Supplementary data

Supplementary methods
1. X-ray diffraction pattern

X-ray diffraction patterns were recorded with a Bruker
D8 Advance system (Bruker, Karlsruhe, Germany) in a
2Theta range from 20-40° with Cu Ka radiation (40 KV/ 40
mA) with a step size of 0.02° and a total measurement time
of 1 s/step. Quantification was performed by Rietveld
refinement analysis using Topas software (Bruker,
Germany). The amorphous content of the samples was
calculated using the G-factor method with a crystalline
corundum reference according to Hurle et al [S1].

Supplementary Tables

Amount of

cells Day 3 Day 7 Day 14
Mean 1602.62 6568.07 10201.17
Standard +570.00 +3256.64 | +5992.86
Deviation

Supplementary Table 1. Proliferation of equine MSCs on
C-PCaP scaffolds during cultivation for 14 days

sample | Tcp | Mydrovyapate | ey | amorph
[o] [o]

Powder 80 1.3 3.7 15

C-PCaP 1.4 62.3 1.4 35

NC-PCaP | 1.2 64.7 2 32

Supplementary Table 2: Quantification of the XRD
patterns by Rietveld refinement (TOPAS software, Bruker,
USA), showing the conversion of a-TCP to an apatite phase.
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Supplementary Figure S1: A; Amplitude sweep representing LVR, B; Frequency sweep (relationship between angular
frequency and complex viscosity), C; Frequency sweep (relationship between angular frequency and complex viscosity,
obtained by using same material after performing time sweep test), D ; Frequency sweep (relationship between angular
frequency and modulus), E; Frequency sweep (relationship between angular frequency and modulus, obtained by using same
material after performing time sweep test).
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Supplementary Figure S2: X-ray diffraction patterns of raw powder and scaffolds. Diffraction peaks in the raw powder can
be assigned to crystalline a-tricalcium phosphate (PDF-No.: 09-0438) with a minor fraction of B-tricalcium phosphate (PDF-
No.: 09-0169, marked with “b”), possibly present as minor impurity in the a-TCP particle formulation. The fabricated
scaffolds consisted of low crystalline hydroxyapatite (PDF-No.: 09-0432) from hydrolysis of a-TCP, as shown by the typical
broad peaks peculiar of CDHA formation [S2], while the B-TCP fraction remained unreacted.( o = a-TCP, b = B-TCP, * =
CDHA)
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Supplementary Figure S3: Tangent Modulus of hardened cement structure produced from composition of a-TCP with and
without nano-hydroxyapatite, B; Ultimate strength of hardened structure produced from composition of a-TCP with and
without nano-hydroxyapatite. No significant differences were found between the two groups, suggesting that the added nano-
HA does not have a relevant impact on the compressive properties of the produced cement. (n = 6 for each group).
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Supplementary Figure S4: A; Representative stress-strain curves of NC-PCaP scaffolds at different porosities showing
how to calculate tangent modulus and ultimate strength. B; Representative stress-strain curve showing how to calculate
energy to failure. C; Energy to failure of NC-PCaP paste (grey) and C-PCaP paste (blue) scaffolds with different porosities.
D; Merged image between fluorescence staining of nucleus (dapi: blue) and osteonectin protein (osteonectin: red) of
equine MSCs that were cultured on a C-PCaP scaffold for 21 days in an expansion medium showed no sign of osteogenic
upregulation. (Scale Bar = 100 pm.) E; Merged image between fluorescence staining of nucleus (dapi: blue) and
osteonectin protein (osteonectin: red) of equine MSCs that were cultured on a C-PCaP scaffold for 21 days in an
osteogenic supplement medium showed signs of osteogenic upregulation. (Scale Bar = 100 pm.)
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Supplementary Figure S5: A; Representative area under stress-displacement curve for calculation energy to failure. B;
Interfacial toughness at the interface between chondral and bony compartment of an engineered osteochondral unit showing
alterations due to differences in either interfacial architecture or compositions. The different construct types: GelMA on
ceramic(unmodified surface; red), GeIMA on ceramic (modified surface; bright green), microfibre reinforced GelMA on
ceramic(non-anchor fibre; pink), microfibre reinforced GelMA on ceramic (anchor fibre; blue) and only GeIMA hydrogel
(mean (grey dotted line) + SD (grey filled area))

Supplementary Video SV1. Video showing the open and interconnected porosity within the inner structure of the porous 3D
printed scaffolds, as shown through a series of pCT sections of the constructs.
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