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Materials and Methods

Sequencing and read processing

DNA extracted from lymphoblastoid cell lines was shipped from the CEPH-Biobank at
Fondation Jean Dausset-CEPH laboratory in Paris, and sequenced at the Wellcome Sanger
Institute in Hinxton, United Kingdom. PCR libraries were constructed for an initial batch of
samples (PCR-free library construction was not available for large-scale production at the
institute at this time), while PCR-free libraries were constructed for the rest. Libraries were
sequenced on [llumina HiSeq X machines, on single lanes for the PCR libraries and
multiplexed across 12 lanes for the PCR-free libraries, producing paired-end reads of length
2x151 base-pairs (bp), a mean insert size of 447 bp and a mean coverage of 35.0X. 14 of
these libraries were described and used for population genetic analyses in a previous
publication (13).

Reads were processed through the automated pipeline of the Wellcome Sanger Institute
sequencing facility, mapping to the GRCh38 reference assembly

(GRCh38 full analysis_set plus decoy hla.fa) using bwa mem version 0.7.12 (47) with the
—T 0 parameter. Tools from the biobambam package (48) were used to trim adaptor
sequences from reads prior to mapping (bamadapterclip) and to mark duplicate reads after
mapping (bamstreamingmarkduplicates). We performed no further post-processing of the
alignments, e.g. base quality recalibration or local indel realignment.

Data previously generated on a subset of the samples from the HGDP-CEPH panel as part of
the Simons Genome Diversity Project (3) (hereafter referred to as “SGDP”’) was also
incorporated into the project (paired-end reads of length 2x100 bp, mean insert size of 310
bp, mean coverage of 42.4x). Data from another earlier publication (/7) (hereafter referred to
as “Meyer”) was obtained from ENA experiment accession number SRX103808, de-
multiplexed allowing for one nucleotide mismatch in the barcode sequence and then also
incorporated (paired-end read lengths of 94+100 bp or 95+101 bp, mean insert size of 264
bp, mean coverage of 28.7).

Reads from the SGDP and Meyer libraries were processed as the Sanger libraries above,
except the trimadap tool (https://github.com/lh3/trimadap) was used for adapter trimming, the
—T 0 parameter to bwa mem was not applied, and the bwa-postalt.js post-processing script
was run after mapping.

Sample quality control, some of which is described in more detail below, included
assessments of overall sequencing coverage, read error rates, genotype concordance to
published genotype array data and cell-line chromosomal artefacts. For a few samples in the
panel we had more than one library from different sources (i.e. Sanger, SGDP or Meyer, and
PCR or PCR-free), and in each such case choose to include the library with the highest array
genotype concordance, but excepting that rule in a few cases to avoid any of the 54
populations in the panel having an atypical composition of libraries from these different
sources (for example, having more than the typical two SGDP libraries), when possible. After
quality control and sample exclusions, the final set of 929 libraries contained 649 Sanger
PCR-free, 152 Sanger PCR, 111 SGDP PCR-free, 9 SGDP PCR and 8 Meyer PCR libraries
(table S1).



Previously published array genotypes available on the panel were lifted over from hg18 (&)
and GRCh37 (10) to the GRCh38 assembly using the NCBI Remap tool and through looking
up rs numbers in dbSNP (49).

Capping of mapping qualities

We noticed that the genotypes called from many of the Sanger PCR-free libraries displayed
higher rates of discordance with array genotypes from the same individuals than the other
sample sets, including the Sanger PCR libraries. To test if this could be due to cross-sample
contamination caused by index hopping in the multiplexed sequencing runs performed for the
PCR-free libraries, we ran the VerifyBamlID tool (50) to estimate a per-library contamination
rate (the “FREEMIX” estimate). These estimates were higher for many of the Sanger PCR
libraries (in the highest cases 1-2%), and correlated strongly with the array discordance rate,
strongly suggesting this was the cause of the reduced genotype accuracy (fig. S1A).

To reduce the impact of the index hopping on genotype accuracy, we applied a per-sample
cap on the mapping qualities (MAPQ) of reads as a function of the contamination estimate
(https://github.com/mcshane/capmq):
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The rationale behind this is that if e.g. 0.1% of the reads are contaminant and do not actually
derive from the given individual, for any given read we cannot, regardless of how well it has
aligned to the reference genome, have more than 99.9% confidence that it reflects the
genome sequence of the individual. We thus express that uncertainty by lowering the
mapping quality of any read above this confidence level, in this example corresponding to a
mapping quality of 30. However, we do not set the cap for any sample at lower than 20.

Applying these sample-specific mapping quality caps substantially improved the array
discordance rate for the Sanger PCR-free libraries, bringing them into the same range as non-
multiplexed libraries (fig. S1B). It also slightly improved the rate for some other libraries.
One library displayed a very high contamination rate (~4%) and a high array discordance
even after capping mapping qualities, and was therefore marked as failing quality control and
excluded from analyses.

Cell line copy number alterations

To identify any large-scale chromosomal copy number changes having occurred during
culturing of the HGDP-CEPH lymphoblastoid cell lines from which DNA was obtained, we
studied the mapped read coverage along the chromosomes of each sample. We calculated the
coverage at approximately 300,000 single positions across the genome, and then plotted
rolling means of these normalized by the genome-wide median. We visually inspected the
plots for each sample and identified local deviations from the expected normalized copy
number. As the cell line is a population of cells, the magnitude of the coverage deviation will
be proportional to the fraction of the cells carrying the copy number alteration and can thus
fall anywhere within the continuous range between the expected (1) and the most extreme
possible values (1.5 in the case of a gain and 0.5 in the case of loss).




We marked 66 libraries as displaying at least one instance of mild deviation in coverage
along a substantial stretch of a chromosome or major deviation in a megabase-sized stretch.
Most events affected entire chromosomes or chromosome arms, but some smaller events
were also observed. An especially large number of whole-chromosome gains were observed
on chromosomes 9 and 12. We considered 9 of these 66 libraries to have deviations that were
too extreme, informed by a computational experiment described below, and marked these as
failing quality control. This included one sample (HGDP01097, Tujia) which did not display
any copy number alterations, but which we discovered was completely homozygous along
the entire length of chromosome 1 (we confirmed this was also the case in previously
published genotype array data), most likely reflecting a cell line uniparental disomy event
(though we cannot rule out that this reflects an actual germline uniparental disomy event in
the sample donor). While several of the identified cases of unexpected copy number involved
the sex chromosomes, particularly loss of chromosome Y in males and loss of chromosome X
in females (fig. S2B), we did not exclude any sample on the basis of sex chromosome
coverage alone. One self-reported male individual displayed what is likely an actual XXY
karyotype rather than a cell line alteration.

We performed a computational experiment to assess the effects of coverage deviations on the
accuracy of genotype calling at small nucleotide variants and determine whether it was
appropriate to retain samples with mild deviations in our final dataset. We took the reads
from the haploid chromosome X of two male individuals (HGDP00262 and HGDP00251,
both Pathan) and subsampled these in varying proportions to generate synthetic diploid
datasets corresponding to varying levels of coverage imbalance between the two
chromosomes. We then called genotypes and determined how often the genotype called from
a given imbalanced dataset matched that called from the perfectly balanced dataset at
heterozygote SNPs (copy number changes will not impact the calling of homozygous
genotypes). We found that copy number gains of a chromosome, even extreme ones, have
only very minor effects on genotyping accuracy on high-coverage data (fig. S2A), consistent
with the variant calling algorithm being able to tolerate some fluctuation from the expected
balanced proportions of allele observations. However, we found that copy number losses
result in larger effects on genotype accuracy. We therefore considered copy number losses as
particularly strong reasons for sample exclusion.

DNA from these cell lines has previously been used to generate a large amount of data using
a variety of technologies, and such data might potentially have been affected by the
chromosomal alterations we identify here. To test to which extent a previously published and
widely used array genotype dataset from the panel (8) was affected, we asked if the total
sequencing coverage of a chromosome in our whole-genome sequencing data correlated with
heterozygosity of the array genotypes. We found that increased coverage of a chromosome is
associated with reduced heterozygosity in the array genotypes (fig. S2C), consistent with
imbalanced allele counts leading to undercalling of heterozygotes. However, the effect is not
very dramatic and thus is unlikely to have had much impact on population genetic analyses.

Genotype calling and filtering

We identified and genotyped SNPs and small indels using GATK HaplotypeCaller (44)
version 3.5.0, applying genotype priors without bias towards the reference allele through the
“—-input_prior 0.001 --input_prior 0.4995” arguments (3), the “--pcr_indel model NONE”
argument for the PCR-free libraries and the “--includeNonVariantSites” argument to include
monomorphic sites in the output VCF files.




We wished to apply filters that are equally stringent for variant sites as for non-variant sites.
Any filter that applies to variant sites but not to non-variant sites, e.g. GATK’s Variant
Quality Score Recalibration, comes with a risk of introducing a bias against variants and
thereby introduce skews into various population genetic analyses that rely on the balance
between these two classes of sites. We applied filters to the genotype calls using the GQ
(“Genotype Quality””) and RGQ (“Reference Genotype Quality”) annotations that are
produced by GATK for variant sites and non-variant sites, respectively. The GATK software
outputs these as separate annotations and does not guarantee that they are comparable, but we
performed a computational experiment to test how these annotations behave in practice. We
performed single-sample calling for a given sample, and from these calls extracted the
genotype annotations at the ~60 million sites which during the joint calling of the whole
panel had been called as polymorphic SNPs but with a homozygous reference (“0/0™)
genotype for the given sample (meaning some other sample in the panel carried an alternative
allele at this site). This thus gives us a set of sites where the genotypes for the given sample
has been evaluated by GATK once as non-variant sites and assigned RGQ values, and once
as variant sites and assigned GQ values. For the sample HGDP01377, out of the 61,028,821
surveyed sites, GQ != RGQ at 6,650,620 sites (10.9%), but |RGQ — GQ| > 1 only at 23,372
sites (0.038%), suggesting most differences are just due to numerically rounding off the
values into different consecutive integer bins. These comparisons are slightly complicated by
multi-allelic sites in the joint calls — restricting to bi-allelic SNPs, [RGQ — GQ| > 1 at O sites.
We performed the same experiment for two additional samples (HGDP00995 and
HGDPO01377) and obtained similar results. Thus, at least on this dataset called with non-
reference biased priors, GQ and RGQ behave extremely similarly in practice and we thus
take the same threshold applied to these annotations as providing equally stringent filtering
for variant and non-variant sites.

We proceeded to filter the genotypes as follows. For each sample, we set any genotype to
missing if it had a GQ or RGQ value equal to or lower than 20, or a coverage (“DP”
annotation) equal to or greater than 1.65 times the genome-wide average coverage for the
sample.

We also computed two site level annotations: GATK’s Variant Quality Score Recalibration
(VQSR) and excess heterozygosity. VQSR was run on the unfiltered genotypes, for SNPs
with the hapmap 3.3.hg38.vcf.gz, 1000G_omni2.5.hg38.vcf.gz and
1000G_phasel.snps.high confidence.hg38.vcf.gz variant sets from the GATK GRCh38
bundle for training and the former two for truth sets, and using the QD, MQRankSum,
ReadPosRankSum, FS and MQ annotations as features. VQSR was run for indels with the
Mills_and 1000G_gold_standard.indels.hg38.vcf.gz variant set for training and truth sets,
and using the FS, ReadPosRankSum, InbreedingCoeff, MQRankSum and QD annotations as
features. After annotating the VCF with the obtained VQSLOD values, another annotation
“VQSRMODE” was added to each site to indicate whether it was evaluated in the SNP or
indel mode, as at multi-allelic site this information might otherwise not always be retained
when filtering out one of the alleles or subsetting to a sample set in which the evaluated allele
is not present. The excess heterozygosity “ExcHet” annotation was calculated on a per-allele
basis using the beftools (57) fill-tags plugin. We then marked any site with a SNP VQSR
score below -8.3929 or indel VQSR score below -1.0158 with the “CLOW_VQSLOD” filter
tag, and any site harbouring an allele with an ExcHet value equal to or larger than 60
(corresponding to an excess heterozygosity p-value of 10°®) with the “ExcHet” filter tag. For



downstream analyses, we did not make use of the VQSR scores for filtering, unless noted,
but we excluded sites tagged with excess heterozygosity from all analyses.

We wished to restrict certain analyses to bi-allelic SNPs. Rather than excluding the entire site
in case a third allele and/or an indel allele is present, which would mean that an e.g. an
additional allele observed in a single individual would lead to the exclusion of a site
harbouring two otherwise informative and perfectly usable common alleles, for most analyses
we instead masked out alleles. If an allele is lower in frequency than two other alleles at the
same site, or if the allele is an indel allele, we excluded the allele and set the genotype of any
individual carrying a copy of the allele to missing, allowing us to retain the site and the two
most common SNP alleles.

We annotated SNP variants with two ancestral allele tags: one using the allele predicted by
the Ensembl 8 primates EPO alignments (cc21 ensembl compara 86), and one using the
Chimpanzee allele in the GRCh38-PanTro4 alignment from the UCSC genome browser.

We noticed that in population genetic analyses (e.g. principal component analyses) of the
unfiltered genotype calls, there were noticeable batch effects between the libraries of
different sources, primarily between Sanger and SGDP libraries but also to a smaller extent
between PCR and PCR-free libraries. The genotype filtering described above reduces these
effects, as does increasingly stringent VSQLOD thresholds, and when applying the
accessibility mask described above the effects are not discernible. In the final genotypes used
for analyses there is thus no batch effect visible (fig. S3). However, we still urge any users of
the data to be aware of the possibility that some sensitive analyses could still be affected by
these effects, particularly if not applying the accessibility mask.

Overview of small variant callset

Our filtered variant call set across 929 samples, excluding sites labelled with excess
heterozygosity, contained 75,310,370 variant sites. This included 67,325,692 SNPs and
8,797,538 indels. 3,085,457 of all variants were multi-allelic, and 855,977 of SNP sites
(1.3%) were multi-allelic. The transition/transversion ratio was 1.88. 29,279,819 SNPs
(43.5%) and 3,431,934 indels (39.0%) were singletons (the alternative allele observed only in
one copy across the individuals).

We compared the identified variants with those identified by the 1000 Genomes Project (2)
(the 20170504 GRCh38 lift-over version). While both datasets contain millions of variant
alleles that are not found in the other dataset, the vast majority of these are very low
frequency, including many singletons, and a simple count of overlapping versus unique
variants does not reveal to which extent either of the datasets contains variants that might be
of higher frequency in particular populations. We therefore calculated, for each variant
present in one dataset but not the other, its maximum allele frequency in any population. To
avoid cases where a variant is actually present in the sequenced individuals in both datasets
but absent from one of the VCFs because of technical issues in variant calling and/or lift-
over, we excluded 1000 Genomes variants that did not have the

“GRCH37 38 REF STRING MATCH?” tag (indicating that the reference allele string
matches between GRCh37 and GRCh38), and we excluded from both datasets any variant
that had a global allele frequency across the dataset of 30% or higher (the reasoning being
that it would be very unlikely that such a globally common variant would not be sampled by
both of these datasets).



The HGDP dataset contains a larger number of populations and these populations have
smaller sample sizes than in the 1000 Genomes dataset, leading to higher variance in the per-
population allele frequency estimates and thus potentially resulting in an upwards bias when
finding the maximum allele frequency across populations. To enable a fair comparison, we
down sampled the 1000 Genomes dataset to resemble the HGDP dataset: for each of the 26
1000 Genomes populations, two random subsets were constructed with sizes determined by
sampling without replacement from the set of HGDP population sizes. The distribution of
maximum allele frequencies across these size-matched 1000 Genomes populations for
variants not present in HGDP shifted upwards, but variant numbers still remained much
lower than the number of variants private to HGDP. We performed this down-sampling three
times, and the results were very similar across the three replicates.

gVCF construction

Having genotype calls at monomorphic sites is very valuable, as they are needed in certain
population genetic analyses and also as they make appropriate merging of different datasets
possible. We produced VCFs containing every called site, but these files are very large and
therefore challenging to distribute and store. We therefore constructed per-sample gVCFs
(“genomic” VCFs) in which consecutive sites with homozygous reference genotypes and
similar confidence level are grouped into single, block VCF records. We grouped such sites
into four classes of blocks, in which the GQ and RGQ annotations are collapsed into a single
GQ annotation:

Block definition GT field FILTER tag
DP > mean(DP) x 1.65 set to missing EXCESS _DP
GQ>60 & DP < mean(DP) x 1.65 unchanged

GQ>20 & GQ<=60 & DP < mean(DP) x 1.65 unchanged .

GQ<=20 set to missing GQ20

For each block record, only the DP and GQ genotype annotations are retained and used to
represent the minimum value across all sites contained within the block. If a site with a non-
reference genotype fails any filter, we set the genotype to missing but still retain the
alternative allele and all the genotype annotation fields, such that it’s always possible to
restore the genotype called by GATK if desired. For sites with non-reference genotypes we
also carried over a few site-level annotations from the joint variants VCF (ExcHet,
VQSLOD, VQSRMODE).

These gVCEF files constitute compact representations of the genome sequences of single
individuals, while retaining most of the information of relevance to assess the uncertainty of a
given genotype call and allow for custom filtering. The mean size of these files across the
929 samples is 1.32 GB (standard deviation = 0.48, min = 0.25, max = 3.25), with the
variation largely explained by differences in sample coverage (7coverage fite size = -0.79).

Accessibility mask

Rather than variant level filtering, for most analyses we instead relied on an accessibility
mask. This mask was constructed on the basis of the 1000 Genomes Project’s strict mask for
GRCh38 (20160622 version), which is based on coverage and mapping quality patterns in the
1000 Genomes Project dataset. From this mask, we also subtracted any regions of the




primary GRCh38 assembly which have alternative loci or patch scaffolds, as defined by the
NCBI assembly resource for the GCA _000001405.15 GRCh38 entry. As we performed
variant calling on GRCh38 read alignments that had not been post-processed to adjust the
mapping qualities in an alt-aware manner, genotypes in these regions are likely not reliable.
We also subtracted all sites tagged with excess heterozygosity, considering them unsuitable
for genotyping from Illumina reads. The resulting masks leaves approximately 73% of the
primary assembly for analyses, and unless otherwise noted our analyses are restricted to this
mask. While we find that restricting to this mask without further site-level filtering appears
suitable for the population genetics analyses we perform here, other types of analyses using
this dataset might benefit from alternative filtering strategies, e.g. using the VQSR scores or
other annotations. In particular, analyses of variants of potential functional, medical or
selection relevance might benefit from interrogating variants also in the approximately 27%
of the genome that falls outside of this mask.

10x Genomics sequencing and haplotype phasing

We selected 26 samples from 13 populations to process with the 10x Genomics Chromium
technology (/4), producing linked reads with long-range physical information that enable
haplotype phasing. We selected 13 of the 54 populations representing key ancestries. Within
each of these populations, we tried to fulfill several criteria when selecting which two
samples to process: an absence of any large-scale chromosomal copy number alterations; a
typical ancestry profile with respect to their population as assessed through principal
component and model-based clustering analyses; no evidence of high relatedness between the
two individuals; and male individuals if possible, to obtain Y chromosome data.

DNA quality and molecule length distributions were assessed using the Agilent TapeStation,
and Chromium libraries were then constructed for the 26 selected samples and sequenced on
single lanes of Illumina HiSeqX machines (2x151 bp reads, average coverage 30.2X) (table
S2). Four of these libraries were described and used for population genetic analyses in a
previous publication (52). The resulting barcoded reads were processed using the 10x
Genomics Long Ranger software version 2.1.2 with genotype calling through GATK
HaplotypeCaller 3.5.0, to obtain phased VCFs for each individual. In order to maintain only a
single set of genotype calls for these 26 individuals for which we had calls both from the
standard Illumina data and from the Chromium data, we lifted over the haplotype phase
information at heterozygous sites from the latter to the former. Any genotype where the two
calls disagreed were set to unphased, and variants within phase blocks that contained only
one variant were also set to unphased. The resulting VCF files thus contained the unaltered
genotypes that we called from the standard Illumina data, with only haplotype phase
information obtained from the Chromium experiments.

Structural variation calling

We called copy number variants using GenomeSTRiP v2.00 (53) using default parameters.
We initially ran the algorithm jointly on all 965 available libraries, including libraries not
passing quality control for short variant calling, and including the Meyer libraries. However,
we found the quality of resulting calls for the Meyer libraries to be low and re-ran the
algorithm excluding them.

As we have a number of duplicate samples prepared using PCR and PCR-free libraries for
quality control purposes, we ran the algorithm twice for these, separately for each library



preparation set, in each case together with the rest of the dataset. We found that more variants
were called for PCR-based libraries compared to PCR-free libraries. We also found that
samples prepared with PCR libraries had a larger number of shared heterozygous calls that
are missing from the PCR-free libraries, suggesting these are artefactual calls. We
subsequently excluded variants with excessive heterozygosity as computed by beftools v1.9
(ExcHet < 0.0001) separately for each library preparation and sequencing location set (i.e.
SGDP PCR, SGDP PCR-free, Sanger PCR and Sanger PCR-free). For the SGDP PCR
samples we used ExcHet < 0.05 as this set had only 9 samples.

We investigated potential cell-line artefacts in further details by analysing coverage across
the genome for each sample, as CNV calling might be more sensitive to such artefacts than
short variant calling. From the 929 samples included in the SNP analysis, we excluded the
Meyer samples as well as 10 samples that displayed evidence of alterations across multiple
chromosomes. We also masked regions in 74 samples that showed more limited putative
alterations, meaning we retain the samples but we did not consider variants called for them
within these masked regions. This resulted in a VCF file with 911 samples in which
GenomeSTRIP called 50,474 CNVs.

We examined the calls and found cases where the algorithm splits variants into multiple
shorter entries which are not always overlapping. This a known behaviour of the
GenomeSTRiP CNV pipeline, and it seems to occur when there are variants with different
copy numbers across different individuals within a sub-segment of a larger variant. This issue
can also occur if a low-quality variant is found within a larger CNV. To address these issues
and be able to more accurately estimate the total number of identified CNVs in our dataset,
we merged high quality (CNQ > 12) calls that have same diploid copy number and are within
50 kb of each other, for each sample individually. For the X-chromosome we performed this
separately for male and female samples. At this point, we observed that one sample
(HGDPO01254) had an elevated number of variants compared to the rest of the samples.
Closer inspection showed that these calls had relatively low genotype quality. To be
conservative, we excluded this sample from downstream analysis, leaving 910 individuals.
All variants were then merged using bedmap v2.4.35 (54) based on 100% overlap. This
resulted in 39,634 autosomal variants and 1,102 variants on the X-chromosome.

Statistical haplotype phasing

As we only had 10x Genomics experimental phasing data for a subset of samples, we also
performed statistical phasing of the whole panel. We restricted statistical phasing to biallelic
SNPs (by masking out third or higher alleles and indel alleles, rather than excluding entire
sites) lacking filter tags. To take advantage of a large external reference panel without having
to exclude variants not present in the reference panel, we applied a scaffold-based method
implemented as a genotype calling mode in SHAPEIT2 (55). We first obtained the scaffold
by phasing the genomes using Eagle (v2.3.2) (56) after three PBWT iterations with 4,956
genomes from the African Genome Resources (https://www.apcdr.org/) in the reference
panel (this includes the full 1000 Genomes Project panel). Subsequently we divided the
unphased chromosomes into windows each spanning 2,400 SNPs with 200 overlapping ones
between adjacent windows. Beagle 4.1 (57) was run with the -gtgl option to produce
genotype probabilities in each window. Based on the genotype probabilities, the variants
were then mapped onto the phased scaffold with the --call and --input-scaffold options in
SHAPEIT2. To avoid under- and overflow errors (as described in (3)), we ran SHAPEIT?2 in
the same windows as in the previous step instead of assigning windows by physical lengths,




and further enlarged the windows when such errors still occurred on rare occasions. Missing
genotypes in the unphased input dataset were reset to missing in the phased dataset for
consistency.

We evaluated the accuracy of the statistical phasing by comparing the inferred haplotypes to
those obtained for the samples sequenced with 10x Genomics linked reads. If adjacent phase-
resolved heterozygous sites in the same phasing block in the 10x genome formed a different
haplotype structure than that in the statistically phased genome, we considered it a switch
error. Table S3 lists the switch error rates on chromosome 1, measured as the total number of
switch errors divided by the total number of possible switches (namely the number of
heterozygous sites minus one). When singleton alleles are excluded, the highest switch error
rates of around 1.2% are found in the San and Papuan populations, which roughly
corresponds to on average one switch error per 160 kB. We therefore do not expect phasing
errors to have a detectable impact on downstream analysis targeting haplotypes substantially
shorter than this.

Metadata curation

There is some inconsistency in the population labels used in the prior literature on the HGDP-
CEPH samples. We reviewed the population labels, aiming to adhere as much as possible to
the labels provided in the official CEPH sample documentation but also to define the most
scientifically useful groupings with labels that are ethnically, linguistically and
geographically appropriate. After this review, we arrived at 54 population labels. While most
differences to previously used labels involve only minor spelling variations, a few cases
involve more notable changes. We comment on some of the population labels and the
motivation behind our choices, as well as any notes on the coordinates used to indicate
geographical origins, here:

- BantuSouthAfrica and BantuKenya: These have sometimes been collapsed into a
single “Bantu” label, however we use two labels as they are substantially separated
both geographically and genetically (Fst = 0.008). The South African samples have
sometimes been further subdivided into “South-Western” and “South-Eastern” sets or
into individual language groups, however to retain a decent sample size for the
population we do not make use of these further subdivisions.

- Colombian: These have sometimes been subdivided into two individual language
groups (Piapoco and Curripaco), however to retain a decent sample size we do not
subdivide these samples (the CEPH documentation also does not describe which of
the samples are from which of the two language groups).

- Han and NorthernHan: While representing individuals from the same ethno-
linguistic group, given the large number of Han individuals in the panel we made use
of the sometimes utilized second label for the set sampled in northern China, for
which we assign new geographical coordinates based on documentation from the
original sample collection.

- Mongolian: “Mongola” has been used, however we believe this reflects a spelling
error. The geographical coordinates reported for this population in (58) differs slightly
from those in the CEPH documentation — we believe the latter are the correct
coordinates.
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- Bougainville: “Melanesian” or “NAN Melanesian” (NAN=Non-Austronesian
language) has been used for this group from Bougainville Island, but is overly
generic. The name of a specific language group has sometimes been used, but we do
not make use of this as it is not part of the CEPH documentation.

- PapuanSepik and PapuanHighlands: The prior literature has used the single label
“Papuan” for these samples from Papua New Guinea, however it has been shown that
they consist of two genetically highly distinct (Fst = 0.03) subsets, one with affinities
to populations in the eastern highlands and one with affinities to populations in the
Sepik river region of the northern lowlands of New Guinea (52), and we thus separate
them into two separate labels. For the PapuanSepik population, we use the
geographical coordinates provided in the CEPH documentation, which are consistent
with a Sepik region location. For the PapuanHighlands population, we assign new
coordinates on the basis of the results reported in (52).

- San: “Jul’hoan North” has been used, but this label is not used in the CEPH
documentation and so we use the “San” label, even if it is more generic.

- Bergamoltalian: “North Italian” has been used, but we include the Bergamo origin of

these samples in the label to clarify its distinction from the Tuscan population that is
also part of the panel.

f-statistics analyses

We calculated f; and D-statistics using the ADMIXTOOLS package version 5.0 (/0). As the
ADMIXTOOLS programs used excessive memory when attempting to use all variants to
calculate large numbers of statistics, e.g. the 948,753 f,-statistics corresponding to all
possible relationships among the 54 populations, we ran ADMIXTOOLS separately on 5 Mb
blocks across the genome and then performed our own block jackknifing across the per-block
estimates. We verified on a small subset of statistics that the obtained f; values and Z-scores
were highly correlated to those calculated one by one directly by ADMIXTOOLS. Fsr was
calculated using EIGENSOFT version 6.0.1 (45).

Effects of variant ascertainment on population genetic analyses

The ideal class of variants for analyses that rely on genetic drift are those that were
polymorphic in the shared ancestral population of the given populations under study. One
approach to approximate this ancestral polymorphism is to ascertain variants in an outgroup.
We ascertained SNPs that are polymorphic among three high-coverage archaic human
genomes: the Altai Neanderthal, the Vindija Neanderthal and the Denisovan genome. Within
the accessibility mask, this resulted in 2,809,464 variants. Out of these, 1,350,097 were also
polymorphic within the set of 929 modern humans. Out of these, 931,790 (69.0%) were
polymorphic also among Africans only (101 individuals, excluding three BantuKenya
individuals displaying some non-African ancestry components in ADMIXTURE runs),
demonstrating that the presence of these variants in present-day modern human populations is
to a large extent explained by them being present in the shared ancestral population of
modern and archaic humans, and only to a smaller extent a consequence of archaic admixture
into non-Africans.
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We compared results of various population genetic analyses obtained on all the discovered
variants and the above outgroup ascertained set to sets of variants present on commonly used
genotyping arrays: the Illumina 650K (or “Li 2008”) array (&), the Humans Origins array (/0)
and the Illumina Multi-Ethnic Global Array (“MEGA”). We lifted over the site lists of these
arrays to GRCh38 using the NCBI Remap tool. While most of the samples in the HGDP-
CEPH panel have been typed on the former two arrays, rather than using those datasets
directly we extracted the genotype calls made from our whole-genome sequencing data on
the sites present on the arrays, such that genotypes at any given site are held constant and
only the sites used differ. We found:

- fystatistics calculated using array sites are highly correlated to those calculated using
all variants or outgroup ascertained variants, overall. However, some statistics,
especially those involving African populations, deviate in the array sites as a result of
ascertainment bias (Fig. 1C, fig. S4A). The overall magnitude of the f;-statistics
differs systematically between array sites and all sites, but this just reflects the overall
larger number of variants included in the latter, many of which will not be
polymorphic among the set of four populations used in a given statistic and therefore
just contributes to smaller allele frequency differences on average.

- Estimates of individual ancestry components using ADMIXTURE (46) are cleaner
when using outgroup ascertained sites, with less “leaking” of a given regional
ancestry component into individuals outside that region (fig. S4B). For example,
running ADMIXTURE on k=5 using the Li 2008 sites, individuals from Central and
South Asian populations are assigned 5-10% of the Oceanian component, but this is
substantially reduced with outgroup ascertained sites. Similarly, it reduces the fraction
of Native American component in Europeans.

- Fgris generally slightly overestimated when using array sites, especially so when
comparing African to non-African populations (fig. S4C). The Pearson correlations
between the Fsr values estimated using whole-genome sequencing data (excluding
singletons) and those estimated using different sets of ascertained sites were, for the
full set of FST values: Yarchaic-ascertained — 099976: FLi 2008 = 0997263 YHuman Origins =
0.99726, ryecs= 0.99923. When restricting to Fst values between one African and
one non-African populations, the correlations were: 7y chaic-ascertained = 0.99883, 11 2008 =
0.99492, tuman origins = 0.99730, ryeca= 0.99692.

Region specific variants

We studied the number and frequency distributions of variant alleles that are private to a
particular region of the world, meaning alleles that have counts of zero across all individuals
outside the given region. For these analyses, we did not restrict only to variants falling within
the accessibility mask, with the rationale that technical errors are unlikely to result in
genotype distributions that correlate perfectly with geographical labels. To reduce the effects
of recent admixture between regions, we excluded individuals displaying evidence of such
admixture in model-based clustering analyses. We ran ADMIXTURE (46), on 1,350,097 bi-
allelic SNPs ascertained as polymorphic among three high-coverage archaic human genomes,
with five ancestry components. The components obtained corresponded well to five
continental-level ancestries: sub-Saharan African, West Eurasian, East Eurasian, Native
American and Oceanian. We used the estimated per-individual ancestry proportions together
with the population and region level metadata to define which individuals should be included
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when counting variants private to a given region (the “ingroup’) and which individuals
should be used to ascertain the allele count of zero (the “outgroup”) (table S4). Our rationale
when defining these criteria was that, if we are looking for variants that are found in region A
but not region B, it is more important to exclude individuals from B with recent admixture
from A than vice versa — the inclusion of the former might cause otherwise private A variants
to be observed in B individuals and therefore not be identified as private, while the inclusion
of the latter will only lead to underestimation of the allele frequencies of private variants in
A. We calculated 95% Poisson confidence intervals around the private variant counts using
the R function poisson.test. In addition to the cumulative displays, fig. SSA displays the
counts of region-specific SNPS in a non-cumulative fashion.

When analysing CNVs, we set any individual CNV genotypes with GQ < 20 to missing and
excluded variants with >15% missingness across individuals (calculated in the VCF after
filtering but before merging of adjacent variants). To further conservatively avoid
overcounting single CNVs that have been called as multiple adjacent entries, we
subsequently merged variants with similar allele frequencies and the same copy number lying
within 25 kb of each other and only report the variant with the lowest genotype missingness.
If merged variants have the same missingness but slightly different allele frequencies, we
calculated and report the average frequency.

To assess whether the high number of high-frequency private Oceanian CNVs could be
expected by sampling noise alone or representing an enrichment indicative of positive
selection, we randomly sampled 123 private Oceanian SNPs (matching the number of private
Oceanian CNVs, with minimum allele count > 2) 1000 times and compared the frequency
distributions in these random samples to the observed CNV distribution. We observed 12
sample sets with a variant having an equal or higher frequency than the single most frequent
CNV (at a frequency of 82.14%). However, among these 12 sets, 10 sets had only one variant
at >50% frequency and two sets had two variants at >50%, whereas in the observed CNV
distribution we find four variants at >50% frequency. The observed CNV distribution is thus
highly unlikely to be the result of sampling noise (fig. S5B).

MSMC2 split time analyses

Pairwise population separation histories were studied using the MSMC?2 software (22, 29).
Input files were prepared from genotypes on all called sites, including non-variant sites, and
with haplotype phase obtained from the 10x Genomics Chromium experiments we had
performed on two individuals each from 13 populations. MSMC2 v2.0.2 was run on eight
haplotypes (four from each of the two populations) with the “--skipAmbiguous” argument to
skip unphased segments of the genome. Results were scaled to real time by applying a
mutation rate of 1.25x10™ per site per generation and a generation time of 29 years.

Clean split scenarios were simulated using scrm (59) version 1.7.2, using a mutation rate of
1.25x10°® per site per generation, a generation time of 29 years, a recombination rate of
1.12x10°® per site per generation, an initial N, of 20,000, a doubling of N, between 300 and
1000 kya and simulating 14 chromosomes each of size 150 Mbp (for a total genome size of
2.1 Gbp, similar to the size of the empirical genomes restricted to the accessibility mask). The
average heterozygosity of the resulting sequences was 0.986 per kbp, similar to human
genomes of African ancestry. The sequences were analysed with MSMC?2 as above, except
the --fixedRecombination parameter was applied (running without this resulted in non-
monotonic curves for many simulated histories).
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We performed additional MSMC?2 runs to test if the deep structure observed in our empirical
results, i.e. that the cross-coalescence curves remain below 1 even several hundreds of
thousands of years ago, could be caused by batch effects associated with sequencing and
processing the two haploid genomes from a diploid human sample together. Any process that
could cause the genotypes of these two genomes to appear artificially similar, from somatic
or cell-line loss of heterozygosity events to under-calling of heterozygous genotypes during
data processing, could cause the time to coalescence between these two genomes to appear
lower than that to genomes from another individual. We ran MSMC?2 on four haplotypes, but
in each of the two populations selecting one haplotype from two different individuals, using
the “-I” command line syntax of MSMC2 v2.1.1 on input files prepared with eight
haplotypes, e.g. “-10,2”, “-I1 4,6” and “0-4,0-6,2-4,2-6” for the within first population, within
second population and between population runs, respectively. We thus use four haplotypes
sequenced in four different individuals, and should avoid any batch effects of the type
described above. The curves obtained from these runs in many cases tend towards slightly
higher relative cross-coalescence values in deep time periods then when using haplotypes
sequenced in the same individual, and more so when involving two non-African populations,
but they still display largely the same behaviour (fig. S7). While it’s possible that the
magnitude of the deep structure exhibited in our results could thus be slightly exaggerated by
technical artefacts of this nature, they are unlikely to be responsible for the whole effect.

Application of MSMC?2 to archaic genomes

We also ran MSMC?2 on pairs of modern human and archaic populations. We used the high-
coverage Altai Neanderthal, Vindija Neanderthal and Denisovan genomes, left all
heterozygous genotypes in these as unphased, and ran MSMC?2 as above except using only
two haplotypes per population (we also performed runs without the “—skipAmbiguous”
argument but found this made little difference to the results). While the method relies on
phased genotypes for the between population coalescence rate estimation, the low
heterozygosity of the archaic genomes means that many segments of these genomes will be
homozygous and thus by necessity phased, which might be the reason we obtain seemingly
sensible results.

We also performed simulation experiments to validate the robustness of running MSMC2
with one archaic genome lacking haplotype phase information. We used the basic parameters
described above for the clean split simulations, and used scrm to simulate a history
approximately mirroring the divergence and admixture between modern humans and
Neanderthals: a divergence between two populations at 500 kya, followed (forward in time)
by a ten-fold reduction in effective size of the second population at 400 kya, then followed by
2% gene flow from the second, low-diversity population into the first population at 50 kya.
We then stripped the haplotype phase from the genome sampled from the second population
and ran MSMC?2. The results accurately recapitulate the simulated history, both the initial
divergence and the later gene flow peak, and the stripping of the haplotype phase from the
genome sampled from the low-diversity population does not substantially affect the results
(fig. S9A).

We plotted the results naively as above, but also made plots where we attempted to correct
for the fact that the archaic genomes are from ancient remains that stopped accumulating
mutations at their time of death several tens of thousands of years ago. MSMC2 reports the
within and the between population coalescence rates separately, and we could thus adjust
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these as a function of the sample age before calculating the relative cross-coalescence rates.
We shifted back the within population coalescence rates by adding a new time segment
between 0 and the sample age with a rate of 0 and then adding the sample age to all existing
time segments. We similarly shifted back the between populations coalescence rates by half
the age of the sample age. We used sample ages of 122,000 years for the Altai Neanderthal,
52,000 years for the Vindija Neanderthal and 72,000 years for the Denisovan genome (20).
Overall, we found that these sample age adjustments did not have substantial effects on the
results, especially not the timing of the separation between modern and archaic humans on
the order of 500 kya. They did however shift backwards in time the archaic admixture signal
in non-African genomes such that it peaks around 80-120 kya, rather than 40-80 kya, when
using the Vindija Neanderthal genome — this might actually more accurately reflect the
timing of the event, as the introgressing Neanderthal population has some level of divergence
from the Vindija individual (20) such that the coalescence events with the introgressed
haplotypes will be older. The curves obtained when using the Altai Neanderthal are shifted
backwards in time relative to when using the Vindija Neanderthal, reflecting how the former
is further diverged from the introgressing source.

We observe the MSMC2 Neanderthal gene flow signal in all non-African genomes and to a
much-reduced degree in Yoruba. The most likely explanation for these results is non-African
gene flow carrying Neanderthal ancestry into West Africa (41). The other African
populations do not display the same behaviour, with the tiny deviations from zero relative
cross-coalescence rate in recent time periods, especially so when shifting back rates by
sample age (including when using the Denisovan genome), likely not being distinguishable
from technical noise. We do not observe any clear recent gene flow signal when running the
Denisovan genome against African, Eurasian or Native American genomes (a tiny increase in
the Yakut is difficult to distinguish from technical noise). However, when running Denisovan
against Oceanian genomes (PapuanHighlands and PapuanSepik) a subtle upwards shift in the
curve is visible roughly in the time span between 140 and 400 kya (moving back by ~40 kya
when shifting rates by the Denisovan sample age). This very likely reflects the Denisovan
gene flow in these populations, with the large backwards shift in time of the signal reflecting
how the sequenced Denisovan from the Altai mountains is highly diverged from the
population that contributed to Oceanians (/6), such that the coalescence events with the
introgressed haplotypes in Oceanians are quite old.

The Neanderthal gene flow signal is observed in both of the analysed Yoruba individuals,
which provides some reassurance that it is a genuine signal. To further evaluate the
robustness of the signal, we generated 50 separate block bootstrap replicate datasets for the
Yoruba versus Vindija Neanderthal case by sampling 5 Mb chunks from across the genome,
and ran MSMC?2 on each of these. The Neanderthal gene flow signal is consistently observed
across the bootstrap replicates, demonstrating that is it for example very unlikely to be driven
by some technical artefact in a small subset of the genome (fig. S9B).

The application of MSMC2 to archaic genomes thus provides an additional line of evidence
for the known archaic admixture in non-Africans, as well as for small amounts of
Neanderthal ancestry in West Africans. We note that a conceptually similar approach,
identifying haplotypes in non-Africans with low absolute divergence to archaic genomes, was
used previously (/6). Importantly, while methods relying on allele frequency correlations,
e.g. D or fy-statistics, produce results that are always relative between pairs of modern human
populations, these MSMC?2 results involve just one modern human genome at the time
without the need for any baseline assumptions. These results thus allow us to say not only
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that most sub-Saharan African groups have less Neanderthal ancestry than non-Africans, but
also that they most likely in an absolute sense have very little Neanderthal ancestry, e.g. in
the case of Mbuti a level that, within the limits of resolution of the method, likely is
compatible with no Neanderthal ancestry at all.

Site frequency spectrum models with momi2

We used the momi2 software (33), which fits models to the site-frequency spectrum, to
estimate pairwise split times between all 1431 combinations of the 54 populations, assuming
a simple clean split without subsequent gene flow and a mutation rate of 1.25x10™® per site
per generation, using ancestral allele information from the Ensembl EPO alignments, and
with confidence intervals obtained through bootstrapping across 500 genomic blocks. While
the clean split assumption will be unrealistic in many cases, as evidenced by our MSMC2
results, the overall correlation between these momi2 split time estimates and the MSMC2
midpoint estimates is quite high (r = 0.93), suggesting the former will provide a decent
approximation of the latter without requiring phased haplotypes. However, we also observed
that the momi2 estimates are affected by the sample size of a population, and that they clearly
greatly underestimated split times involving Native American populations (for example,
some Native American against East Asian split estimates at just a few thousand years),
perhaps as an artefact of the low recent effective size of these populations. We therefore do
not place much emphasis on any particular single estimates. More elaborate models
incorporating multiple populations, post-split gene flow and archaic admixture in the history
of non-African populations have been shown to provide more accurate split time estimates
(33).

Effective population size histories

We used sme++ v1.12.1 (24) to estimate effective population size histories for each of the 54
populations separately. Input files were prepared from genotypes on all called sites, masking
out indel alleles and any third or further minor alleles at multi-allelic sites by setting the
genotype of any individual carrying such alleles to missing. In addition to sites falling outside
the accessibility mask, sites not present in the input VCFs were masked out from the
analyses. smc++ requires one individual in the run to be specified as the “distinguished”
individual, forming the basis of the coalescence time element of the inference, with the
remaining individuals only contributing allele frequency information. For each population,
we established a ranking for which individuals to use the distinguished individual, firstly
prioritizing individuals not listed as ancestry outliers relative to their population by (10),
secondly prioritizing Sanger PCR-free, then Sanger PCR, then SGDP PCR-free and then
SGDP PCR-free libraries, and thirdly prioritizing higher sequencing coverage.

We ran smc++ assuming a mutation rate of 1.25x10™ per site per generation, inferring
effective population size up until 34 generations (approximately 1000 years assuming a
generation time of 29 years) ago and otherwise default settings. For each run we prepared six
alternative input files with different individuals as the distinguished individual and then gave
all of these as input, resulting in composite likelihood results. To evaluate the variability of
the inferred effective population size curves, we also generated 50 separate block bootstrap
replicate datasets for each population, in each case by sampling 5 Mb chunks from across the
genome, and ran the inference on each of these (fig. S10A).

16



Some populations display substantial decreases in inferred effective population size in the
last ~5000 years, but we suspect that in many cases this reflects very recent endogamy or
bottlenecks, the effects of which are being spread out over a larger time interval by the
inference. We also noticed that under some parameter settings, in particular when decreasing
the strength of the regularization (allowing more flexible curves to be fit, but also with a
greater risk of overfitting) or when stopping the inference at 172 instead of 34 generations,
Native American groups are inferred to have experienced dramatic growth approximately in
the period between 20 and 10 kya. This is not observed when running on the parameter
settings above, but we speculate that this could be a real signal which is counteracted in the
inference by the strong bottlenecks experienced in the very recent time by the analysed
Native American groups. Rapid population growth in this time period, coinciding with the
initial peopling of the American continents, would be consistent with observations from the
mitochondrial and Y-chromosomal phylogenies, which both display dramatic star-like
behaviour starting around 15 kya indicative of rapid population expansion at this time. While
the large degree of variability in the inferred curves between SMC++ parameter settings
means we cannot be highly confident that the inferred growth reflects real growth rather than
an artefact, we do not observe the same behaviour in other populations under the same
settings (fig. S10B,C), suggesting that at least the phenomenon is a function of Native
American genomes specifically rather than simply inherent to the parameter settings
themselves.

For the 13 populations for which we had physically phased genomes, we also inferred
effective population sizes histories using MSMC2. We ran MSMC2 on the two diploid
genomes (four haplotypes) from each of these populations with the “--skipAmbiguous”
argument to skip unphased segments of the genome. The MSMC?2 results obtained on these
physically phased genomes were largely concordant with the SMC++ results (fig. S11),
confirming broad observations including recent declines in the African hunter-gatherer
groups Mbuti, Biaka and San.

Y chromosome analyses

The haploid genotype calls for 603 males (here excluding the Meyer libraries which were of
lower quality) across 10.3 Mb of accessible regions on the Y chromosome (60), lifted over to
GRCh38 using the UCSC liftOver tool, were extracted using bedtools v2.22.0 (67). Within
these regions, sites were filtered out if they contained indels, had missing genotype calls in
more than 5% of the samples, had genotype qualities below 30 in more than 5% of the
samples or had coverage above twice or below a third of the sample mean for more than 5%
of the samples. This left a final set of 52,032 variant and 10,016,322 invariant sites.

The haplogroup of each sample was predicted using the yHaplo software
(https://github.com/23andMe/yhaplo) after substituting the marker coordinates in the relevant
input files to correspond to the GRCh38 assembly. An initial maximum likelihood
phylogenetic tree was constructed using RAXML (v8.2.10) (62) with the GTRCAT
substitution model with the set of 52,032 variant sites and then used as a starting tree for
dating with BEAST v1.7.2 (63, 64). Markov chain Monte Carlo samples were based on
11,000,000 generations, logging every 1,000 generations. The first 10% of generations were
discarded as burn-in. Eight independent runs were combined using LogCombiner. A
constant-sized coalescent tree prior, the HKY substitution model, accounting for site
heterogeneity (gamma) and a strict clock with a substitution rate of 0.76x10” (95%
confidence interval: 0.67x10” to 0.86x10”) single nucleotide mutations per bp per year (65)
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was used. A prior with a normal distribution based on the 95% confidence interval of the
substitution rate was applied. Only the variant sites were used, but the number of invariant
sites was defined in the BEAST xml file. A summary tree was produced using TreeAnnotator
v1.8.1. The final tree (fig. S12, fig. S13) was visualised using the FigTree software
(http://tree.bio.ed.ac.uk/software/figtree/).

Global estimates of archaic ancestry proportions

Genotypes for the high-coverage Vindija Neanderthal (20), Altai Neanderthal (/6) and
Denisovan (/) individuals on the GRCh37 reference assembly, along with corresponding

filter files, were obtained from ftp.eva.mpg.de/neandertal/. The genomic coordinates were
lifted over to GRCh38 using CrossMap v0.2.5 (66).

To estimate global proportions of archaic ancestry, we constructed a VCF which contained
genotypes for the high-coverage Vindija Neanderthal, Altai Neanderthal and Denisovan
genomes not just at sites that are polymorphic among modern human genomes, but also
including sites that are monomorphic among modern humans but polymorphic among the
entire set of modern and these three archaic genomes. We used these files, restricted to the
accessibility mask, to estimate:

The proportion of Neanderthal ancestry in Eurasians: We used an f;-ratio, assuming a
baseline of no Neanderthal ancestry in Mbuti, calculated using popstats (67), with the
“--informative” option to include only variants polymorphic on both sides of the f;-
statistic:

fo(Chimpanzee, Altai Neanderthal; X, Mbuti)

fi(Chimpanzee, Altai Neanderthal; Vindija Neanderthal, Mbuti)

The statistic gives mean estimates of 1.18% for Middle Eastern, 2.09% for Central &
South Asian, 2.14% for European, 2.26% for American and 2.24% for East Asian
populations. This statistic will not provide accurate estimates for Oceanian
populations because of their high Denisovan ancestry. The highest population
estimate is for the Chinese Xibo population at 2.41% (95% CI: 2.12 —2.70%). Within
Africa, the estimates are 0.048% (95% CI: -0.061 — 0.16%) for Biaka, 0.13% (95%
CI: -0.025 — 0.28%) for San, 0.16% (95% CI: 0.031 — 0.29%) for Mandenka, 0.16%
(95% CI: 0.035 — 0.29%) for BantuKenya, 0.16% (95% CI: 0.035 — 0.29%)) for
BantuSouthAfrica and 0.18% (95% CI: 0.05 - 0.30%) for Yoruba.

The proportion of Denisovan ancestry in Oceanians, in two different ways:

1) Using an f-ratio, assuming a similar level of Neanderthal ancestry in
PapuanHighlands as in Han (36), calculated using popstats with the “--
informative” option to include only variants polymorphic on both sides of the
statistic:

fa(Mbuti,Vindija Neanderthal; Han, PapuanHighlands)
fo(Mbuti,Vindija Neanderthal; Han, Denisovan)

This gave an estimate of 2.86% (95% CI: 2.08 - 3.64%).

2) Using the gpAdm method (68) in ADMIXTOOLS version 5.0 (/0). A model with
PapuanHighlands as target, Karitiana and Denisovan as sources, and Yoruba,
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Altai Neanderthal, Chimpanzee, Vindija Neanderthal, Mbuti and Biaka as
outgroups gives an estimate of 2.70% (95% CI: 2.11% - 3.29%), with a model fit
p-value of 0.1892. The rationale behind this approach is to simply model
PapuanHighlands as a two-way mixture between Denisovan and non-African
ancestry, and we here use Karitiana as a representative of the latter. It’s likely that
Karitiana has a small but non-zero amount of Denisovan ancestry, which would
bias the estimate downwards, but given the very low amount of this ancestry the
bias should be very small. Using a West Eurasian population with likely zero
levels of Denisovan ancestry in place of Karitiana in the model would not be ideal
as the lower levels of Neanderthal ancestry in such populations compared to
Oceanians would lead to bias.

If we take the midpoint of these two estimates and conservatively take the largest
confidence intervals, we obtain an ancestry fraction of 2.78% (CI: 2.08 - 3.64)

In summary, these estimates of the proportion of Denisovan ancestry in Oceanians
are largely consistent with previous f-statistics based estimates, but lower than
some of the highest estimates: 4.8% (35), 3.0% (11), 3.5% (69), 3.4% (36), 3.2%
(37). The first of these estimates was made using a low-coverage Denisovan
genome sequence and with lower quality modern data, and is thus likely not very
reliable. A proportion of around or, as suggested by our new estimates here, even
slightly below 3.0%, thus seems probable.

The proportion of Neanderthal ancestry in Oceanians: Due to the high levels of both
Neanderthal and Denisovan ancestry in Oceanians, and the partially shared drift
between these two archaic groups, it is difficult to obtain an unbiased estimate of
Neanderthal ancestry in Oceanians using a simple fs-ratio. To get around this, we tried
to estimate both Denisovan and Neanderthal ancestry jointly using qpAdm. We tried a
model with PapuanHighlands as target, Denisovan, Vindija Neanderthal and Yoruba
as sources and Chimp, Altai Neanderthal, Mbuti and San as outgroups, but this did
not fit the data (p = 4x107°), likely due to the model not accurately representing the
relationships among the African groups and the position of Yoruba as a proxy for
non-African ancestry. An East African population would likely be a better proxy,
however the HGDP dataset does not contain a suitable population. We therefore tried
this analysis on the Simons Genome Diversity Project (3) dataset which contains the
Dinka population. A model with Papuan as target, Dinka, Vindija Neanderthal and
Denisovan as sources and Chimpanzee, Altai Neanderthal, Yoruba, Mende, Biaka and
Mbuti as outgroups fits the data (p = 0.061) and gives estimates of 2.0% (95% CI:
1.41 - 2.59%) Neanderthal ancestry and 3.4% (95% CI: 2.42 - 4.38%) Denisovan
ancestry in Papuans. While the exact estimates might still be sensitive to slight model
violations, these results suggest that the level of Neanderthal ancestry in Papuans is
similar to the levels in other non-Africans.

Implementation of a Hidden Markov Model for archaic haplotype detection

A hidden Markov model (HMM) was used to detect introgressed segments from the
Neanderthal and Denisovan populations in modern human genomes. The source code is
available at https://github.com/ryhui/hmmarc. The HMM decodes segments of haploid
genomes (thus requiring phased haplotypes) into two hidden states: unadmixed (0) and
archaic (1). We summarize the observed data by the pattern of allele sharing between a panel

19



of sub-Saharan African genomes, the haploid genome under examination, and a panel of one
or more archaic genomes. Only informative sites where a derived allele is shared between
two groups and absent in the third are considered by the HMM. For convenience, the three
informative combinations are encoded as emission types 1, 2 and 3 (table S5). If a genetic
segment entered the modern human population from an archaic hominin population relatively
recently, it should share more derived variants with the archaic genomes. Since sub-Saharan
Africa is assumed to have no or very small amounts of Neanderthal and Denisovan ancestry,
an allele shared between African and non-African genomes would most likely have arisen on
a lineage within the modern human population. Incomplete lineage sorting in modern
segments might cause some African lineages to coalesce first with the archaic genomes, thus
sharing a derived allele unseen in a non-African genome. Such observations are less likely to
occur in the archaic segments due to the small effective size of the archaic populations.

Transitions are only allowed between informative sites. Because the distance between
informative sites is not constant, the transition probabilities are updated on-the-fly using
genetic distance:
- 1-(1—e %) q (1—e %) a

|- 1-a) 1-(1—-e"%)-(1-a)

Where T;;(i,j € {0,1}) is the probability to transit from state i to state j, t the time since
admixture, d the genetic distance either extrapolated from a genetic map or, in the absence of
such a map, using the physical distance and a constant per-site recombination rate. The
admixture proportion « also defines the initial state probabilities m = (1 — a, «). The full
model is specified by ¢, @ and the emission probabilities matrix E.

Model training

Since the HMM is designed to work with a single archaic source at the time, we simulated 20
haploid genomes under the demographic model in (fig. S14) using msprime (70), and
obtained the maximum likelihood estimation (MLE) of model parameters based on the true
underlying state of the genetic segments (table S6). We fixed ¢ at the true value of 2,000 but
noted that varying it between 1,000 and 4,000 while keeping the other parameters unchanged
has little influence on the decoding results. Applying this model to simulated data recovered
90.74% of the true archaic segments, with a false discovery rate of 3.68%.

We also explored the Baum-Welch algorithm and numerical likelihood optimization to train
the HMM, however both training methods sometimes produced a minor state that absorbs
type 2 emissions. It appears difficult to establish an archaic and a modern state from
unsupervised training.

Comparison with published methods

In a scenario where only one archaic source of introgression is concerned, we compared the
performance of the HMM in detecting Neanderthal segments with the S* method (37, 71),
which searches for long haplotypes in linkage disequilibrium unseen in the African panel,
and a method using a conditional random field (CRF) (72), which examines allele sharing,
haplotype divergence and local recombination rate. Since the implementation of neither
method is publicly available, we compared the result of running CRF, S* and the
informative-site-only HMM on the same set of genomes instead. The Neanderthal segments
detected by CRF and S* in individuals from 1000 Genomes Project were downloaded from
the authors' websites. The HMM was then run on chromosome 1 of the 544 individuals that
were included in both studies and the Viterbi sequences were obtained. To be consistent with
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the other two methods, only the high-coverage Altai Neanderthal genome (/6) was used in
the archaic panel. The highest agreement is between HMM and S* (fig. S15A), where the
shared regions constitute 72.84% of the total material recovered by the HMM and 82.43% of
that recovered by S*. It is worth noting that although the S* score itself does not rely on the
archaic genome, the reported segments in (37) have undergone subsequent filtering based on
their match score to the archaic genomes. The other pairwise comparisons between methods
only show around 40% reciprocal overlap. The overlap patterns are consistent across the
seven Eurasian populations analyzed.

Under a different metric, a segment detected by one method is treated as a match if at least
half of it is also reported by another method. Although the HMM does not preferentially
detect or miss segments of particular lengths compared to the two other methods, segments
detected by the HMM but not by the other methods tend to be shorter (fig. S15B). Segments
shorter than 50 kB constitute 91.22% of those not detected by S* and 82.37% of those not
detected by CRF. Most segments longer than 50 kB are reported by all three methods.

Distinguishing sources of archaic segments
Since Neanderthal and Denisovan segments coexist in many non-African genomes, we also
tested various methods to distinguish between them. We launched another set of simulations
following the demographic model in fig. S16, where a non-African population received 3%
gene flow from the Neanderthal population, followed by 1% from the Denisovan population.
The two-state HMM can be extended to include a Neanderthal state, a Denisovan state and a
modern state, but this model showed very high false discovery rate (i.e. mislabeling
unadmixed segments as archaic) on simulated data. Instead, we ran the two-state HMM twice
with the same model parameters, first with two Neanderthal genomes in the archaic panel,
then with the Denisovan genome. The posterior probabilities of the archaic state at each
informative site from both runs, pyand pp, were used to assign them into the following
categories:

e Ifpy<0.5and pp<0.5, tagged as “modern”;

o Ifpy>ppand pp< 0.8, tagged as “Neanderthal”;

o Ifpp>pyand py<0.8, tagged as “Denisovan”;

o Ifpy>0.8 and pp> 0.8, tagged as “ambiguous archaic”.
If a site only showed up as informative regarding the Neanderthal run or the Denisova run,
the missing pp or pywas extrapolated linearly by physical distance from adjacent sites. The
Neanderthal, Denisovan and ambiguous archaic segments were identified by linking
neighbouring sites in the same category.
We found that this approach reduces the false discovery rate in simulations to around 0.05, at
the cost of pooling a large proportion of archaic segments into the ambiguous category. The
probability of labeling true Neanderthal segments as Denisovan is also below 0.05, and even
lower the other way around. The criteria for assigning the categories based on pyand pp can
also be adjusted according to the needs of downstream analyses, reflecting a trade-off
between type 1 and type 2 errors. In analyses involving the haplotypes of Neanderthal and
Denisovan segments, we used a more stringent set of criteria to obtain a “strict” set of archaic
segments:

e Ifpy>0.8 and pp<0.5, tagged as “Neanderthal”;

o Ifpp>0.8and py<0.5, tagged as “Denisovan”.
In simulated data, this reduced the proportion of true Neanderthal segments to 0.016 among
predicted Denisovan segments, and the proportion of true Denisovan segments to 0.0013
among predicted Neanderthal segments.
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Detecting Neanderthal and Denisovan segments in modern populations

The two-state HMM was run twice on the 929 phased HGDP genomes with a genetic map to
obtain the posterior probabilities of being in the Neanderthal and Denisova state at all
informative sites. All 104 genomes from sub-Saharan Africa were included in the African
panel, but when extracting observations, we allowed the archaic allele to reach a maximum
frequency of 0.01 in this panel to allow for small amounts of archaic ancestry within Africa.
Two high-coverage Neanderthal genomes, one from Denisova cave (/6) and the other from
Vindija cave (20), were used in the archaic panel in the Neanderthal run whilst the Altai
Denisovan genome (/) was used in the Denisova run. In addition to the HGDP accessibility
mask, we also included a low complexity regions mask (73). All sites that do not pass the
masks were ignored as non-informative in the HMM runs. We used the ancestral sequences
from Ensembl EPO alignment to determine the ancestral state; and in case of unknown sites
in this panel, assumed the genotype in chimpanzee (Pan_tro 3.0) to be ancestral. Only sites
that are polymorphic in the HGDP dataset were retained after merging. In effect, this leaves
out derived sites shared by all modern human genomes but not the archaics, which are type 2
emissions (table S5) that supports assigning the modern state. However, such sites should be
very rare in the genome, as derived alleles shared by all modern humans will be older than
200k years.

We obtained two sets of archaic segments following the first (hereafter the “basic” set) and
the second (hereafter the “strict” set) criteria described in the previous section. In practice,
the “basic” set assigns less material to the ambiguous category than in simulation studies,
such that the actual distinguishing power is expected to be greater than in the results in the
simulations.

Robustness of HMM to parameter misspecification

To explore the impact of parameter misspecification, we altered the model in table S6 in the
following ways: 1. Halving and doubling m;, the proportion of archaic ancestry; 2. Halving
and doubling t, the time of admixture; 3. Increasing and decreasing each entry in the emission
matrix by 10% (unless the new value exceeds 1), while scaling the other two entries in the
same row proportionally such that each row sums to 1. We compared archaic segments
detected on chromosome 1 using these altered models to the segments obtained using the
original model in 10 randomly-drawn individuals from each geographical region. Table S7
shows the proportion of Neanderthal and Denisovan segments that are still detected following
the “basic” criteria. The concordance is high except when we drastically reduce E; » (the
probability of emitting a variant absent in the African panel and shared with the archaic
genome when the true state is archaic) from 0.9981 to 0.8983, which correspondingly makes
the model over 50 times more permissive to observing variants shared between the African
panel and the archaic genomes, or between the African panel and the genome under study.
Even in this case, the concordance only falls below 0.8 in regions with very low level of
archaic ancestry (notably Denisovan ancestry in Europe and the Middle East).

Geographical distribution of archaic ancestry

Fig. S17A compares the average amount of Neanderthal, Denisovan and ambiguous segments
identified in the HGDP genomes (from the “basic” set) by geographical region, and fig. S17B
shows the mean and standard deviation of the amount of Neanderthal and Denisovan
segments identified in each population. The length of masked regions was excluded in all
plots.
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Very few archaic segments are detected in sub-Saharan African populations, but this is
expected on technical grounds alone as our method conditions on allele frequencies in these
populations. In accordance with previous studies, the amount of Neanderthal ancestry is
higher in East Asia and the Americas than in Europe and the Middle East. The highest
amount of Neanderthal ancestry is found in Oceania, but this is likely an artefact caused by
some misclassified Denisovan segments. No prominent differences are observed between
populations within the same geographic regions (fig. S17B). The intra-population variance is
higher in Middle Eastern populations (especially Mozabite and Bedouin), likely reflecting
recent admixture between sources with different levels of Neanderthal ancestry (e.g. African
and West Eurasian). Denisovan segments are most abundant in Oceania (fig. S17A). They are
also detectable at much lower levels in East Asia, the Americas and Central and South Asia,
but negligible in Europe and the Middle East. Within Oceania, the Bougainville population
has less Denisovan ancestry than the two populations from New Guinea (fig. S17B),
consistent with dilution due to Southeast Asian admixture in the former.

All archaic segments in the “strict” set were pooled by geographical region to obtain maps of
archaic ancestry frequencies along the genome. Fig. S18 depicts the distribution of
Neanderthal and Denisovan segments along chromosome 1 as an example.

The difference between Oceania and other non-African populations appears more
pronounced in the distribution of Denisovan than Neanderthal segments (fig. S18). To
address this more formally, we quantified the length of overlapping genomic regions
throughout the genome covered by at least two archaic segments between pairs of
geographical regions, regardless of the genotypes in the segments (table S8). P(A|B) here
denotes the probability that a genomic region being observed in geographical region 4,
conditioned on it being observed in geographical region B. The geographical structure is
stronger in the genomic distribution of Denisovan segments with less overlapping between
America, East Asia, Central/South Asia and Oceania. Denisovan segments might have been
lost through genetic drift more often or sampled less frequently than Neanderthal segments
because of their low frequency in most populations; however, despite similar amount of
Neanderthal and Denisovan ancestry in Oceania, P(Oceaniajnon-Oceania) is also lower for
Denisovan segments than for Neanderthal regions. This indicates that the local landscapes of
Denisovan ancestry across the genome is less similar between Oceanian and Eurasian
populations than what the Neanderthal landscapes are. Neanderthal ancestry therefore
probably results from a less complicated admixture history than Denisovan ancestry.

Divergence of archaic segments to archaic genomes

All Neanderthal and Denisovan segments from the “strict” set in each genome were
compared with the Altai Neanderthal, Vindija Neanderthal and Denisovan genomes. To
recover archaic-private variants that were not present in files produced by merging variants-
only modern VCFs with all-sites archaic VCFs, we assumed that all modern sites passing the
strict mask but not present in the VCEF files carried the reference allele; if these sites also pass
the respective archaic mask and appear in the archaic all-sites files with alternative alleles,
they also contribute to the counts of differences.

The overall patterns of divergence to the Neanderthal genomes are almost identical across all
six geographical regions (fig. S19A), while the patterns of divergence to the Denisovan
genomes follow visibly different shapes in East Asia and Oceania: the points in Oceania form
a well-defined single cluster; in East Asia, the pattern appears more noisy, with additional
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segments displaying low divergence to the Altai Denisovan genome (divergence less than
~0.0001) that are absent from the Oceanian populations. This component is also potentially
visible in America and Central/South Asia. We quantified the similarity in archaic divergence
distributions between pairs of regions using the statistic D from the Kolmogorov-Smirnov
test, after downsampling Neanderthal and Denisovan segments in each geographical region to
match the minimum number (1980), to avoid any effects arising from unequal total amounts
of segments. These tests confirm that Oceanian populations are less similar to East Asian and
American populations in the divergence of Denisovan segments to the Altai Denisovan
genome..:

DAmericaiEastAsia =0.069

DAmericaiOceania =0.152

DEastAsiaﬁOceania =0.180
... than in the divergence of Neanderthal segments to the Vindija Neanderthal genome:

DAmericaiEastAsia =0.032

DAmericaiOceania =0.027

DEastAsiaﬁOceania =0.032

Thus in pairwise comparisons between East Asians, Americans and Oceanians, distributions
of Neanderthal segment divergence from the Vindija Neanderthal are similar in all three
cases, whereas distributions of Denisovan segment divergence from the Altai Denisovan
show much more similarity between East Asia and America than between either population
and Oceania. This strongly suggests a distinct mix of introgressed ancestry in Oceanian
Denisovan segments, but not Neanderthal segments.

These results corroborate the finding from (39) of an additional pulse of Denisovan gene flow
into East Asia. However, it is also worth noting that similarity in relation to known archaic
genomes does not guarantee that the source is the same, since different source populations
might show identical relationships to a given archaic individual. Based on evidence from
nucleotide diversity and haplotype networks described below, we find it plausible that at least
some of the Denisovan ancestry in East Asian (maybe also other Eurasian and American)
populations results from an admixture event separate from that in Oceanian populations. The
structure in the East Asian patterns of Denisovan divergence (fig. S19B) might be due to
partially overlapping distributions of divergence from the two components of admixture, or
might possibly reflect an even more complicated history of admixture from several source
populations at various locations and times.

Nucleotide diversity within archaic segments

Within one population, the expected number of nucleotide differences per site between two
randomly drawn haplotypes is commonly known as nucleotide diversity (7). When
comparing two populations, the same expected value between sequences randomly drawn
from two populations (excluding all comparisons within the same population) is commonly
known as absolute divergence (Dyy, also referred to as zyy, 7p or dxyin the literature) (74).
Based on the “strict” set of result, three sets of Dyybetween all pairs of populations were
obtained: values calculated from only the Neanderthal segments in the genomes, from only
the Denisovan segments in the genomes, and from only the unadmixed (also referred to as
“modern” hereafter) segments of the genomes.

In this context, a “haplotype” refers to the collection of all Neanderthal (or Denisovan or
modern) segments found in the same haploid genome. Since introgressed segments typically
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span different genomic regions in different individuals, it is only meaningful to compare
nucleotide differences in the overlapping regions of two haplotypes (fig. S20). To limit
computational costs when calculating Dyyin Neanderthal segments, if the sample size of a
population exceeds 10 individuals, only 20 haplotypes are randomly drawn for pairwise
comparison with a maximum of 20 haplotypes from the other population (we found repeated
draws produced very similar results); this cap was not applied to Denisovan segments, which
are more scarce outside Oceania.

Neanderthal vs. unadmixed regions

The absolute divergence in Neanderthal regions (Dyxy.y) and in unadmixed regions (Dxy -u)
are colour-coded onto the upper-right and lower-left triangles, respectively, of a matrix in a
heatmap (Fig. 6A). All Dy .y and Dyy_y values were normalised such that variation within
each is displayed using the same colour scale. Neighbour-joining trees were built using Dyy
as distances (fig. S21). If there was a separate pulse of archaic admixture into some
population(s), the recipient populations is expected to appear as an outgroup in the tree
reconstructed from archaic segments. If this pulse was much more recent than the shared
pulse elsewhere, the length of the tip branches would also appear shorter. The populations in
Fig. 6A are ordered according to the neighbour-joining tree built with Dyy ), values using San
as outgroup (fig. S21A). The heatmap is generally symmetrical: the pattern in Neanderthal
segments largely mirrors that in unadmixed segments, forming major clusters separating
Oceanian, American, East Asian and European-Central/South Asian populations. This pattern
is also reflected in the unrooted neighbour-joining tree built from Dyy .y (fig. S21B).

The symmetry is broken on finer scales. Dyy_y between the North African Mozabite and
European/Middle Eastern populations appears lower than that between some Central/South
Asian populations and the latter; in fact, it is almost as low as comparisons within Europe.
But in terms of Dyy s all Central/South Asian populations are closer to European/Middle
Eastern ones than to Mozabite. Most likely this is because the sub-Saharan African ancestry
in Mozabite increases Dyy .y to Europe/Middle East, but the Neanderthal ancestry in
Mozabite remains what was received from the same source as Europe/Middle East. The
values in the cluster in the lower right corner, including populations from Europe, the Middle
East and Central/South Asia (excluding three with high genetic affinity to East Asia), were
normalized again excluding other populations (fig. S21D). Now a European cluster can be
distinguished, yet the relationships involving the Middle East and Central & South Asia are
not well-defined. A history involving complex admixtures among the ancestors of these
various groups, especially if including sources with no or very low levels of Neanderthal
ancestry (including sub-Saharan Africans and the proposed basal Eurasian lineage (38, 75)),
could have contributed to these patterns.

Denisovan vs. unadmixed regions

Fig. 6B shows the normalised absolute divergence in Denisovan segments (Dxy.p) and
unadmixed regions (Dyy-y). The three Oceanian populations form a sister clade relative to all
East Asian and American populations in unadmixed segments but exhibit very high
divergence to all other populations in Denisovan segments. Their Dyy_p to other non-African
populations is largely homogenous, with only a faint affinity to East Asian populations. The
Bougainville population displays lower Dyy_p to East Asian populations than the other
Oceanian populations, consistent with some Southeast Asian ancestry in Bougainville.

In Cambodians, the Denisovan segments show increased divergence to other East Asian
populations, but decreased divergence to Oceanian populations in comparison to the
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unadmixed segments. In the tree built from Dyy_p (fig. S21C), the Cambodian branch in also
slightly longer in relation to other East Asian and American populations. Similarly to the
much more prominent behavior of Oceanians, this evidence may suggest the presence of
another component of Denisovan ancestry in Cambodians, with tentative connection to that in
Oceania. One possibility is that this behavior might be driven by some fraction of South
Asian related ancestry in Cambodians, which is likely not found in the other East Asian
populations in the panel.

Correspondingly in the unrooted Dyy p tree (fig. S21C), the branch leading to the Oceanian
populations is so long that rooting by midpoint places the root there. Cambodians then lie
basal to all other Eurasian and American groups. The relatively low levels of Denisovan
ancestry in most parts of the world likely adds noise to these inter-population comparisons.

Neanderthal vs. Denisovan regions

Fig. S22 directly compares intra- and inter-population divergence in Neanderthal and
Denisovan segments, again highlighting the distinct Denisovan ancestry in Oceania: in all
comparisons excluding Oceanians, we again observe a strong correlation between Dyy_p and
Dyxy .y, with the former typically smaller than the latter; in contrast, almost all comparisons
including Oceanian populations show higher Dxy_p than Dyy_x, and deviate from the
otherwise largely linear relationship.

Archaic haplotype networks

We attempted to reconstruct the relationships between all the archaic segments identified in
different individuals in a given region of the genome. Assuming two archaic sequences
descend from the same ancestral sequence at the time of admixture and a mutation rate of
1.25 x 10™® per site per generation, after 2,000 generations one would only expect to observe
one difference per 20 kB. Long regions covered by as many archaic haplotypes as possible
are therefore necessary to achieve a reasonable resolution. We searched for candidate regions
in the genome by the following procedure:

e A multiple intersection of all Neanderthal/Denisovan segments (the “strict” set) on
each chromosome was performed using multilntersectBed from BEDTools (617) to
obtain the total number of archaic haplotypes in a given genomic interval;

e The list of intervals was scanned to add new intervals by merging adjacent ones if a
subset of individuals are present in both;

e A score is also assigned to each interval based on the length (L) and the number of
samples (n):

s=n" L

where w can be tuned to adjust the weight of including more haplotypes over extending the
genomic region; here we fixed it at 1, hence the score equals the total length of archaic
sequences in the interval;

e Intervals shorter than 50 kB or with fewer than 5 occurrences were removed;

e Non-overlapping intervals with the highest scores were collected following a greedy
algorithm: within a minimal candidate set of intervals that do not overlap with any
other, the interval with the highest score is selected and moved to the selected set, and
any other intervals that overlap with it removed from the candidate set; next to be
selected is the interval with the highest score among the remaining ones in the
candidate set, and so on; the process repeats until no interval remains in the candidate
set, and the algorithm moves on to the next set of intervals.

26



We constructed phylogenetic trees and haplotype networks using aligned archaic segments.
Fewer than 4% of the genomic regions that we considered are longer than 0.2 Mb, so
recombination between archaic segments is unlikely. When very few differences exist
between haplotypes, or if recombination does occur between close haplotypes, haplotype
networks have the advantage of allowing alternative links other than imposing a bifurcating
tree with high uncertainty. The median joining network algorithm implemented in the pegas
R package (76) was used to construct haplotype networks. Preliminary analysis also showed
that the time to the most recent common ancestor (tMRCA) estimated from haplotype
network analysis and maximum likelihood trees were highly correlated, although alternative
links in the network tend to reduce tMRCA, especially when the sample size is large.

In each interval, polymorphic sites in all archaic haplotypes were retrieved to form a
sequence alignment for haplotype network analysis. If a singleton allele among the archaic
haplotypes was also present at a frequency above 1% in sub-Saharan African populations, we
considered it was likely the result of phasing error and ignored it.

A total of 4,153 Neanderthal haplotype networks and 727 Denisovan ones were constructed
using identified segments in all non-African genomes. A few examples are shown in fig. S23
and fig. S24. The sizes of the networks range from 3 to over 200 nodes. In some networks,
haplotypes from the same geographical region cluster together (e.g. fig. S23A and fig. S24A),
but in others identical haplotypes can be found across distant geographical regions (e.g. fig.
S23B and fig. S24B). The Neanderthal haplotypes do not clearly tend to fall into separate
clusters, as would be expected if there were multiple admixture events, whilst Denisovan
haplotypes in Oceania are often separated from those in other geographical regions.

Age of archaic haplotype networks

To estimate the number of founding lineages contributing to extant haplotypes, we calculated
the age (p) of each network (equivalent to tMRCA, or the height of a phylogenetic tree). The
haplotype closest to the Vindija Neanderthal genome was assumed to be the root node.
Following (77), p is measured as the average shortest distance from all nodes to the root:

and the variance:

i=1

where 7 is the number of sequences, m the total number of edges, and #n; the number of
samples whose shortest route to the root node passes through the ith edge. p can then be
converted into time in years with the mutation rate and the number of comparable sites in the
genomic region.

Fig. S25A shows the distribution of Neanderthal and Denisovan network ages in years.
Filtering networks based on the length of the genomic region passing the mask, average B
value of the genomic region, the number of missing sites in archaic genomes, the number of
sites skipped (singletons also present in Africa), or the total number of polymorphic sites
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does not alter the shape of the distribution visibly; nor do these values exhibit distinct
distributions between the groups of largest and smallest networks.

The age distribution from the two archaic sources are similar, both reaching the highest
density below 50k years. The median of the Neanderthal and Denisovan haplotype networks
are 55,613 and 55,070 years, respectively. However, in the tail of the distributions we also
observe networks that are hundreds of thousands of years old.

To explore how the number of introgressing lineages qualitatively changes the shape of the
network age distribution and the accuracy of the inferred network age, we also constructed
median joining networks on simulated haplotypes conditioned on the maximum number of
introgressing haplotypes, using the simplified demographic history shown in fig. S25B. The
sample sizes in Eurasia (including East Asia, Central/South Asia, the Middle East, and
Europe), Oceania, and America populations were specified to match the geographical origin
of actual Neanderthal haplotypes observed in each genomic region. The number of
introgressing haplotypes was measured as the number of surviving lineages 2,000 generations
ago, that is (backward in time) at the end of the bottleneck associated with admixture (which
could also be an effect of negative selection). The duration and size of the bottleneck was
arbitrarily selected to efficiently sample genealogies with few introgressing haplotypes, as the
probability of getting a small number of surviving lineages at the time of introgression is too
low without a bottleneck. For each genomic region used to construct a haplotype network,
coalescent trees were repeatedly simulated with a matching sample size, until the number of
introgressing haplotypes became equal or less than the desired maximum. Genetic sequences
of a length matched to the genomic region after filtering were then generated from the tree. In
principle, the choices of bottleneck severity and ancestral Neanderthal size will influence the
distribution of the coalescent trees retained; yet we found that in practice the effects on the
age distribution was minimal.

Three sets of 4,153 genealogies with at most 1, 2 and 4 founding haplotypes respectively
were obtained, to match the 4,153 genomic regions used in Neanderthal haplotype network
analysis. The same algorithm used on the empirical data was used to build haplotype
networks for each simulated alignment dataset and estimate p. The distribution of p
reasonably reflects the true tMRCA (fig. S25C). By allowing alternative links, the age
estimated from haplotype networks can potentially underestimate the age of moderately old
networks, but not the extremely old ones in the right tail of the distribution. The number of
unique haplotypes in simulated and in empirical data align along the identity line with a
strong correlation in all three sets of simulations, validating that the demographic model used
in the simulations is a reasonable approximation of the true history.

Fig. 6C compares the distribution of network ages estimated from empirical data and three
sets of simulated data. The empirical distribution clearly differed from that produced in
simulations with only one founding haplotype, yet its overall shape appears shifted towards
the left in comparison to the curves produced in simulations with a maximum of two and four
haplotypes. The shift could result from negative selection against archaic haplotypes or sub-
population structure not implemented in the simulations. The simulations with a maximum of
two and four haplotypes generated very similar distributions. As few as two founding
haplotypes (i.e one individual) appear sufficient to produce the number of very old haplotype
networks observed. A much larger number of Neanderthal individuals could still have been
involved, contributing a reduced number of distinct haplotypes depending on the genetic
diversity of the Neanderthal population. The combined effects of negative selection, genetic
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drift, dilution etc. could then have further reduced the diversity of the introgressed
Neanderthal material to a very low level.

Number of founding lineages

The estimates of the ages of the haplotype networks reflect the genome-wide average number
of founding archaic haplotypes. Here we estimate the number of founding archaic haplotypes
in each genomic region as the number of surviving lineages in the tree at the time of
admixture.

For each of the 4,135 genomic regions, a maximum likelihood tree was built from the
sequence alignment and rooted by the haplotype closest to a San individual (HGDP00991).
We chose to work with the tree structure rather than network here mainly because it more
easily enables bootstrap analyses. The height at each node was determined by assigning
height 0 to the tip farthest from the root, and positive heights to all other nodes, with the
largest value at the root. Then the tree is truncated at the height corresponding to the expected
number of differences per base pair in the time since admixture - assumed to be 2,000
generations - and the number lineages remaining connected to the root is counted. To gauge
uncertainty, 1,000 non-parametric bootstrap replicates were performed for each genomic
region.

Fig. S26 shows the number of founding haplotypes in 100 randomly sampled genomic
regions, and Fig. 6B shows the distribution of the mean number from all genomic regions.
The estimated number of haplotypes were mostly low: in over 70% of the trees, the value of
two standard deviations below the mean is lower than 2. However, there are also cases where
more than 10 or even 20 lineages existed at the time of introgression. A total of 17 genomic
regions were estimated to have more than 20 founding Neanderthal haplotypes (table S9);
their haplotype networks exhibit complicated structures radiating from one or two core
haplotypes. It could mean that initially around a dozen (or more, depending on their
relatedness) Neanderthal individuals contributed material, but except for very few regions of
the genome, most Neanderthal lineages were subsequently lost through genetic drift and
negative selection, so that only a handful of them remain among the diversity of Neanderthal
segments in present-day modern humans.

Geographical separation

Deep splits in a haplotype network could reflect multiple sources of archaic gene flow. To
measure the divergence between geographic regions, we define two regions as separate in a
network if none of the nodes containing haplotypes from one region has a closest neighbour
containing haplotypes from the other region, and vice versa. Table S10 displays the total
number of haplotype networks analyzed in this way (which need to contain at least two
haplotypes from each region), and the number of networks showing separation between pairs
of geographical regions.

The diversification among modern human populations will have caused some divergence in
the archaic segments even if they descended from the same source of admixture. The
proportion of completely geographically separated Neanderthal haplotype networks is largely
consistent with our understanding of non-African population history. Much fewer Denisovan
haplotype networks are available for comparison, yet there is a deep split between Oceania
and all other non-African regions: networks are completely separated in almost all cases,
most strikingly between Oceania and East Asia, as well as between Oceania and
Central/South Asia. Fisher’s exact test confirms that the distributions of fully separated
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Neanderthal and Denisovan networks are significantly different in these two comparisons
(table S11). Another pair that show a near-significant difference is Central/South Asia and
East Asia, but in this case they are better connected in Denisovan networks than in
Neanderthal networks. Overall, if we take the Neanderthal networks as representative of a
single-source scenario, the strong geographical separation between Oceania and other regions
in the Denisovan haplotype network provides further evidence for different source
populations of Denisovan haplotypes in Oceanian and Eurasian populations.

It is notable that in the only two networks where Denisovan haplotypes in Oceania are not
fully separated from those in Central/South Asia, Oceania and East Asia are also connected.
Out of the five networks where Oceania and East Asia are not separated, three involve
Denisovan haplotypes from Cambodia as a bridge: in two cases the Cambodian haplotype is
the sole connection, in another one a haplotype from Lahu is also involved. One possibility is
that Cambodian ancestry contains a component that is somewhat intermediate between or
similarly related to Oceanian and East Asian ancestries (e.g. South Asian related). But since
this connection to Oceania is not observed in unadmixed regions of the genome (Fig. 6B), it
could also possibly suggest another independent component of Denisovan ancestry in
Cambodians, whose source population is closer to the source in Oceania.
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Fig. S1. Sample specific mapping quality caps offsets the effects of index hopping on
genotype accuracy. (A) The FREEMIX contamination estimate strongly correlates with
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PCR-free libraries. (B) The application of sample specific mapping quality caps as a function

of the FREEMIX estimate decreases the genotype discordance.
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Fig. S2: The effects of cell-line chromosomal copy number alterations. (A) The fraction
of heterozygous genotypes not correctly called in pseudo-diploid datasets constructed from
two male X chromosomes down-sampled to varying degrees corresponding to copy number
alterations of varying levels of severity, relative to a case with perfectly balanced copy
number. Ten replicate experiments were performed for the balanced copy number case, the
results of which are represented by box plots. The experiment was performed at three
different levels of overall coverage; 25x, 30x and 35x. (B) Sequencing coverage of
chromosomes X and Y for all sequenced samples, relative to the genome-wide coverage,
coloured by the self-identified gender of the sample donor. (C) Sequencing coverage in our
generated sequencing data of a chromosome in a sample against the fraction of heterozygous
genotypes on that chromosome in that sample (normalized by chromosome and population)
in a previously published array genotype dataset (8), displayed for two typical chromosomes
as well as chromosomes 9 and 12 which display the largest number of whole-chromosome
copy number alterations.
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Fig. S3: Testing for genotype batch effects between libraries of different sources. (A)
The first two principal components (from analyses using genotypes on sites ascertained as
polymorphic in archaic genomes, calculated using AKT: https://github.com/Illumina/akt)
with sample colours indicating the combination of library source and library type, and
symbol type indicating geographical region. Library source and type does not visibly seem to
affect the clustering of samples. (B) The third and fourth principal components. (C) For each
of the first 50 principal components, sample colour indicates whether their source is Sanger
(blue) or SGDP (red). A subset of Sanger libraries was sampled at random to match the
population composition of the SGDP libraries, and a Wilcoxon rank sum test was performed
to test for differences in the placement along each principal component between the SGDP
and the Sanger libraries. The resulting p-values are displayed under the data for each
component. Only one component, PC16, displays a difference with p < 0.05, though this is
driven by a few outlier samples and is not statistically significant considering the 50 tests
performed.
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Fig. S4. The effects of variant ascertainment on population genetic analyses. (A)
Comparisons of all possible f;-statistics involving the 54 populations calculated using
different sets of ascertained sites, against the values calculated using all discovered variants.
Points are coloured according to the number of African populations included in the statistic.
(B) Estimates of individual ancestry components using ADMIXTURE at k=5, at which the
five components correspond well to five major regional ancestries. Compared to using the Li
2008 array sites, the sites ascertained in archaic genomes leads to cleaner ancestry estimates
with less “leaking” of a given regional ancestry component into individuals outside that
region. (C) Estimates of Fsr for a selection of population pairs, grouped by region, using the
Li 2008 array sites (“1i2008”"), the Human Origin 2012 sites (“ho2012”), the MEGA array
sites (“mega”), all variants discovered in the sequencing data (“all”), all variants excluding
singletons (“all.c2”) and variants ascertained in archaic genomes (“archaics”). Each line
connects the Fsr values for one pair of populations across the different set of sites.
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Fig. SS. Further properties of geographically restricted variants. (A) Non-cumulative
counts of region-specific SNPs. As Fig. 3A, but non-cumulative, displaying the number of
variants in each 2.5% frequency bin. The larger degree of fluctuation between bins for
Oceania reflects the lower sample size for this region. (B) Assessing the statistical
significance of the high number of high-frequency private Oceanian CNVs. The solid line
displays the number of CNVs private to Oceanian populations that have an allele frequency
in those populations equal to or higher than the corresponding value at the horizontal axis.
The dashed lines are the results of 1000 random samples of equal numbers of private
Oceanian SNPs, displaying only the most extreme 12 samples out of these that contained a
variant reaching as high a frequency as the highest-frequency observed CNV.
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Fig. S6. MSMC2 analyses of divergences between African and non-African populations.
Curves were computed using 4 physically phased haplotypes per population. (A) Yoruba
versus non-African populations. (B) Biaka versus non-African populations. (C) Mbuti versus
versus non-African populations. (D) San versus non-African populations. (E) Yoruba versus
eastern non-African populations, comparing the results obtained with physical phasing to
those obtained with statistical phasing. (F) San versus eastern non-African populations,
comparing the results obtained with physical phasing to those obtained with statistical

phasing.
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Fig. S7. Testing diploid batch effects in MSMC2. Curves are displayed that use different
numbers and configurations of haplotypes from each of the two populations. The “four
haplotypes from two individuals” curves are from the standard runs that are also displayed in
Fig. 5 (a total of eight haplotypes in the run across the two populations). The “Two
haplotypes from the same individual” curves use two haplotypes from one individual from
each population (a total of four haplotypes in the run). The “Two haplotypes from different
individuals” curves also use two haplotypes from each population (a total of four haplotypes
in the run), but from two different individuals. For these latter two runs with four haplotypes,
there are two independent replicate curves using different pairs of individuals.
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Fig. S8. Signals of archaic gene flow in MSMC?2 curves. Results of cross-population
MSMC2 runs, zooming in on the signal of Neanderthal genome flow in modern human

genomes (note the highly reduced range of the vertical axis). (A) Archaic genomes against

non-African genomes. (B) Archaic genomes against non-African genomes, attempting to

adjust for the age of the archaic specimens. (C) Archaic genomes against African genomes.
For each African population, curves for two different individuals are displayed in the same

colour. (D) Archaic genomes against African genomes, attempting to adjust for the age of the

archaic specimens.
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Fig. S9. Evaluating the robustness of running MSMC2 on unphased, archaic genomes.
(A) Coalescent simulations were performed to approximately mirror the history of divergence
and admixture between modern humans and Neanderthals, with a divergence at 500 kya,
tenfold reduction in effective size in the second population from 400 kya and admixture from
the second into the first population at 50 kya. The inference was rerun after stripping the
haplotype phase from the genome sampled from the lower-diversity population, but this does
not substantially affect the inferred relative cross-coalescence curve. (B) Block bootstrapping
across the genome was performed to evaluate the robustness of the Neanderthal gene flow
signal in a Yoruban genome. The curves for all 50 bootstrap replicates are plotted together.
The curve for a Sardinian genome is included for comparison purposes.
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Fig. S10. Technical assessments of SMC++ effective population size inferences. (A) For
selected populations, each individual curve displayed is an independent SMC++ run
performed on a bootstrap dataset constructed from blocks across the genome. 50 replicates
per population were analysed. (B) The effects of stopping the inference earlier on selected
populations. Most populations are not affected much by this, but the Native American
(Karitiana) population displays a pronounced period of growth between 10 and 20 kya. (C)
The effects of decreasing the regularization parameter on selected populations. Many
population display clearly artefactual behaviours, but they do not follow the same trajectory
as the Native American population.
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Fig. S11. Comparison of effective population size histories inferred using SMC++ and
MSMC2. The SMC++ runs used all individuals from the given population, across six
alternative choices of the distinguished individual so as to produce composite likelihoods.
The MSMC2 runs used two physically phased genomes (four haplotypes) per population.
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Fig. S12. High-level Y-chromosomal phylogeny. Branch lengths are proportional to the

estimated times between splits. Coloured triangles represent collapsed major clades, with the

width of the triangles proportional to the number of samples in each clade.
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Fig. S13. Detailed Y-chromosomal phylogeny. Branch lengths are proportional to the
estimated times between splits. The phylogeny is divided into two parts for display purposes:
two arrows connect branches in the lower half of the phylogeny, on the left side of the dashed
line, to their continuations in the upper half of the phylogeny, on the right side of the dashed
line. Branch colours correspond to those in fig. S12. The haplogroup call for each individual
is displayed alongside the sample name and population.

43



1.5e4 gensago

2,500 gens ago

2,400 gens ago

2,000 gens ago
Present
sub-Saharan non-African archaic
African (n = 20) (n=2)
(n=200)

Fig. S14. Demographic model underlying simulations with only one source of archaic
gene flow.
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Fig. S15. Comparison of HMM for archaic haplotype detection to other methods. (A)
Amount and overlaps of Neanderthal segments identified on chromosome 1 of 544
individuals from the 1000 Genomes Project. (B) Lengths of Neanderthal segments detected
by the HMM and detected/undetected by other methods.
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Fig. S23. Examples of Neanderthal haplotype networks. Each circle represents a distinct
haplotype, labelled by one sample name and coloured by the geographical origins of the
samples, and the radius is proportional to the number of samples carrying that haplotype. The
number of bars on the edges equals the number of mutations between haplotypes. Small grey
circles labelled "mv" represents median vectors reconstructed in the median joining
algorithm. Dashed lines: alternative links.
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Fig. S24: Examples of Denisovan haplotype networks. Each circle represents a distinct
haplotype, labelled by one sample name and coloured by the geographical origins of the
samples, and the radius is proportional to the number of samples carrying that haplotype. The
number of bars on the edges equals the number of mutations between haplotypes. Small grey
circles labelled "mv" represents median vectors reconstructed in the median joining
algorithm. Dashed lines: alternative links.
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Table S1. Overview of populations included in the dataset. The “Lat.” and “Lon.”

columns indicate the approximate latitude and longitude, respectively, of the geographical
place of origin of the population. The “Total” column indicates the total number of genome
sequences from the given population, and the subsequent columns break that number down

by sequencing source and library type.

Sanger SGDP
PCR- Sanger PCR- SGDP Meyer
Population Region Lat. Lon. Total free PCR free PCR PCR
Adygei Europe 44 39 16 11 3 2 0 0
Balochi Central & South Asia 30.5 66.5 24 19 3 2 0 0
BantuKenya Africa -3 37 11 0 9 2 0 0
BantuSouthAfrica | Africa -25.6 24.25 8 1 3 4 0 0
Basque Europe 43 0 23 21 0 2 0 0
Bedouin Middle East 31 35 46 41 3 2 0 0
Bergamoltalian Europe 46 10 12 10 0 2 0 0
Biaka Africa 4 17 22 3 17 2 0 0
Bougainville Oceania -6 155 11 5 4 2 0 0
Brahui Central & South Asia 30.5 66.5 25 20 3 2 0 0
Burusho Central & South Asia 36.5 74 24 19 3 2 0 0
Cambodian East Asia 12 105 9 4 3 2 0 0
Colombian America 3 -68 7 3 2 2 0 0
Dai East Asia 21 100 9 4 0 3 1 1
Daur East Asia 48.5 124 9 5 3 1 0 0
Druze Middle East 32 35 42 37 3 2 0 0
French Europe 46 2 28 24 0 2 1 1
Han East Asia 32.3 114 33 29 0 2 1 1
Hazara Central & South Asia 33.5 70 19 13 4 2 0 0
Hezhen East Asia 47.5 133.5 9 7 0 2 0 0
Japanese East Asia 37.5 139 27 25 0 2 0 0
Kalash Central & South Asia 36 71.5 22 17 3 2 0 0
Karitiana America -10 -63 12 6 2 2 1 1
Lahu East Asia 22 100 8 6 0 2 0 0
Makrani Central & South Asia 26 64 25 20 3 2 0 0
Mandenka Africa 12 -12 22 5 13 2 1 1
Maya America 19 91 21 17 2 2 0 0
Mbuti Africa 1 29 13 1 7 3 1 1
Miao East Asia 28 109 10 5 3 2 0 0
Mongolian East Asia 48.5 119 9 5 2 2 0 0
Mozabite Middle East 32 3 27 22 3 2 0 0
Naxi East Asia 26 100 8 6 0 2 0 0
NorthernHan East Asia 34.7 107.8 10 10 0 0 0 0
Orcadian Europe 59 -3 15 13 0 2 0 0
Orogen East Asia 50.4 126.5 9 7 0 2 0 0
Palestinian Middle East 32 35 46 40 3 3 0 0
PapuanHighlands Oceania -6.1 145.4 9 4 2 3 0 0
PapuanSepik Oceania -4 143 8 2 5 1 0 0
Pathan Central & South Asia 3.5 70.5 24 19 3 2 0 0
Pima America 29 -108 13 8 3 2 0 0
Russian Europe 61 40 25 23 0 2 0 0
San Africa 21 20 6 1 1 3 1 0
Sardinian Europe 40 9 28 24 0 2 1 1
She East Asia 27 119 10 8 0 2 0 0
Sindhi Central & South Asia 25.5 69 24 19 3 2 0 0
Surui America -11 -62 8 3 3 2 0 0
Tu East Asia 36 101 10 8 0 2 0 0
Tujia East Asia 29 109 9 5 2 2 0 0
Tuscan Europe 43 11 8 6 0 2 0 0
Uygur Central & South Asia 44 81 10 5 3 2 0 0
Xibo East Asia 43.5 81.5 9 4 3 2 0 0
Yakut East Asia 63 129.5 25 20 3 2 0 0
Yi East Asia 28 103 10 8 0 2 0 0
Yoruba Africa 8 5 22 1 17 2 1 1
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Table S2. Details on the results of the 10x Genomics Chromium sequencing
experiments. Metrics were calculated by the 10x Genomics Loupe software.

Linked
Average Reads DNA DNA SNPs
Molecule per fragments fragments > Phase phased

Sample Population Length Molecule Coverage >20Kkb (%) 100kb (%) block N50 (%)
HGDP00460 | Biaka 16299 12 33.0 37.8 2.07 1,524,737 98.9
HGDP00472 | Biaka 8258 6 30.2 17.5 2.79 191,984 97.5
HGDP00562 | Druze 8294 6 24.0 12.8 2.12 119,503 97.0
HGDP00580 | Druze 15756 20 31.1 333 3.47 417,052 98.7
HGDP00774 | Han 12518 7 31.2 25.8 2.02 222,937 97.7
HGDP00819 | Han 22113 15 35.2 55.8 2.00 601,565 98.7
HGDP01013 | Karitiana 30225 22 32.9 69.6 3.14 596,564 98.3
HGDP01019 | Karitiana 7713 4 23.2 11.3 1.91 81,409 95.7
HGDP00450 | Mbuti 14468 10 35.0 33.5 2.03 990,820 98.7
HGDP01081 | Mbuti 12242 9 32.7 24.4 2.70 560,811 98.6
HGDP00549 | PapuanHighlands 8724 5 25.8 14.3 1.78 126,844 96.8
HGDP00551 | PapuanHighlands 14200 15 31.2 26.0 3.21 206,857 97.7
HGDP00542 | PapuanSepik 11604 6 29.1 24.4 1.81 176,726 97.4
HGDP00547 | PapuanSepik 11157 11 29.0 16.9 3.48 139,899 97.0
HGDP00224 | Pathan 7214 5 27.6 10.7 2.41 81,721 96.9
HGDP00228 | Pathan 7589 5 24.6 10.9 1.89 101,084 97.0
HGDP01043 | Pima 27111 28 33.2 64.7 2.72 591,200 98.6
HGDP01056 | Pima 31234 13 26.7 70.8 3.28 636,630 98.9
HGDP01029 | San 11063 11 29.7 17.7 2.52 406,739 98.5
HGDP01032 | San 22654 20 33.7 56.2 2.78 2,941,155 98.9
HGDP00670 | Sardinian 12126 14 32.9 24.4 2.64 292920 98.4
HGDP01067 | Sardinian 33980 37 359 74.2 4.73 1,463,166 98.8
HGDP00946 | Yakut 7376 6 30.4 10.2 2.34 80,637 96.3
HGDP00954 | Yakut 5820 4 23.6 8.94 2.21 40,003 94.9
HGDP00930 | Yoruba 7913 6 30.9 12.0 2.54 129,564 97.7
HGDP00931 | Yoruba 9279 7 32.5 153 2.86 256,356 98.3
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Table S3. Evaluation of statistical phasing accuracy. Switch error rates were measured for
26 individuals against experimentally phased haplotypes obtained using 10x Genomics linked
reads for the same individuals.

Individual Population Region Swjvitcl.l error rate Swjvitch error rate
with singletons without singletons

HGDP00460 | Biaka Africa 0.0140 0.0044
HGDP00472 | Biaka Africa 0.0157 0.0064
HGDP00450 | Mbuti Africa 0.0144 0.0051
HGDP01081 | Mbuti Africa 0.0155 0.0052
HGDP01029 | San Africa 0.0378 0.0131
HGDP01032 | San Africa 0.0374 0.0122
HGDP00930 | Yoruba Africa 0.0092 0.0033
HGDP00931 | Yoruba Africa 0.0097 0.0027
HGDPO01013 | Karitiana America 0.0086 0.0047
HGDP01019 | Karitiana America 0.0066 0.0052
HGDP01043 | Pima America 0.0076 0.0039
HGDP01056 | Pima America 0.0081 0.0052
HGDP00224 | Pathan Central & South Asia 0.0130 0.0043
HGDP00228 | Pathan Central & South Asia 0.0124 0.0040
HGDP00774 | Han East Asia 0.0156 0.0049
HGDP00819 | Han East Asia 0.0167 0.0054
HGDP00946 | Yakut East Asia 0.0061 0.0033
HGDP00954 | Yakut East Asia 0.0088 0.0046
HGDP00670 | Sardinian Europe 0.0107 0.0033
HGDP01067 | Sardinian Europe 0.0115 0.0038
HGDP00562 | Druze Middle East 0.0067 0.0031
HGDP00580 | Druze Middle East 0.0125 0.0038
HGDP00549 | PapuanHighlands | Oceania 0.0237 0.0117
HGDP00551 | PapuanHighlands | Oceania 0.0281 0.0120
HGDP00542 | PapuanSepik Oceania 0.0281 0.0119
HGDP00547 | PapuanSepik Oceania 0.0278 0.0115
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Table S4. Defining regions for analyses of region-specific variants. These were used to
count variants that were present in the “Ingroup” and absent from the “Outgroup”. Labels in
all capital letters denote continental-level region labels, while those in lower case letters
denote populations. The notation “anc(X)” denotes estimates of individual fractions for an
ancestry component X, as estimated using ADMIXTURE at k=5 on SNPs ascertained as

polymorphic in archaic genomes. Numbers in parentheses denote the number of individuals

falling into each set.

Region label

Ingroup

Outgroup

AFRICA

AFRICA (n=104)

IAFRICA & anc(AFRICA) <= 0.01
(n=627)

CENTRAL_AFRICA

Biaka or Mbuti (n=35)

(Biaka or Mbuti) (n=894)

San San (n=6) !(San or BantuSouthAfrica) (n=915)
OCEANIA OCEANIA (n=28) !0CEANIA (n=901)
AMERICA AMERICA & anc(AMERICA) => 0.95 (n=40) !AMERICA (n=868)

CENTRAL_AMERICA

(Pima or Maya) & anc(AMERICA) => 0.95 (n=27)

!(Pima or Maya) (n=895)

SOUTH_AMERICA

(Colombian or Surui or Karitiana) & anc(AMERICA)
=>0.95 (n=27)

!(Colombian or Surui or Karitiana)
(n=902) (n=902)

!EUROPE & !(AMERICA &

EUROPE EUROPE (n=155) anc(WestEurasian) >= 0.01) (n=749)
IEAST ASIA & 'Hazara & 'Uygur &
I(OCEANIA & anc(EastEurasian) >=
EAST _ASIA EAST ASIA (n=223) 0.01) (n=665)

MIDDLE_EAST

MIDDLE EAST (n=161)

IMIDDLE EAST (n=768)

CENTRAL_SOUTH_ASIA

CENTRAL_SOUTH_ASIA & anc(AFRICA) <= 0.05
(n=179)

ICENTRAL_SOUTH_ASIA _ASIA
(n=732)

NON_AFRICA_X

region X as defined elsewhere

AFRICA & anc(AFRICA) >=0.91
(n=101)
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Table S5: Encoding of HMM emission types. A value of “0” in the genotype column
means ancestral allele in all genomes in the panel, while “1” means derived allele in at least

one genome.

Genotype

Emission type

Sub-Saharan African panel

Sample of interest

Archaic panel

1

0

1

1

1

0

0

1

1
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Table S6. HMM parameters estimated from simulations.

Initial state distribution (1) [0.9655 0.0345]
Emission matrix (E) [ 0.1777 0.8208 1.336x1073
1.691x1073 2.015%x107* 0.9981




Table S7: Proportion of archaic segments that are still detected after parameter

changes.
Neanderthal segments Denisovan segments
Parameter Central & | East Middle Central & | East Middle
change America| South Asia | Asia |Europe| East |[Oceania|America| South Asia| Asia |Europe| East |Oceania
m =0.017 | 0.9981 0.9954 0.9956 | 0.9967 | 0.9984 [ 0.9949 | 0.9834 0.9671 0.9896 [ 0.9465 | 0.9476 | 0.9914
m =0.067 | 0.9931 0.9951 0.993210.9975 | 0.9967 [ 0.9939 [ 0.9907 0.9939 0.9971 [ 0.9988 | 0.9917 | 0.9922
t=1000 0.9931 0.9900 0.99300.9912 | 0.9908 [ 0.9881 | 0.9741 0.9219 0.9849 [ 0.9412 | 0.9027 | 0.9851
t=4000 0.9823 0.9884 0.983210.9900 | 0.9868 [ 0.9857 | 0.9882 0.9829 0.9441  0.9916 | 0.9769 | 0.9742
Eoo=0.19541 0.9979 0.9990 0.9981 1 0.9987 | 0.9963 [ 0.9980 | 0.9992 0.9987 0.9995 [ 0.9989 | 1.0000 | 0.9991
Eo1=0.9031] 0.9912 0.9937 0.9911]0.9908 | 0.9936 [ 0.9945 | 0.9495 0.9554 0.9842  0.9667 | 0.8818 | 0.9849
Eo, = 1.46%¢-

3 0.9992 0.9986 0.9980 | 0.9995 | 0.9992 [ 0.9977 | 0.9841 0.9940 0.9942  0.9813 | 0.9970 | 0.9943
Eoo=0.1599 ] 0.9999 0.9991 0.9983 1 0.9998 | 0.9998 [ 0.9972 | 0.9841 0.9928 0.9937 [ 0.9813 | 0.9970 | 0.9935
Eo1=0.7388 1 0.9902 0.9914 0.989310.9919 | 0.9899 [ 0.9884 | 0.9767 0.9669 0.9899 [ 0.9477 | 0.9602 | 0.9760
Eo,=1.202e-

3 0.9996 0.9995 0.999510.9986 | 0.9971 [ 0.9993 [ 0.9967 0.9994 0.9982  1.0000 | 1.0000 | 0.9992
Eio=1.860e-

4 0.9996 0.9999 0.9994 1 0.9991 | 1.0000 [ 0.9998 [ 0.9985 1.0000 0.9981 [ 1.0000 | 0.9979 | 0.9981
Ei 1 =2.216e-

4 1.0000 0.9999 1.0000 | 0.9995 | 0.9972 [ 0.9998 | 1.0000 1.0000 0.9995 [ 1.0000 | 1.0000 | 0.9991
Eio=1.860e-

4 0.9977 0.9990 0.997910.9991 | 0.9989 [ 0.9980 | 0.9992 0.9987 0.9995 [ 0.9989 | 1.0000 | 0.9974
Ei 1 =2.216e-

4 1.0000 1.0000 0.9998 1 0.9999 | 1.0000 [ 1.0000 | 1.0000 1.0000 0.9986  1.0000 | 1.0000 | 0.9972
E»,=0.8983] 0.9358 0.9394 0.9531]0.9428 | 0.9524 | 0.9328 | 0.7981 0.5987 0.8425( 0.5340 | 0.3825 | 0.9116
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Table S8. Intersection of genomic regions covered by at least two archaic segments
between non-African populations. Each value represents the probability of finding a
genomic region in the column label conditioned on finding it in the row label.

Neanderthal

Geographic Total length Conditional probability to also be found in

region (bp) America CS Asia E Asia Europe Middle East Oceania
America 204886844 - 09117 09105 0.7235 0.6155 0.3579
C&S Asia 671828352 0.2780 - 0.6099 0.6458 0.6056 0.2409
E Asia 525811986  0.3548  0.7793 - 0.5513 0.4900 0.3000
Europe 482248609  0.3074 0.8997 0.6011 - 0.7981 0.2399
Middle East 453085016  0.2783  0.8979  0.5687 0.8495 - 0.2261
Oceania 218296694  0.3359  0.7413  0.7226 0.5300 0.4693 -
Denisovan

Geographic Total length Conditional probability to also be found in

region (bp) America CS Asia E Asia Europe Middle East Oceania
America 13333796 - 0.5761  0.8382 0.3202 0.2470 0.2309
C&S Asia 55284712 0.1389 - 0.3665 0.2106 0.1773 0.1980
E Asia 56280344 0.1986  0.3600 - 0.1330 0.0852 0.1878
Europe 14067884 0.3035 0.8276  0.5321 - 0.6230 0.2146
Middle East 13893642 0.2370  0.7054 0.3451 0.6308 - 0.2091
Oceania 190235182  0.0162  0.0575 0.0556 0.0159 0.0153 -
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Table S9. Genomic regions with more than 20 founding Neanderthal haplotypes.

#Unique Rho sd
Chr | Start End #Haplotypes | haplotypes | Rho sd (years) (years)

110937947 | 111009555 220 75 6.059 3.814 223447.6 | 140658.6

6 66848428 66915134 163 68 2.178 0.349 89369.29 | 14324.72
12 | 113841761 | 113933611 150 85 2.94 0.316 80828.57 | 8698.694
5 58495484 58599651 198 99 2.581 0.404 78918.59 | 12363.74
1| 217246438 | 217327394 200 89 2.325 0.593 74454.43 | 18987.48
19 56087294 56138132 228 67 1.110 0.104 70633.69 | 6593.898
10 62941526 62993549 209 52 1.187 0.071 70207.82 | 4177.36
12 | 114080296 | 114130307 204 69 1.304 0.089 66588.11 | 4520.688
2 13827358 13919411 125 73 2.136 0.165 60264.87 | 4664.095
1 | 216557045 | 216647205 218 85 2.147 0.155 58608.5 | 4234.904
1 32911081 32992108 211 68 1.422 0.268 57411.51 | 10832.91
4 28482612 28545486 191 64 1.277 0.080 54515.13 | 3432.053
12 20849814 20933980 151 63 1.709 0.217 52310.35 | 6651.919
9 | 126565708 | 126646783 190 66 1.389 0.162 46613.15 | 5425.191
1| 212466385 | 212548707 196 78 1.301 0.044 43196.05 | 1458.018
9 94515802 94565893 148 42 0.534 0.011 38530.75 | 781.0288
1 33403459 33454985 263 63 0.669 0.025 34713.19 | 1273.397
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Table S10. The number of completely geographically separated haplotype network
between pairs of regions out of the total number of comparable networks.

Neanderthal haplotype networks, separated / total
Central/South Asia East Asia  Europe Middle East Oceania

America 254 /862 184 /878  221/618  245/506 1597263
Central/South Asia - 228 /2064 133/2190 139/2032 261 /690
East Asia - - 338 /1356 429/1162 187 /1714
Europe - - - 81/1932 249 / 448
Middle East - - - - 230/393

Denisovan haplotype networks, separated / total
Central/South Asia East Asia  Europe Middle East Oceania

America 6/36 8/59 4/15 3/9 10/12
Central/South Asia - 4/88 3/42 3/32 37/39
East Asia - - 5/27 5/14 35/40
Europe - - - 2/31 7/9

Middle East - - - - 6/8




Table S11. p-values from Fisher’s exact test on different distributions of
separated/connected networks in Neanderthal vs. Denisovan haplotypes between pairs

of regions.
Central&South Asia East Asia Europe Middle East Oceania
America 0.1320 0.2419 0.5908 0.5067 0.1375
Central&South Asia - 0.0534  0.7398 0.4802 3.075x10™"
East Asia - - 0.6523 1 5.207x10™"
Europe - - - 0.3801 0.3100
Middle East - - - - 0.4793
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