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Supplementary Figure 1: a, FACS read-out for cell surface differentiation markers in A-673 cells, following compound 1 treatment (left panels)
or upon knock-down of EWS-FLI in A-673 cells stably transduced with a vector containing published shRNA 1917 against FLI1 (right panels)
(n=2). b,c, Analysis of EWS-FLI1 target gene NKX2-2 expression in response to treatment of A-673 cells with compound 1 by (b) RT-gPCR,
with doxycycline (dox) inducible sShRNA-mediated knock-down of EWS-FLI1 for comparison (relative quantification by standard curve was
applied for all gPCR reactions, normalizing transcript quantities per target gene to those of endogenous control PPIA per sample and setting the
DMSO-treated condition per target gene equal to 1. Center represents mean and error bars represent standard deviation, with three biological
replicates per condition), or (c) by western blot with B-actin as loading control (repeated two independent times).
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Supplementary Figure 2: a, FACS read-out for cell surface differentiation marker CD11b in THP-1 cells following compound 1 treatment for
72 h (n=1). b, Expression analysis by RT-gPCR of MLL-AF9 and a panel of known target genes in MOLM-13 cells treated with compound 1 in
dose-response for 4 h (relative quantification by standard curve was applied for all gPCR reactions, normalizing transcript quantities per target
gene to those of endogenous control PPIA per sample and setting the DMSO-treated condition per target gene equal to 1. Center value represents
mean, error bars represent standard deviation, with three biological replicates, except for MLL-AF9 and MPO, which were processed as three
technical replicates of one biological replicate). c, Expression analysis by western blot of c-MYC and c-MYB in response to compound 1
treatment comparing compound-sensitive AML cell lines with MLL-fusion (MOLM-13 and NOMO-1) to compound-insensitive and non-
translocated AML cell line HEL 92.1.7 (repeated 3 independent times). An uncropped scan of this blot is provided in Supplementary Figure 20.
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Supplementary Figure 3: a, Cell cycle analysis by propidium iodine staining or b, apoptosis assessment by Annexin V staining and FACS read-
out in NOMO-1 cells treated with compound 1 as indicated (repeated independently two times).
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Supplementary Figure 4: MOLM-13 xenograft mouse in vivo study, including plasma stability and pharmacokinetics. a, Assessment of
compound 1 stability in plasma per species as indicated, incubating 2.5ug/ml of 1 at 37°C for 4.5h in presence of K2 EDTA as anti-coagulant. b,
Plasma concentration over time of compound 1 and 2 when dosing 1 subcutaneously in mice at 30mg/kg (n = 2). Black dashed line represents
compound 1 IC;, value in MOLM-13 cell line. c,d, Plasma and tumor concentration over time of compound 1 and 2 when dosing 1
subcutaneously at (c) 100 mg/kg or (d) at 400 mg/kg in mouse xenograft model (n = 3, presented as mean plus/minus standard deviation).
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Supplementary Figure 4 continued: e, Tumor volume and f, biomarker expression by RT-gPCR in MOLM-13 mouse xenografts treated with
compound 1. g, Tumor volume and h, biomarker expression by RT-gPCR in mouse xenografts of A549 lung adenocarcinoma cells (compound
insensitive, high CES1 expression) treated with compound 1. For efficacy experiments, 2x10° cells were implanted subcutaneously and allowed
to grow until tumor volume reached 150-200 mm?3 (8 days for MOLM-13, 21 days for A549). 1 was dosed twice per day by subcutaneous
injection. Relative quantification by comparative CT method was applied for all gPCR reactions, normalizing transcript quantities per target gene
to those of endogenous control PPIA per sample and setting the vehicle-treated condition per target gene equal to 1. Center value presented as

mean plus/minus standard error of mean, with eight animals per treatment group.
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termination of RNA polymerase Il transcription 4.21E-47 25 45 biological_process G0:0006369
mRNA 3'-end processing 2.06E-40 26 88 biological_process G0:0031124
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Supplementary Figure 5: Genome-wide siRNA plus compound synergy screen. The siRNA library was tested as one replicate with each gene
represented by n=8 siRNAs on average per condition. a, 20 most highly enriched GO terms from GeneMANIA analysis of top 50 gene candidates
(compound 1 minus DMSO analysis). b, Full genome siRNA plus compound 1 synergy screen in A-673 cells, with cell viability read-out via
CellTiter Glo assay, as shown in Figure 2a, but here plotting of redundant siRNA activity (RSA statistical model, one-sided, up) versus Q3 Z-score
to identify siRNA-targeted genes whose knock-down desensitized cells to compound 1 treatment. Top screening hit CES1 labeled.
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Supplementary Figure 5 continued: c-f, Gene-level activity in individual screening conditions as indicated. Known regulators of mMRNA

processing (RSA statistical model, one-sided, down versus Q1) as well as CES1 (RSA statistical model, one-sided, up versus Q3) are highlighted
and named.
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Supplementary Figure 6: a, A-673 compound sensitive cells treated with compound 1, 2, 3, or 4 for 4h. The presence or appearance of

each compound were measured by mass spectrometry in media without cells (cell-free media), media from wells containing cells (cell
supernatant), or from lysates of washed cell pellets (cell lysate). Center value represents mean and error bars represent standard deviation (n=3).
b,c, Comparison of CES1 mRNA expression to (b) sensitivity to compound 1 across 92 cell line panel or to (c) reported translocation status
among AML and Ewing’s sarcoma cell lines tested. Boxplots in (b,c) represent Median bounded by Q1 and A3, with bars extended to cover the
standard deviation.
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Supplementary Figure 7: a, Structure-activity relationships for compound 1. b, IC;, values for compounds as indicated, derived from cell
viability (CellTiter Glo) experiments across six cell lines used for compound optimization and SAR.
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Supplementary Figure 8: a, Western blot assay to assess CES1 protein expression following stable viral transduction of human CES1 cDNA
into CMK or SEM cell lines, with empty vector (EV) transduction as control. Treatment with 10uM compound 1 or 3 or DMSO as indicated.
Non-transfected MOLM13 cell line shown for comparison (n=2). An uncropped scan of this blot is provided in Supplementary Figure 21a. b,
Cell viability assessment of CES1 versus EV transduced CMK and SEM cell lines as indicated in response to compound 1 treatment in 8-point
dose-response, with non-transfected MOLMZ13 cell line assayed in parallel (n=6, center point represents mean, error bars represent standard
deviation, small black dots on fitted curves represent 1Cg, values).



Input material: 5 mg Nomo-1 (9:1 S0.8+P0.8; no benzonase treatment)
Affinity matrix: Compound 6
Competition compound: O (-) or 100 uM (+) compound 2

pumol/ml density 1 2 4
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Supplementary Figure 9: Bioactive linker analog coupled to sepharose resin to give affinity matrix 6 incubated with NOMO-1 cell lysate. 1
and 2 pumol/ml coupling densities allow for protein pull-down and competition by free compound 2 as observed by silver stain SDS-PAGE (n=1).
Boxed bands indicate proteins specifically competed with free compound.
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Supplementary Figure 10: Top hits from affinity pulldown experiment in NOMO-1 cells are concentration-dependent binders as determined by
compound 2 competition with the affinity matrix 6.



Supplementary Figure 11: CPSF3 co-crystal structure with compound 2. a, Domain rotation and conformational changes of CPSF3 upon
binding of 2 (yellow). Apo CPSF3 (pdb code 217T) is shown in ribbon representation in grey and CPSF3 bound to 2 is colored according to
Figure 3a. The large metallo-p-lactamase domains of both structures were aligned (grey and blue) and the B-CASP domains were allowed to
move freely. Overall, the B-CASP domain (green) shows a 7.3 degree rotation upon binding of 2. Loop regions lining the domain interfacial
cavity show structural rearrangements upon ligand binding, the most significant changes were observed for loop A and B. b, Active site cavity
(blue volume) in apo CPSF3. Position of compound 2 shown for comparison. A sulfate coordinates the two zinc ions. ¢, Model of a CA RNA
fragment (cyan) bound to the active site of CPSF3. Phosphodiester 1 was overlaid with the zinc-coordinating phosphate observed in crystal
structures of 2-bound CPSF3. Phosphodiester 2 was placed at the carboxylate position of 2. Adenine and cytosine were overlaid with the phenyl
and hydroxy-dibromo-pheny! groups of 2, respectively. d, 2F-F. electron density for compound 2 contoured at 1.4c.
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Supplementary Figure 12: Compound 2 inhibits the endonuclease activity of yeast core CPF. a, Recombinant 8-subunit core CPF complex was
purified from insect cells. 5 pl were resolved by SDS-PAGE and stained with Coomassie. b, 6% TBE-Urea PAGE gels of 259 nt Cycl RNA
substrate cleavage reactions treated with 100 uM compound 2, 1, 4 or 1% DMSO. Gels were stained with SYBR Green Il. Shown are one set of
representative gels from three independent experiments.
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Supplementary Figure 13: a, Functional variomics of top 14 candidate compound targets in colony formation assays in vitro using A-673 cells
treated with compound 1 as indicated (repeated independently two times).
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Supplementary Figure 13 continued: a, Functional variomics of top 14 candidate compound targets in colony formation assays in vitro using
A-673 cells treated with compound 1 as indicated.
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Supplementary Figure 13 continued: b, The two most prevalent missense mutations Gly330Ser, Met331Thr/Val modeled onto X-ray structure
are predicted to constrict the compound 2 binding pocket while retaining catalytic activity. c, Positions of most frequently mutated residues
(count > 4) cluster in the small B-CASP domain of CPSF3 (top), and are in close proximity to the binding site of 2. d, Affinity binding

measurement of compound 2 or 4 to human CPSF3 wild-type (WT) or G330S mutant protein as determined by SEC-TID. Error bars represent
standard deviation of the mean (n=3).
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Supplementary Figure 13 continued: e,f, FACS analysis of cell surface CD54 expression in response to compound 1 treatment comparing (e)
A-673 cells with CPSF3 wild-type to (f) variomics-derived A-673 cells expressing the CPSF3 G330S mutant (repeated independently two times).
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Supplementary Figure 14: a,b,c, Images of A-673 cells that were treated with compound 1 (a), compound 3 (b) or DMSO (c) for four hours
prior to fixation and probed for RUNX-3 mRNASs (white) using FISH probes targeted to the coding sequence of the transcript. Nuclei (blue) were
stained with DAPI. Images are representative from three independent experiments performed in duplicate. Scale bar = 10pum. d, Similar
numbers of nuclear foci of RUNX-3 transcripts were detected in cells treated with DMSO (52 cells), compound 1 (41 cells) or compound 3 (44

cells) (p-value 0.98, one-way ANOVA). Data are presented as mean plus/minus standard error of mean for nuclear foci counted in each
experiment.
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Supplementry Figure 15: a,b,c, Images of A-673 CPSF3 G330S cells that were treated with compound 1 (a), compound 3 (b) or DMSO (c) for
4 h prior to fixation and probed for NKX2-2 mRNAs (white) using FISH probes targeted to the coding sequence of the transcript. Nuclei (blue)
were stained with DAPI. Images are representative from two independent experiments performed in duplicate. Scale bar = 10um. d,
Quantification of the number of NKX2-2 nuclear foci in cells treated with compound 1 (85 cells), compound 3 (80 cells) and DMSO (54 cells).
Data are presented as mean plus/minus standard error of mean for nuclear foci counted in each experiment.
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Supplementary Figure 16: a, Pathway and process enrichment using Metascape among genes significantly downregulated with 10uM
compound 1 in A-673 cells based on RNA-seq expression profiling from whole cell extract (as shown in Figure 4g). Geneset enrichments were
calculated using the hypergeometric test and Benjamini-Hochberg multiple comparison adjustment via Metascape. b, Protein expression analysis
by Western blot against MEK1/2 as a cytoplasmic marker and Vimentin as a nuclear marker in cytoplasmic (cy) extracts or whole cell (wc)
extracts to assess purity of subcellular fractionation (n=1). An uncropped scan of this blot if provided in Supplemental Figure 21b. c,d, NKX2-2
exonic (c) versus read-through (d) expression levels quantified by RNA-seq in A-673 cells treated with 1 or DMSO for 4 h prior to RNA
purification from either whole cell or cytoplasmic extracts, with three biological replicates per condition. e,f, RNA-seq based quantification of (e)
read-through expression genome-wide and of (f) changes in global gene expression in A-673 Variomics-derived CPSF3 G330S mutant cells, upon
4 h treatment with 10 uM 1 versus DMSO analyzing RNA purified from whole cell extracts of three biological replicates. Normalized read
counts were analyzed using a negative binomial generalized log-linear model with two-sided comparisons and false discovery rate controlled
using Benjamini-Hochberg multiple comparisons adjustment via edgeR. Significance cut-offs defined as absolute value fold-change [log2] > 1
and adiusted p-val/FDR < 0.05.
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Supplementary Figure 17: RNA-seq traces comparing 4h compound 1 treatment (10uM) to DMSO control in either A-673 or CPSF3 G330S
mutant expressing cells. Dynamic scaling of y-axis to visualize degree of transcript read-through at 3'-UTR and beyond in relation to read
coverage at exons. a, NKX2-2 locus, hgl19 chr20:chr20:21,475,000-21,500,000 and b, RUNX3 locus, hg19 chrl:25,210,000-25,270,000. Three
separate tracks are shown per condition reflecting replicate samples.
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Supplementary Figure 18: a,b, RNA-seq based quantification in NOMO-1 cells of read-through expression genome-wide (a) and of changes in
global gene expression in (b), both upon 4 h treatment with 10uM of 1 versus DMSO. Normalized read counts were analyzed using a negative
binomial generalized log-linear model with two-sided comparisons and false discovery rate controlled using Benjamini-Hochberg multiple
comparisons adjustment via edgeR. Significance cut-offs marked in red defined as absolute value fold-change [log2] > 1 and adjusted p-val/FDR
< 0.05. c, Pathway and process enrichment using Metascape among genes significantly downregulated with 20uM compound 1 in NOMO-1
cells. Geneset enrichments were calculated using the hypergeometric test and Benjamini-Hochberg multiple comparison adjustment via
Metascape. All analyses utilized RNA purified from whole cell extracts of three biological replicates.
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Supplementary Figure 18 continued: d,e, RNA-seq based quantification in A549 cells of read-through expression genome-wide (d) and of
changes in global gene expression in (e), both upon 4 h treatment with 10uM of 1 versus DMSO. Normalized read counts were analyzed using a
negative binomial generalized log-linear model with two-sided comparisons and false discovery rate controlled using Benjamini-Hochberg
multiple comparisons adjustment via edgeR. Significance cut-offs marked in red defined as absolute value fold-change [log2] > 1 and adjusted p-
val/FDR < 0.05. f, Pathway and process enrichment using Metascape among genes significantly downregulated with 10uM compound 1 in A549
cells. Geneset enrichments were calculated using the hypergeometric test and Benjamini-Hochberg multiple comparison adjustment via
Metascape. All analyses utilized RNA purified from whole cell extracts of three biological replicates
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Supplementary Figure 19: a,b, Cell viability profile for (a) etoposide, analogous to experiment shown in Figure 1b for compound 1 and
replotted here as (b). Note, the etoposide cell line panel was overlapping but did not include all 92 lines tested for compound 1. Cell lines are
shape-coded by lineage and color-coded by reported translocation. Lineage is given as ALL, AML, Ewing’s or Other (Empty). Note: EWS-FLI
translocated Ewing’s lines TC71 and SKNMC have low CES1 expression.
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Supplementary Figure 20: Uncropped western blots for Supplementary Figure 2c. Sample order for all blots: Compound 1 1uM, Compound 1
10uM, Compound 3 10uM; DMSO




Supplementary Figure 21: a, Uncropped western blots for Supplementary Figure 8a (top: anti-CESL1; bottom: anti-B-ACTIN). b, uncropped
western blot for Supplementary Figure 16b (right: anti-MEK1/2; left: anti-VIMENTIN)
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aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML
8 aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML
9 P aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML
20 Al aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML
21 H aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML
22 KASUMI-1 aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia AML RUNX1-RUNX1T1 (AML1-ETO)
23 SNU-878 iver carcinoma hepatocellular_carcinoma snu878
24 BEN ung carcinoma NS ben
25 OCI-LY3 aematopoietic_and_lymphoid_tissue _|lymphoid_neoplasm diffuse_large_B_cell_lymphoma ocily3
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OCI-MT aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia ocim 1 AML
14 CMK-86 aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia cmk86 AML
CMK aematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia cmk AML
NCI-H2172 ung carcinoma non_small_cell_carcinoma ncih2172
QGP-1 pancreas carcinoma N agp
8 M-07e haematopoietic_and_lymphoid_tissue _|haematopoietic_neoplasm acute_myeloid_leukaemia mo7e AML
9 HCC-1588 lung carcinoma squamous_cell_carcinoma hce1588
50 [JHOM-1 ovary carcinoma adenocarcinoma jhom1
51 CI-H520 lung carcinoma squamous_cell_carcinoma ncih520
52 RMUG-S ovary carcinoma adenocarcinoma rmugs
53 bone Ewi eripheral_primitive_neuroectodermal_tumour _|NS sknmc Ewings _|EWSRI-FLIT
54 large_intestine adenocarcinoma 010320
55 ieti acute_lymphoblastic_B_cell_leukaemia__|sem ALL KMT2A-AFF1 (MLL-AF4)
56 acute_myeloid_leukaemia hel9217 AML
57 acute_lymphoblastic_B_cell_leukaemia__|rs411 ALL KMT2A-AFF1 (MLL-AF4,
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66 Soft_tissue synovial_sarcoma S sw982
67 B malignant_melanoma S mma73
68 malignan( melanoma mm138
69 carcinoma epatocellular_carcinoma i7
carcinoma adenocarcinoma [ncih1573
carcinoma hepatocellular_carcinoma
carcinoma [large_cell_carcinoma
carcinoma NS
carcinoma ductal_carcinoma
carcinoma squamous_cell_carcinoma
malignant_melanoma NS
Iagnant_melanoma NS
8 oesophagus carcinoma squamous_cell_carcinoma
9 [upper_aerodigestive_tract carcinoma squamous_cell_carci
80 large_intestine carcinoma adenocarcinoma
81 breast carcinoma ductal_carcinoma
82 upper_aerodigestive_tract carcinoma squamous_cell
83 large_intestine carcinoma adenocarcinoma snucd
84 lung carcinoma adenocarcinoma ncin1373
85 i serous_carcinoma 0c314
86 NS sha
87 NS ci14
88 clear_cell_renal_cell_carcinoma snu349
89 NS
90 acute_myeloid_leukaemia AML
o1 acute_myeloid_leukaemia AML
92 malignant_melanoma NS

Supplementary Table 1: Panel of 92 cancer cell lines used in this study.
Screened CCLE lines are annotated by cell line name, primary site and histology. For AML lines, MLL-translocation status is given where known, as is EWS-translocation status for Ewing’s sarcoma cell lines.

Cell lines are grouped into sensitive, intermediate or insensitive to compound 1 based on IC50 values derived from 72 h treatment in dose-response in cell viability in vitro growth assay with CellTiter Glo read-out.
CESI expression level given per cell line is based on RNA-seq profiling of CCLE. Cell lines are numbered by sensitivity to compound 1 from most sensitive (1) to least sensitive (92).
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Supplementary Table 2 X-ray data collection and refinement statistics for CPSF3-

compound 2 co-crystal structure

CPSF3/compound 2
(pdb code: 6M8Q)

Data collection
Space group
Cell dimensions

a, b, c(A)

o, B,y (°)
Resolution (A)
Rmerge
Rpim
CCup
/ol
Completeness (%)
Redundancy

Refinement

Resolution (A)

No. reflections

Rwork / Rfree

No. atoms
Protein
Ligand/ion
Water

B-factors
Protein
Ligand/ion
Water

R.m.s. deviations
Bond lengths (A)
Bond angles (°)

P432,2

106.2, 106.2, 206.0
90, 90, 90

2.49 - 90 (2.49 — 2.51)

0.138 (1.27)
0.056 (0.507)
0.996 (0.652)
12.6 (2.2)
99.7 (99.7)
7.1(7.1)

2.49
41,852
0.175/0.221

7,255
84
495

51.7
50.5
56.1

0.010
1.18

Only one crystal was needed to obtain the structure. Highest-resolution shell is shown in parentheses.



Supplementary Table 3:

Antibodies used in this study

Antibody Manufacturer | Catalog Application | Lot Dilution Link to manufacturer's validation data
(epitope) Number Number
PE-conjugated BioLegend 301306 FACS B183220 Sul/1E6 cells | https:/www.biolegend.com/en-us/products/pe-anti-human-
CDI11b cd11b-antibody-768
PE-conjugated BioLegend 338808 FACS B189534 Sul/1E6 cells | https:/www.biolegend.com/en-us/products/pe-anti-human-
CD44 cd44-antibody-5745
PE-conjugated BioLegend 353106 FACS B169127 Sul/1E6 cells | https:/www.biolegend.com/en-us/products/pe-anti-human-
CD54 cd54-antibody-7447
PE-conjugated BioLegend 344004 FACS B189876 Sul/1E6 cells | https:/www.biolegend.com/en-us/products/pe-anti-human-
CD73 c¢d73-ecto-5-nucleotidase-antibody-6092
Alexa 568 goat ThermoFisher A11031 R-loop 2026148 1:1000 https://www.thermofisher.com/antibody/product/Goat-anti-
anti mouse Scientific staining Mouse-IgG-H-L-Highly-Cross-Adsorbed-Secondary-
Antibody-Polyclonal/A-11031
Alexa 647 goat ThermoFisher A21245 R-loop 2051068 1:1000 https://www.thermofisher.com/antibody/product/Goat-anti-
anti rabbit Scientific staining Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary-
Antibody-Polyclonal/A-21245
Nucleolin Abcam ab22758 R-loop GR303746- 1:1000 https://www.abcam.com/nucleolin-antibody-ab22758.html
staining 3
DNA-RNA Millipore MABE1095 | R-loop 06131_4 1:200 http://www.merckmillipore.com/CH/de/product/Anti-DNA-
Hybrid clone staining RNA-Hybrid-Antibody-clone-S9.6, MM _NF-MABE1095
S9.6
CPSF3 Abgent ATI1610a WB 11175 1:1000 http://www.abgent.com/products/AT1610a-CPSF3-
Antibody-monoclonal-M01
FLI1 Abcam ab124791 WB YH112404C | 1:1000 https://www.abcam.com/flil-antibody-epr4645-
ab124791.html
MEK1/2 Cell Signaling 8727 WB 5 1:1000 https://www.cellsignal.com/products/primary-
Technologies antibodies/mek1-2-dla5-rabbit-mab/8727
MYB Cell Signaling 12319 WB 1 1:1000 https://www.cellsignal.com/products/primary-antibodies/c-
Technologies myb-d2r4y-rabbit-mab/12319
MYC Cell Signaling 13987 WB 5 1:1000 https://www.cellsignal.com/products/primary-antibodies/c-
Technologies myc-d3n8f-rabbit-mab/13987
NKX2.2 Abcam ab187375 WB GR299445- 1:1000 https://www.abcam.com/nkx22-antibody-nx2294-
4 ab187375.html
VIMENTIN Cell Signaling 5741 WB 1 1:1000 https://www.cellsignal.com/products/primary-
Technologies antibodies/vimentin-d2 1h3-xp-rabbit-mab/5741
BETA-ACTIN Sigma A5441 WB 127M4866V | 1:10000 https://www.sigmaaldrich.com/catalog/product/sigma/a5441




Supplementary Table 4: smFISH probes used in this study.

FISH probe Accession Number(s) Sequence Sequence Name Three Three Lambda
Modification Max
NKX2-2 mRNA NM_002509.3 tagtttctaactccaggagg NKX2-2 mMRNA_1 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 aaagcacgcggaaatggacy NKX2-2 mRNA_2 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ttgtagcttcacttggtcaa NKX2-2 mRNA_3 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ccccaaaatttatgtcgeaa NKX2-2 mRNA_4 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ttgtgttggtcagegacatg NKX2-2 mRNA_5 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 caggtctaagatgtccttga NKX2-2 mRNA_6 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 tcgtagaaggggttcttcag NKX2-2 mRNA_7 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 cttggagcttgagtcctgag NKX2-2 mRNA_8 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ttgtcattgtccggtgactce NKX2-2 mRNA_9 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ttggagaaaagcactcgeeg NKX2-2 mRNA_10 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 tggaaccagatcttgacctg NKX2-2 mRNA_11 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 cttcatcttgtageggtggt NKX2-2 mRNA_12 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 tgagcgcgtgacatggtttg NKX2-2 mRNA_13 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ttgtactgcatgtgctgcag NKX2-2 mRNA_14 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 tagtggagccgagagtcaac NKX2-2 mRNA_15 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 aatctgccactccaaggaga NKX2-2 mRNA_16 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ctgtaaacacggcgtagagt NKX2-2 mRNA_17 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 agaagcgaagctgcgcaaac NKX2-2 mRNA_18 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 gacgacattaacgctgggac NKX2-2 mRNA_19 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 ggtctttttctegttttcaa NKX2-2 mRNA_20 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 gctgacaatatcgctactca NKX2-2 mRNA_21 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 cagaacgtttacatggccat NKX2-2 mRNA_22 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 aaagcgaaatctgccaccag NKX2-2 mRNA_23 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 tcaccaccgatatttacaac NKX2-2 mRNA_24 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 cctgaaggtcattttggcaa NKX2-2 mRNA_25 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 agaaaggagttggacccaga NKX2-2 mRNA_26 Quasar 570 550 nm
NKX2-2 mRNA NM_002509.3 aatagctgagctccaagttc NKX2-2 mRNA_27 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 cggagtagttctcgtcattg RUNX3_Varl_Var2_1 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gaagcgaaggtcgttgaacc RUNX3_Varl_Var2_2 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 atggtcagggtgaaactctt RUNX3_Varl_Var2_3 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tcggagaatgggttcagttc RUNX3_Varl_Var2_4 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ggaaggagcggtcaaactgg RUNX3_Varl_Var2_5 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 catggagaactggtaggage RUNX3_Varl_Var2_6 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 catcactggtcttgaaggtt RUNX3_Varl_Var2_7 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 taacctatgcctctgtacaa RUNX3_Varl_Var2_8 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gaagtatgggatgagacggc RUNX3_Varl_Var2_9 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 catagctggagacagtgagg RUNX3_Varl_Var2_10 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ctctctggaagagagatgge RUNX3_Varl_Var2_11 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ccaacagttaggaacggagg RUNX3_Varl_Var2_12 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tgatgccatagactcatctt RUNX3_Varl_Var2_13 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tgctttcctgggtttaagaa RUNX3_Varl_Var2_14 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ctggtaaagtgcatggagga RUNX3_Varl_Var2_15 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gaacagagagtggatgcgtt RUNX3_Varl_Var2_16 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 aaaatgatccctcacctcaa RUNX3_Varl_Var2_17 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 cagggacattgatgtctgac RUNX3_Varl_Var2_18 Quasar 570 550 nm




RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tcgcaagatttggctggate RUNX3_Varl_Var2_19 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ctatttgctttcagagcaca RUNX3_Varl_Var2_20 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tacctgtaagagaccttgtg RUNX3_Varl_Var2_21 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gcggggatgttgcttataat RUNX3_Varl_Var2_22 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tagccccttgagaaagtatt RUNX3_Varl_Var2_23 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 aattcaggggcaagacttca RUNX3_Varl_Var2_24 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ctgatgtgagaatccatgca RUNX3_Varl_Var2_25 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ttttctaagcectttctaggg RUNX3_Varl_Var2_26 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gttaaaataccgcatgctge RUNX3_Varl_Var2_27 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 agcattttgtagggcagatt RUNX3_Varl_Var2_28 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gctctcacagagacaaccaa RUNX3_Varl_Var2_29 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 taggatcaccagaaggactg RUNX3_Varl_Var2_30 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 aagagaaaccgcagcaggag RUNX3_Varl_Var2_31 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 cagggagtcagcaactattt RUNX3_Varl_Var2_32 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ctaagaaggcatggagaggc RUNX3_Varl_Var2_33 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 acaatggattcatagctgct RUNX3_Varl_Var2_34 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ccagagaacaggagggaaga RUNX3_Varl_Var2_35 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 gggttagtaatctgggatga RUNX3_Varl_Var2_36 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ttacagactcagtacggcty RUNX3_Varl_Var2_37 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 aaggacctacttttaccagc RUNX3_Varl_Var2_38 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 acaactttaacgcagccttg RUNX3_Varl_Var2_39 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ttcctacatcagtgtgttty RUNX3_Varl_Var2_40 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 caaaacgtcttcctttecte RUNX3_Varl_Var2_41 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 caggctcacagtaacactat RUNX3_Varl_Var2_42 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 aaagattggtacccactact RUNX3_Varl_Var2_43 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 cacacctcagcatgacaata RUNX3_Varl_Var2_44 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tacatcagatgagtgcagca RUNX3_Varl_Var2_45 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 atagtgcaaagcagtttcca RUNX3_Varl_Var2_46 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 tgtacaagcaagttgtgcgt RUNX3_Varl_Var2_47 Quasar 570 550 nm
RUNX3_Varl_Var2 NM_001031680.2; NM_004350.2 ttccacacatctcagagtta RUNX3_Varl_Var2_48 Quasar 570 550 nm
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