.40
z2/z'2	37.2	2.83/3.25	36.4	2.90/3.31
GlcNAc1	99.6	4.35	99.0	4.38
GlcNAc CH ₃	23.2	1.84	23.1	1.83
Triazole 4	143.7	-	143.8	_
Triazole 5	124.3	7.68	124.1	7.72
M 2.5	166.1	-	166.1	_
M 3,4	135.6	-	135.6	-
TEG a	63.5	4 4 3	63.4	4 43
TEG h	67.0	3.49	67.0	3.49
TEGi	37.9	3.54	37.8	3.55
TEG bulk	69.8-68.9	3.49-3.39	69.8-69.0	3.49-3.39
Alkyl a a'	31.2	3 22	31.1	3.22
$\frac{1}{\Delta l k v l \beta} \beta \beta'$	30.2	1 55	30.1	1 55
$\frac{1}{1}$	27.0	1.33	27.8	1.33
AIKYL γ, γ	21.2	1.52	27.0	1.55
Allerl o 2	20.7	1.22	29.0	1.21
Alkyl 0-2	21.3	1.21	22.1	1.20
	22.3	1.20	22.1	1.24
Alkyl ω	14.1	0.83	13.9	0.84

Table S3. (continued) ¹H and ¹³C NMR data* for the triazole-TEG linked bis-alkylthio maleimide derivatives of teicoplanin pseudoaglycon **40-46** (Series 3)

** δ to ω -3 methylene groups of alkyl substituents

		nifts in ppm		
	4	5	4	6
assignment	^{13}C	^{1}H	^{13}C	^{1}H
x1	64.5	7.06	63.9	7.09
x2	55.2	4.96	55.4	4.84
x3	58.6	5.35	58.2	5.39
x4	54.4	5.59	54.6	5.67
x5	53.4	4.37	53.7	4.29
хб	60.7	4.17	60.9	4.12
x7	59.3	4.27	57.4	4.39
1e	118.9	6.89	119.1	6.94
2e	124.6	7.03	125.0	7.20
3b	109.8	6.32	110.2	6.33
3f	103.7	6.58	104.0	6.52
4b	108.0	5.54	108.2	5.53
5f	125.4	6.64	125.8	6.67
6b	128.7	7.82	128.7	7.85
7f	108.0	6.51	106.5	6.32
z6	76.2	5.37	75.5	5.33
z2/z'2	37.1	2.81/3.25	36.1	2.91/3.30
GlcNAc1	99.5	4.37	98.6	4.34
GlcNAc CH ₃	22.9	1.85	23.1	1.86
Triazole 4	143 7	_	143.8	_
Triazole 5	124.2	7.69	124.1	7.74
		,		
M 2.5	166.0	-	166.1	-
M 3,4	135.5	-	135.4	-
TEG a	63.3	4.44	63.2	4.43
TEG h	66.9	3.48	66.8	3.49
TEG i	37.6	3.54	37.6	3.54
TEG bulk	70.2-69.0	3.53-3.40	70.0-69.0	.50-3.41
TEC1 1 2			20.7	2.42
$\frac{1EGI, I}{TEG2, 2}$	-	-	30.7	3.42
$\frac{1EG2, 2}{TEG2, 7}$	-	-	<u> </u>	3.01
$\frac{1EG/, /}{TEC^{2}}$	-	-	12.3	3.40
1EG8, 8	-	-	00.2	3.47
α-G1	95.9	5.44	-	_
	67.4	3.83	-	-
	69.7	4.34	-	-
u-02-3 –	70.3	4.61	-	-
	71.1	4.22	_	_
α-G6	31.5	3.46 / 3.29	-	-
α-G-C _q	108.6/108.0	-	-	-
a C CH	25.8/25.6	1.38/1.33	-	-
и-U-СП ₃ –	24.5	1.25		

Table S3. (continued) ¹H and ¹³C NMR data* for the triazole-TEG linked bis-alkylthio maleimide derivatives of teicoplanin pseudoaglycon **40-46** (Series 3)

Figure S4. Atom numberings of Series 3 side chains for NMR assignment (First structure is an illustration)

assignment	60		61		
	¹³ C	^{1}H	¹³ C	^{1}H	
x1	64.1	7.07	64.2	7.07	
x2	55.5	4.86	55.4	4.88	
x3	58.4	5.38	58.3	5.38	
x4	54.7	5.62	54.8	5.62	
x5	53.6	4.34	53.7	4.34	
x6	61.0	4.11	61.0	4.14	
x7	59.4	4.30	59.4	4.30	
1e	119.1	6.93	118.9	6.93	
2e	124.9	7.15	124.9	7.14	
3b	110.0	6.32	110.1	6.32	
3f	104.0	6.55	104.0	6.56	
4b	108.0	5.52	108.1	5.53	
5f	125.3	6.61	125.4	6.62	
бb	128.5	7.85	128.5	7.85	
7f	107.9	6.48	108.0	6.48	
z6	75.6	5.43	75.9	5.41	
z2/z'2	36.4	2.88/3.30	36.5	2.88/3.28	
G1	98.8	4.39	99.0	4.38	
G-CH ₃	23.1	1.82	23.1	1.83	
TA 4	144.0	-	144.0	_	
TA 5	124.1	7.71	124.1	7.71	
TA Me	63.3	4.43	63.4	4.43	
TB 4	143.8		143.8	-	
TB 5	124.2	8.01	124.2	8.01	
TB Me	63.3	4.45	63.4	4.45	
TEC hulls	69.6	3.43	69.7	3.43	
I EG DUIK	69.5	3.47	69.5	3.47	
TEG g	68.7	3.77	68.8	3.77	
TEG h	49.3	4.49	49.4	4.48	
Hexyl 1	-	-	69.6	3.39	
Hexyl 2	-	-	29.2	1.47	
Hexyl 3	-	-	25.4	1.25	
Hexyl 4	-	-	31.2	1.22	
Hexyl 5	-	-	22.1	1.23	
Hexyl 6	-	-	14.0	0.83	
Butyl 1	69.4	3.40	-	-	
Butyl 2	31.6	1.48	-	-	
Butyl 3	19.2	1.29	-	-	
Butyl 4	14.1	0.85	-	-	

Table S4. ¹H and ¹³C NMR data for teicoplanin pseudoaglycon TEG-monoalkyl derivatives**60-63** (Series 5)

assignment		62	63		
	^{13}C	¹ H	¹³ C	¹ H	
x1	64.6	7.03	64.5	7.04	
$\frac{1}{x^2}$	55.3	4.96	55.3	4.97	
x3	58.8	5.33	58.8	5.34	
x4	54.6	5 57	54.5	5 58	
<u>x5</u>	53.5	4.35	53.5	4.36	
<u>x6</u>	60.9	4.16	60.9	4.15	
$\frac{10}{x7}$	59.6	4.27	59.5	4.27	
<u>1e</u>	119.0	6.85	119.0	6.86	
<u>2e</u>	124.7	7.00	124.6	7.00	
<u>3b</u>	109.7	6 30	109.8	6 31	
3f	103.7	6.56	103.7	6 58	
4h	108.0	5 53	107.9	5 53	
5f	125.5	6.63	125.4	6.62	
6h	128.7	7.80	128.6	7.81	
7f	108.0	6.47	108.0	6.48	
76	76.2	5 36	76.2	5 38	
$\frac{20}{72/7^{2}}$	37.3	2 79/3 22	37.2	2 80/3 23	
<u>G1</u>	99.6	4 34	99.5	4 35	
G-CH2	23.1	1.84	23.0	1.84	
0-0113	23.1	1.04	23.0	1.04	
ТА 4	144 1		143.6		
	174.1	7 67	174.3	7 67	
	63.3	4 41	63.4	4 40	
$\frac{TR MC}{TR 4}$	144.4	-	144.0	-	
TB 5	174.7	8.01	124.3	8.01	
TB Me	63.3	<u> </u>	63.4	<u> </u>	
	05.5	4.44	03.4	+.++	
	69.7	3 4 3	69.7	3 44	
TEG bulk -	<u> </u>	3.43	69.5	3.44	
TFG σ	68.7	3.47	68.7	3.40	
TEG h	49.4	<u> </u>	49.3	4 48	
	-77-7		-77.5	07.70	
Decvl 1			69.6	3 39	
Decyl 2			29.2	1 46	
Decyl 3	_	_	25.2	1.40	
Decyl 4-7			23.7	1.23	
Decyl 8			31.3	1.22	
Decyl 9			22.1	1.22	
Decyl 10			14.0	0.84	
Decyr Io			14.0	0.04	
Octvl 1	69 5	3 39		-	
Octvl 2	29.2	1 46	_	-	
Octyl 3	25.6	1.40		-	
Octvl 4-5	23.0	1.23			
$\frac{Octyl + 3}{Octyl 6}$	31.3	1.23		-	
Octvl 7	22.1	1.20		-	
Octvl 8	13.6	0.84			
00010	13.0	0.07			

 Table S4. (continued)
 ¹H and ¹³C NMR data for teicoplanin pseudoaglycon TEG-monoalkyl derivatives 60-63 (Series 5)

Figure S5. Atom numberings of Series 5 side chains for NMR assignment

	chemical shifts in ppm						
assignment		72	,	73			
	¹³ C	^{1}H	¹³ C	^{1}H			
x1	58.2 ª	5.27 ^a	58.1ª	5.27 ^a			
x2	55.2	4.25	55.2	4.24			
x3	58.0ª	5.20 ^a	58.1ª	5.27 ^a			
x4	54.7	5.60	54.7	5.60			
x5	53.7	4.31	4.31 53.7				
хб	61.0	4.11	61.0	4.13			
x7	59.0	4.32	59.3	4.32			
1e	118.5	6.92	118.6	6.68			
2e	124.8	7.20	124.9	7.20			
3b	110.0	6.27	110.1	6.27			
3f	104.3	6.39	104.4	6.39			
4b	107.7	5.45	107.8	5.46			
5f	125.3	6.62	125.4	6.63			
6b	128.5	7.85	128.7	7.86			
7f	107.8	6.46	107.9	6.50			
z6	75.8	5.39	76.1	5.38			
z2/z'2	35.6	2.43/3.15	36.0	2.50/3.15			
G1	99.0	4.38	99.3	4.36			
G-CH ₃	23.1	1.83	23.1	1.84			
T2,6	127.1	7.73	-	-			
T3,5	129.3	7.38	-	-			
T-Me	21.0	2.37	-	-			
BS1	_	_	140.9	-			
BS2,6	-	-	127.0	7.86			
BS3,5	-	-	128.9	7.59			
BS4	-	-	132.6	7.64			

 Table S5. ¹H and ¹³C NMR data for the sulfonamide derivatives 72-79 of teicoplanin pseudoaglycon (Series 6)

ambiguous

Figure S6. Atom numberings of Series 6 side chains for NMR assignment (for compounds 72 and 73, respectively)

		chemical sh	ifts in ppm	
assignment		74		75
	^{13}C	^{1}H	^{13}C	^{1}H
x1	58.2ª	5.24 ^a	58.1	5.29
x2	55.6	4.29	55.3	4.27
x3	58.4 ^a	5.29 ^a	58.3	5.28
x4	54.8	5.61	54.7	5.60
x5	53.8	4.33	53.7	4.32
хб	61.1	4.14	61.0	4.13
x7	59.5	4.32	59.3	4.33
1e	118.6	6.64	118.5	6.67
2e	125.0	7.18	124.8	7.20
3b	110.1	6.28	110.1	6.26
3f	104.4	6.40	104.4	6.40
4b	107.8	5.47	107.7	5.45
5f	125.5	6.64	125.4	6.63
бb	128.3	7.84	128.6	7.86
7f	108.0	6.48	107.9	6.50
z6	76.5	5.37	75.9	5.39
z2/z'2	36.0	2.52/3.14	35.9	2.50/3.07
G1	99.6	4.38	99.1	4.36
G-CH ₃	23.2	1.85	23.2	1.85
P1	134.4	-	-	-
P2,6	128.2	7.77	-	-
P3,5	118.4	7.77	-	-
P4	144.9	-	-	-
P7	171.9	-	-	-
P8 (NHAc)	24.3	2.09	-	-
BPh1	-	-	139.6	-
BPh2,6	-	-	127.6	7.93
BPh3,5	-	-	127.0	7.89
BPh4	-	-	144.0	-
BPh7	-	-	138.6	-
BPh8,12	-	-	127.1	7.72
BPh9,11	-	-	129.3	7.52
BPh10	-	-	128.6	7.45

 Table S5. (continued) ¹H and ¹³C NMR data for the sulfonamide derivatives 72-79 of teicoplanin pseudoaglycon (Series 6)

^a ambiguous

Figure S7. Atom numberings of Series 6 side chains for NMR assignment (for compounds 74 and 75, respectively)

		chemical sh	hifts in ppm			
assignment		76	77			
	^{13}C	^{1}H	^{13}C	^{1}H		
x1	58.2ª	5.21ª	58.16 ^a	5.34 ^a		
x2	54.9	4.06	55.33	4.89		
x3	58.2ª	5.21ª	58.16 ^a	5.34 ^a		
x4	54.8	5.59	54.69	5.62		
x5	53.7	4.30	53.66	4.32		
x6	61.0	4.13	60.89	4.12		
x7	59.3	4.33	59.20	4.30		
1e	118.6	6.88	118.47	6.96		
2e	124.9	7.20	124.83	7.19		
3b	110.2	6.25	109.83	6.31		
3f	104.2	6.34	103.83	6.41		
4b	107.7	5.44	107.54	5.48		
5f	125.5	6.63	125.29	6.63		
6b	128.7	7.87	128.45	7.85		
7f	108.0	6.50	107.83	6.48		
z6	76.1	5.38	75.43	5.41		
z2/z'2	36.0	2.20/3.02	36.47	2.78/3.33		
G1	99.3	4.36	98.64	4.38		
G-CH ₃	23.1	1.85	23.03	1.83		
Ds2	120.0	8.36	-	-		
Ds3	127.8	7.56	-	-		
Ds4	115.2	7.25	-	-		
Ds5	151.1	-	-	-		
	129.9	8.48	-	-		
Ds6-8	128.9	8.31	-	-		
	123.5	7.69	-	-		
Ds11-12 (NMe ₂)	45.2	2.82				
Hexyl 1	-	-	52.56	2.93		
Hexyl 2	-	-	22.89	1.63		
Hexyl 3	-	-	27.34	1.31		
Hexyl 4	-	-	30.83	1.23		
Hexyl 5	-	-	21.90	1.25		
Hexyl 6	-	-	13.90	0.85		

Table S5. (continued) ¹H and ¹³C NMR data for the sulfonamide derivatives 72-79 ofteicoplanin pseudoaglycon (Series 6)

^a ambiguous

Figure S8. Atom numberings of Series 6 side chains for NMR assignment (for compounds 76 and 77, respectively)

	chemical shifts in ppm						
assignment		78	,	79			
	^{13}C	^{1}H	¹³ C	^{1}H			
x1	58.2ª	5.35 ^a	58.1	5.35			
x2	55.4	4.88	55.3	4.91			
x3	58.2ª	5.33 ^a	58.1	5.35			
x4	54.7	5.63	54.7	5.62			
x5	53.7	4.32	53.6	4.32			
хб	61.0	4.15	60.9	4.13			
x7	58.9	4.31	59.2	4.30			
1e	118.5	7.00	118.5	6.95			
2e	125.0	7.19	124.8	7.19			
3b	109.9	6.30	109.8	6.31			
3f	103.9	6.38	103.8	6.42			
4b	107.9	5.49	107.7	5.49			
5f	125.5	6.64	125.3	6.62			
6b	128.6	7.85	128.5	7.86			
7f	107.7	6.43	107.9	6.50			
z6	76.2	5.34	75.5	5.43			
z2/z'2	36.5	2.77/3.33	36.6	2.79/3.34			
G1	99.4	4.35	98.7	4.39			
G-CH ₃	23.1	1.82	23.0	1.83			
Octyl 1	52.62	2.93	-	-			
Octyl 2	22.98	1.63	-	-			
Octyl 3	27.89	1.31	-	-			
Octyl 4-5	28.71	1.23	-	-			
Octyl 6	31.28	1.22	-	-			
Octyl 7	22.10	1.24	-	-			
Octyl 8	13.99	0.84	-	-			
Dodecyl 1	-	-	52.5	2.94			
Dodecyl 2	-	-	22.9	1.63			
Dodecyl 3	-	-	27.6	1.31			
Dodecyl 4-9	-	-	28.9	1.22			
Dodecyl 10	-	-	31.2	1.21			
Dodecyl 11	-	-	22.0	1.24			
Dodecyl 12	-	-	13.9	0.84			

 Table S5. (continued) ¹H and ¹³C NMR data for the sulfonamide derivatives 72-79 of teicoplanin pseudoaglycon (Series 6)

^a ambiguous

Figure S9. Atom numberings of Series 6 side chains for NMR assignment (for compounds 78 and 79)

Compound	CPE reduction assay in HEL cells ^a		-	Vir in	us yield a A549 cel	ssay ls ^b
	EC ₅₀	MCC		EC ₉₉	EC ₉₀	MCC
			μΜ			
13	5.4	≥20		10	4.1	50
14	5.4	≥20		9.4	5.8	50
27	5.4	≥20		11	5.9	>50
28	8.9	≥20		9.5	6.4	≥50
41	8.9	≥100		29	8.6	>50
42	5.4	≥20		21	7.6	>50
60	≥100	≥100		ND	ND	ND
61	44	≥100		44	25	>50
62	8.9	100		30	23	>50
72	5.2	≥100		10	4.9	>50
73	5.5	≥20		11	6.8	>50
74	>100	≥20		ND	ND	ND
75	>100	4		ND	ND	ND
76	>100	≥4		ND	ND	ND
77	1.5	20		ND	ND	ND
78	5.4	≥20		9.4	5.7	>50
79	1.8	20		4.7	2.8	50
UDA (µg/ml) ^c	1.8	>100		ND	ND	ND
K22 (µM) ^c	ND	ND		15	11	≥50

Table S6. Activity in human coronavirus 229E-infected human HEL^a or A549^b cells.

^aHEL: human embryonic lung fibroblast cells. Antiviral EC₅₀: compound concentration producing 50% inhibition of virus replication, as estimated by microscopic scoring of the cytopathic effect (CPE). MCC: minimum cytotoxic concentration, i.e. compound concentration producing minimal changes in cell morphology, as estimated by microscopy.

^bA549: human lung epithelial carcinoma cells. Antiviral activity expressed as the compound concentration causing a 2-log₁₀ (EC₉₉) and 1-log₁₀ (EC₉₀) reduction in virus yield at 72 h p.i., as determined by real-time RT-PCR.

^cReference compounds: UDA (Urtica dioica agglutinin) lectin, concentration expressed in μ g/ml; K22 [(Z)-N-(3-(4-(4-bromophenyl)-4-hydroxypiperidin-1-yl)-3-oxo-1-phenylprop-1-en-2-yl)benzamide]¹, concentration expressed in μ M.

Data represent the averages of two independent tests. ND, not determined.

		C		Н		Ν		S	
#	# Ioimuia	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
13	$C_{78}H_{74}Cl_2N_8O_{25}S_2$	56.49	56.35	4.50	4.65	6.76	6.63	3.87	3.75
14	$C_{82}H_{82}Cl_2N_8O_{25}S_2$	57.44	57.39	4.82	5.09	6.54	6.40	3.74	3.67
17	$C_{85}H_{88}Cl_2N_8O_{25}S_2$	58.12	57.95	5.05	5.21	6.38	6.25	3.65	3.44
26	$C_{79}H_{73}Cl_2N_{11}O_{25}S_2$	55.44	55.32	4.30	4.48	9.00	8.87	3.75	3.63
27	$C_{81}H_{77}Cl_2N_{11}O_{25}S_2$	55.93	55.68	4.46	4.69	8.86	8.80	3.69	3.59
28	$C_{85}H_{85}Cl_2N_{11}O_{25}S_2$	56.85	56.57	4.77	5.02	8.58	8.45	3.57	3.51
29	$C_{89}H_{93}Cl_2N_{11}O_{25}S_2$	57.73	57.57	5.06	5.28	8.32	8.28	3.46	3.38
30	$C_{97}H_{109}Cl_2N_{11}O_{25}S_2$	59.32	59.22	5.59	5.84	7.85	7.65	3.26	3.14
31	$C_{97}H_{97}Cl_2N_{11}O_{35}S_2$	55.17	55.25	4.63	4.91	7.30	7.13	3.04	2.92
40	$C_{87}H_{89}Cl_2N_{11}O_{29}S_2$	55.36	55.18	4.75	4.98	8.16	8.10	3.40	3.29
41	$C_{89}H_{93}Cl_2N_{11}O_{29}S_2$	55.80	55.62	4.89	5.05	8.04	7.92	3.35	3.27
42	$C_{93}H_{101}Cl_2N_{11}O_{29}S_2$	56.65	55.48	5.16	5.34	7.81	7.67	3.25	3.18
43	$C_{97}H_{109}Cl_2N_{11}O_{29}S_2$	57.45	57.32	5.42	5.53	7.60	7.54	3.16	3.05
44	$C_{105}H_{125}Cl_2N_{11}O_{29}S_2$	58.93	58.70	5.89	6.02	7.20	7.11	3.00	2.91
45	$C_{105}H_{113}Cl_2N_{11}O_{39}S_2$	55.12	54.95	4.98	5.09	6.73	6.61	2.80	2.70
46	$C_{97}H_{109}Cl_2N_{11}O_{37}S_2$	54.04	53.85	5.10	5.18	7.15	7.07	2.97	2.83
60	$C_{84}H_{87}Cl_2N_{13}O_{28}$	56.13	55.89	4.88	5.03	10.13	10.02	-	-
61	$C_{86}H_{91}Cl_2N_{13}O_{28}$	56.58	56.35	5.02	5.11	9.97	9.80	-	-
62	$C_{88}H_{95}Cl_2N_{13}O_{28}$	57.02	56.88	5.17	5.29	9.82	9.64	-	-
63	$C_{90}H_{99}Cl_2N_{13}O_{28}$	57.45	57.35	5.30	5.47	9.68	9.49	-	-
72	$C_{73}H_{64}Cl_2N_8O_{25}S$	56.34	56.32	4.15	4.36	7.20	7.08	2.06	1.95
73	$C_{72}H_{62}Cl_2N_8O_{25}S$	56.07	56.11	4.05	4.24	7.27	7.13	2.08	1.94
74	$C_{74}H_{65}Cl_2N_9O_{26}S$	55.57	55.34	4.10	4.18	7.88	7.66	2.00	1.94
75	$C_{78}H_{66}Cl_2N_8O_{25}S$	57.89	57.95	4.11	4.22	6.92	6.75	1.98	1.90
76	$C_{78}H_{69}Cl_2N_9O_{25}S$	57.29	57.32	4.25	4.50	7.71	7.44	1.96	1.88
77	$C_{72}H_{70}Cl_2N_8O_{25}S$	55.78	55.57	4.55	4.78	7.23	7.10	2.07	1.97
78	$C_{74}H_{74}Cl_2N_8O_{25}S$	56.31	56.08	4.73	4.88	7.10	6.98	2.03	1.96
79	$C_{78}H_{82}Cl_2N_8O_{25}S$	57.32	57.04	5.06	5.11	6.86	6.82	1.96	1.91

Table S7. Elemental analysis data (C, H, N, S) for teicoplanin derivatives.

References

 Lundin, A.; Dijkman, R.; Bergström, T.; Kann, N.; Adamiak, B.; Hannoun, C.; Kindler, E.; Jónsdóttir, H. R.; Muth, D.; Kint, J.; Forlenza, M.; Müller, M. A.; Drosten, C.; Thiel, V.; Trybala, E. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. *PLoS Pathog.* 2014, *10*, e1004166.

f1 (ppm)

 $h_{\rm ent} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$ Murphishilling

