Appendix A Appendix

A.1 Additional 2D Ezxperiments
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Figure Al: This experiment uses curvature in horizontal direction, as well as a fiber velocity gradient along vertical
direction. We are able to reconstruct the curvature of the DTF and some parts of the velocity gradients. The upper
part of the domain has slightly too high fiber velocities, compensated by overall lower fiber velocity across the domain.

This section contains additional 2D experiments that demonstrate the results to be expected from
the method presented in this paper. Fig. is uses simple curvature of fiber, together with a velocity
gradient in vertical direction, while Fig. tries to reflect the joining of fibers in the heart’s apex.
Both examples can be reconstructed well from only boundary data, were the mismatch of activatoin
times is close to zero, but there is some deviation in velocities and fiber direction, due to ill-posedness

of the problem.
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Figure A2: This experiment replicates a projection from below of the heart’s apex: The fibers join in a circular fashion
in the middle of the domain, fiber velocities are constant. Both fiber velocity and direction can be roughly reconstructed.

A.2  Optimal Choice of \

This section will show how we arrive at the optimal choice of A\ in Eq. (@ The used notation is
a combination of the notations in [62] and [27], on which we based our solution to the problem. We
start with our optimization problem, posed in Eq. @:

b4 = )\mln A1+ Ao + (1 — A1 — X2)ops + y/eh Djea, st A €0,1]

1,2

€A = Vy — Z)\ZVZ = V4 — V3 +)\1 (Vg — Vl) +)\2 (V3 — V2)

i=1 w3 w1

=MW1+ Aowy + w3
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where v; € R3 are the vertices (corners) of our Tetrahedron. The wave propagation is calculated
from the triangle formed by (v1,va,Vv3) to the vertex vy.

P4 = Aﬂill)\nz Md1 + Xaga + (1 — A — X2)d3 + y/eX Djea

(27)
= min Ay (¢1 — $3) + A2 (P2 — ¢3) + d3 + [Miw1 + Xowa +wall,
1,12
We state the unconstrained optimality condition as:
Vos— (0%t neAneAD Vi) g
92 = @5+ [egeADiw o8)
0— ((¢2 — ¢3) lleall + ¢1 5 sel D; w1>
(¢2 — 03) lles,al +exDjw2
Subtract 1 from 2:
0= eng <w2 ¢2 — ¢3>
i yp— (20)

0 = ()\1W1 + )\2W2 + Wg)T Dj <W2 — W1 ¢2 _ ¢3)

1 — @3
For shorter notation, we write r; ; = w! Dw,. Since we require D € ST, (see Eq. ), Tij =

75 Ar;; > 0. Assume we want to find one of the lambda-variables, which we call A;, while the other
A will be called \,. We then have:

0=X\ 1,2 — ¢2 - ¢3T1,1 + A2 2,2 — ¢2 — ¢37‘2,1 + 73,0 — b2 qzs37“3 1
1 — @3 1 — @3 1 — @3
(30)
Ay As B
B A;
A= —— — Nj—b
Sy Aj
If either A3 =0 or As =0 are zero, the choice of A1 or Ay (respectively) is arbitrary. The solution for
the variable with A; # 0 is then \; . For the general case A; # 0 and A # 0 we reintroduce
the solution of Ay into the orlglnal mlmmlzatlon problem to find the optimal A;:
Ai = argmln)\( — @3) + A (&) — @3) + b3 + [ Awi + Aew; + wsll,
B A; B A;
Ao e ;= Aw; —— =A== ;
arg min (¢i — ¢3) + ( 7 AJ_)(% ¢3)+¢3+H w+< Y Aj)wJ+W3 .

) A; B Ai B
arg;nln)\ ((bi — ¢z — X] (¢; — ¢3)> - /Tj (5 — ¢3) + Pz + || (Wi - Ajwj> +ws — ijj

Z1 Z2 2,D
31
- (31)



and solve the problem using the optimality condition again

A; T
0= (i — ¢35 — 2L (¢, — S S— Y0
<¢z ®3 Aj ((b] ¢3)) + ||/\Z1 T 22H2 DZ1 ( Z) + ZZ)
" ’ 5
= (¢z — gbg — A72 ((15j — (bg,)) ||>\Z1 =+ z2||2,D + )\leDzl + Z{DZQ
j
We again write for a shorter notation p; ; = z] Dz,
A;
—(9i— s (¢ — ¢3) | [1Az1 + 22y p = Ap11 + P12
j
A 2
<¢i —¢3 — f (¢ — ¢3)> (A°pr1+ 2Xp12 +p22) = A°piy +2Ap1ap12 + 1o (33)
j
t
A2 (pl,lt - pil) + A (2p12t — 2p1,1p1,2) + P22t — P%,z =0
The solution to the quadratic problem is
N —(2p12t — 2p11p12) = \/4 (p1,2t — 171,1]31,2)2 —4 (pl,lt - Pil) (P2,2t - P%,z)
12 =
2 (p1,1t - P%J)
—(t—=pi1)pr2t \/p1,2t2 — 1P} ot — P1p22t? + DT Pt
- (t—p11)p1a
—p12* \/mt (t—p11) (pig — p1,1D2,2)
- P11 (34)
;D1,1;02,2*p§,2
AR VL T
B P11
;01,1;02,2—pr
P2tk T
B P11
with k = /1.

Both solutions need to be checked and the value that minimizes ¢4 in Eq. is taken. Ay is then
easily obtained using Eq. .
Special cases may arise when solving Eq. unconstrained as [Fu et al.| already stated:

If no root exists, or if \y or Ay falls outside the range of [0,1] (that is, the characteristic
direction does not reside within the tetrahedron), we then apply the 2D local solver used in [26]
to the faces A1 24 , A1 34 and Aa 3.4 and select the minimal solution from among the three.

(I1271)
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The referenced 2D solver finds the optimal A for the wave propagation in triangles through solving
the following optimization problem:

¢3 = m}%n >\¢1 —+ (1 — )\)qf)g —+ ¢3 —+ ,/e£3Dje473, S.t.: )\ S [O, 1] (35)
with
€43 = V3 — ()\Vl + (]. - )\)VQ) =V3—V]+ A (V2 - Vl) (36)

The derivation is similar to the presented 3D-case.

A.3  Gradient of )

The optimization is kept as general as possible, by assuming that all variables, except the coor-
dinates of the vertices, are dependant on our exemplary variable y. If we remember the minimizing
sign in Eq. , we can state the solution of \ as:

1 (Y)p2,2(y)—p1,2(y)?
—p1,2(y) + ¢ k(y)y/ 7 4
A= \/( ) p1,1(y)—t(y) st ce{—1,1} (37)
P11y

In order to derive A, we recall the definitions of all former temporary shorthand notations and
their gradients. Additionally, some of the longer terms also receive their shorthand notation:

8Wi
W; = V3 —V; =
3 By
6” i oD
i) = wID@w, P 2B, (38)

3kz(y) _ 3¢>i 5¢3

oy oy 0Oy

ki(y) = ¢i(y) — ¢3(y)

Ai(y) = k1(y)riz(y) — k2(y)ria(y)

8Ai ok (9’/‘1' ok a?"i

By = gy W) W) = G ) — k()5

B =ki(y)rs2(y) — ka(y)r3,1(y)
9B Ok Orsa(y)  Oky 7 Irs,1(y)
95~ 0y r3.2(y) + kl(y)iay By r3.1(y) — ka2(y) ay

Ai(y) (39)

k(y) = ki(y) — k;

(y) (v) A ()" (v)

ok _ ok (5AW - AW () + i) Ok

dy ~ oy A, (y)? TN A () By
t(y) = k(y)*

ot ok

oy~ oy
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om (AW — A) o
oy Aj(y)? !
_ Bly)
z(y) = W3 — ()"
dzy 95 A;(y) - By) S
by T A () e
pii(y) =2z (y)D(y)z;(y)
- zT Z;
it~ S Do) + 2T (1) 2 0) + 2 ()D() 5

Additionally we introduce a shorthand notation for the fraction of the square root in (37):

u(y) = P1,1P2,2 — P%,z

%Z = 3;;1172,2(21) +p1,1(y) 5‘;;2 —2p12 52;,2
v(y) =p11 —t

ov - 8])171 ot

dy oy Oy

Deriving Eq. using the derivation of all shorthand variables yields the gradient of A:

pra(y) + e k(y)y/ 44
AMy) =
pl,l(y

A.J  Gradient-Approximation of the Diffusion Tensors

(41)

)
a_ 1 Tloma, (O [u) 1 o) G — w3 i C
dy  pra(y)? [( Oy t+c <6y\/;+ 2\/@ v(y)? >>P1,1(y) (Pl,z(y)+ k(y)

We want to find VD given D on an unstructured grid. We know that for any closed domain w C §2,

it holds that

/ VD(x)dz = D(x)dx
w ow

Assume our domain of interest w encompasses exactly one element j. Since we assume constancy

of gradient of diffusion tensors Vx € w : VD(x) = VD, inside one element, we can say that
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lw| VD, = D(x)dz
dw
Our elements are not arbitrary domains, but are either triangles (d = 3) or tetrahedra (d = 4),
with a finite set of linear lines/faces Jw;:

d
lw|VD; = Z D(x)dx

i=1 0w

In order to compute the integral on the r.h.s., we need to define a proper function that approximates
D(x) on the faces. For our experiments, we computed the mean of elements sharing the face.

There are many sophisticated solutions to this problem, but we used the simple assumption that
D(x) is the constant mean on each face/line of all elements bordering the line/face. We use a von-
Neumann boundary condition with zero flux outside of our domain for all surface faces w; € 9.
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