
A. Technical algorithmic details

A.1. Identifying conditionally independent parameters

The following algorithm (called find_conditionally_independent) is used by MultiBUGS
to identify sets of conditionally-independent parameters W1, . . . ,Wl ⊆ U :

Input: G = (E, V ), a DAG; U , a set of nodes (with identical topological depth)
l← 1
M ← ∅
while |U | > 0 do

for u in U do

if chG(u) ∩M = ∅ then
Wl ←Wl ∪ {u}
U ← U \ {u}
M ←M ∪ chG(u)

end if
end for
M ← ∅
l← l + 1

end while
Output: {W1, . . . ,Wl}

A.2. Identifying parallelisable likelihoods

Nodes for which the likelihood calculations should be partitioned across cores are identified
using the following algorithm, called find_partial_product_parallel:

Input: G = (E, V ), a DAG; C, a number of cores; h, a topological depth; h?, the maximum
topological depth in G; T , a computation schedule; r, the current schedule row
U ← Dh

G

ch← meanv∈SG
| chG(v)|

for u in U do
if | chG(u)| > 2× ch or h? = 1 then
r ← r + 1
for c in 1 to C do
Trc ← u

end for
U ← U \ {u}

end if
end for

Output: {T,U, r}

A.3. Building a computation schedule

The overall algorithm for allocating compution to cores is as follows:

Input: G = (E, V ), a DAG; C, a number of cores
Initialise T , a table with C columns
r ← 0
h? ← maxv∈SG

dG(v)
for h in h? to 1 do
{T,U, r} ← find_partial_product_parallel(G,C, h, h?, T, r)
{W1, . . . ,Wl} ← find_conditionally_independent(G,U)
for i in 1 to l do
c← 0
for j in maxw∈Wi | chG(w)| to 1 do
for x in {w ∈Wi : | chG(w)| = j} do

if c mod C = 0 then
r ← r + 1

http://mcmc-jags.sourceforge.net
http://mcmc-jags.sourceforge.net


c← 0
end if
Tr(c+1) ← x
c← c+ 1

end for
end for

end for
end for

Output: T




