Table S1: Demographics data of healthy controls, MCI	and AD patients.
	1

Entire DTI cohort				
	MCI Patients	AD Patients	Controls	
N total	56	53	61	
Gender F/M	25/31	33/20	22/39	
Age (mean ± SD, range)	70.1 ± 8.0 50.1 - 84.6	74.1 ± 8.6 49.1 - 89.7	71.1 ± 8.3 51.1 - 86.2	
CDR-sb* (mean ± SD, range)	1.4 ± 1.0 0 - 4.5	4.0 ± 2.1 1 - 11	$0.1 \pm 0.2 \\ 0 - 1$	
MMSE (mean ± SD, range)	27.9 ± 1.8 $23^{**} - 30$	23.9 ± 2.7 18 - 29	29.9 ± 1.1 26 - 30	
Tractography cohort				
		AD Patients	Controls	
N total (all females)		15	15	
Age (mean ± SD, range)		67.2 ± 8.5 49.1 - 78.4	67.1 ± 7.4 51.1 - 80.6	
CDR-sb* (mean ± SD, range)		4.1 ± 1.8 1 - 7	$0.1 \pm 0.2 \\ 0 - 0.5$	
MMSE (mean ± SD, range)		23.7 ± 3.0 18 - 29	29.2 ± 1.2 26 - 30	

*sb = sum of boxes **One patient with MMSE=23 was confirmed MCI as activities of daily living (ADL) impairment did not warrant diagnosis of dementia

Table S2: Neuropsychological scores and CSF concentrations for healthy controls, MCI and AD patients. All values were significantly different (P<0.001) between each pair of groups except for the phonological verbal fluency which did not differ between healthy controls and MCI patients.

Neuropsychological test	MCI Patients	AD Patients	Controls
MMSE (mean ± SD)	27.9 ± 1.8	23.9 ± 2.7	29.9 ± 1.1
Categorical verbal fluency (animals)(mean ± SD)	19.7 ± 4.3	12.7 ± 5.5	23.4 ± 5.3
Phonological verbal fluency (S words)(mean ± SD)	12.5 ± 3.8	7.4 ± 4.5	12.8 ± 4.3
Boston naming test (mean ± SD)	13.6 ± 2.1	12.2 ± 1.3	14.5 ± 0.8
Trail making test (part A)* (mean ± SD)	50.9 ± 50.8	78.8 ± 21.1	38.0 ± 10.0
Trail making test (part B)** (mean ± SD)	143.5 ± 114.6	229.3 ± 54.6	92.4 ± 25.5
CSF concentrations*** (pg/ml)	MCI Patients	AD Patients	Controls
Tau (mean ± SD)	421.8 ± 242.6	705.5 ± 304.3	258.0±16.0
Phosphorylated tau (mean ± SD)	63.9 ± 26.1	97.9 ± 41.5	47.5 ± 17.6
β -amyloid (mean ± SD)	584.9 ± 264.9	413.8 ± 134.6	797.0 ± 266.1

*3 AD patients did not complete the test

**2 MCI patients and 22 AD patients did not complete the test

***Concentrations were collected for 26 controls

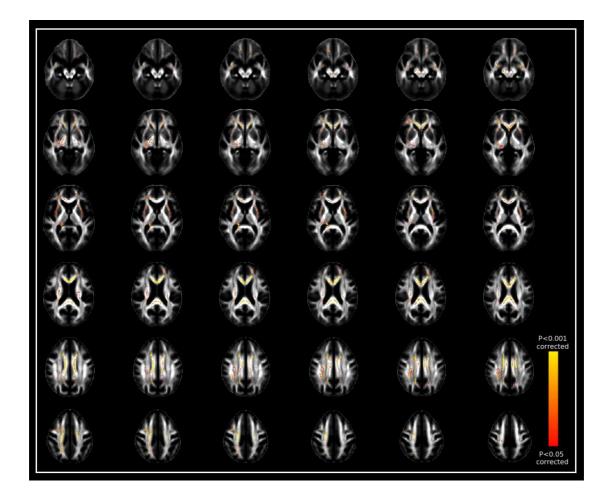
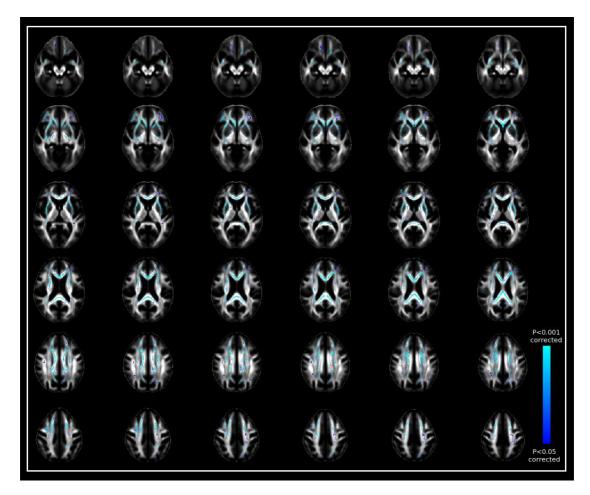
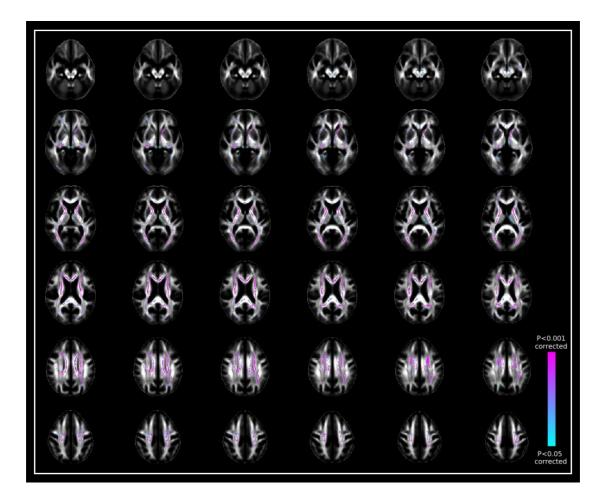
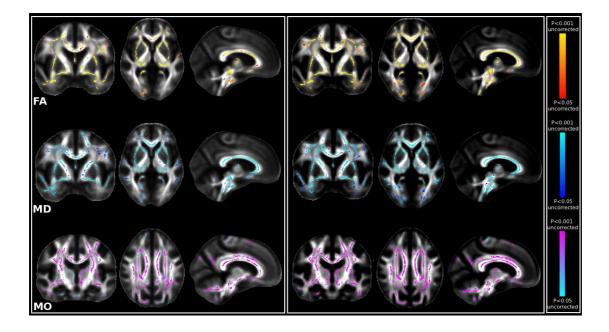
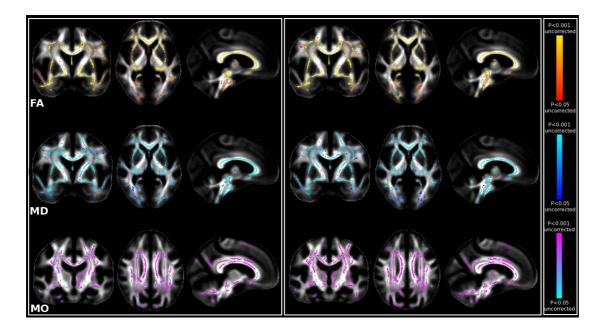
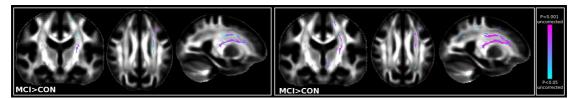



Figure S1: Significant FA differences across the three groups (*F*-test)

Figure S2: Significant MD differences across the three groups (*F*-test)


Figure S3: Significant MO differences across the three groups (*F*-test)

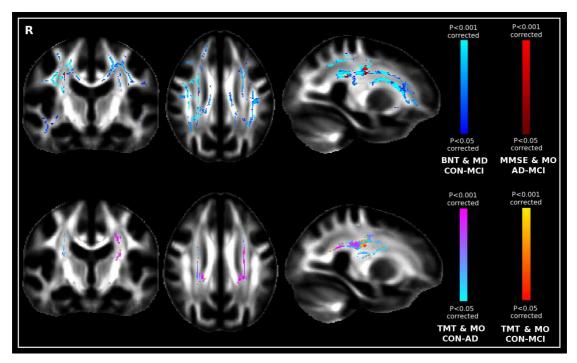

Figure S4: Results of the *F*-tests carried out across the three groups (CON, MCI, AD) on FA (first row), MD (second row) and MO (third row). *Left F*-tests performed with the age added as a nuisance covariate. *Right F*-tests performed without the age as a covariate. Despite a slight loss of statistical power due to the added covariate in the statistical model, the spatial pattern of the results is very similar between the two analyses.

Figure S5: Results of the *F*-tests carried out across the three groups (CON, MCI, AD) on FA (first row), MD (second row) and MO (third row). *Left F*-tests performed excluding the 8 MCI patients who later converted to AD and dementia with Lewy bodies. *Right F*-tests performed on the entire cohort. Despite a slight loss of statistical power due to the loss of 8 subjects, the spatial pattern of the results is very similar between the two analyses.

Figure S6: Results of the contrast showing an increase of MO in the MCI patients compared with healthy elderly. *Left* Results obtained excluding the 8 MCI patients who later converted to AD and dementia with Lewy bodies. *Right* Results obtained on the entire cohort. Again, the spatial pattern of the results is very similar between the two analyses.

Figure S7: TBSS results showing significant differences across groups in correlations between neuropsychological scores and diffusion indices in the centrum semiovale (*Top*: Boston naming test and mean diffusivity, MMSE and mode of anisotropy; *Bottom*: Trail making test part A and mode of anisotropy, note that there is an almost perfect overlap between the contrast CON-AD and CON-MCI). More specifically, we found a significant negative correlation between MMSE and mode of anisotropy in MCI patients but not AD patients, a significant negative correlation between Boston naming test and mean diffusivity in MCI but not in control subjects, a significant positive correlation between Trail making test part A and mode of anisotropy in healthy controls but not in MCI or AD patients. BNT=Boston naming test; MD=Mean diffusivity; MO=Mode of anisotropy; TMT=Trail making test.

Criteria for Mild Cognitive Impairment (MCI)

According to the consensus conference in Stockholm in 2003 (Winblad et al., 2004), the following general criteria will apply for MCI:

1. Not normal, not demented (i.e., DSM-IV, ICD 10 criteria not met)

2. Cognitive decline

- Self and/or informant report and impairment on objective cognitive tasks and/or

- Evidence of decline over time on objective cognitive tasks

3. Preserved basic activities of daily living / minimal impairment in complex instrumental functions

In our study, these criteria were implemented as follows:

1. MMSE \ge 24/30.

2. Basic activities of daily living and complex instrumental functions are judged clinically and based on data from the NOSGER (no dimension > 10), IQCODE (< 4.0), and global CDR score (≤ 0.5).

3. Difference in z-scores of ≥ 1 on two consecutive assessments separated by at least six months.

4. At least mild impairment in one or more of the following cognitive domains:

- a. Attention (divided, sustained, etc.)
- b. Memory (episodic, semantic, verbal, nonverbal, etc.)
- c. Language (naming, comprehension, repetition, etc.)
- d. Praxis (ideomotor, ideatoric, etc.)
- e. Gnosis (faces, objects, etc.)
- f. Executive functions (verbal + nonverbal fluency, set-shifting, errors, etc.)

Criteria for neuropsychologically-relevant cerebrovascular component of a neurodegenerative disease (modified from Erkinjuntti et al., 2000):

Part of the neuropsychological impairment probably due to a vascular cause judged by cognitive deficits suggestive for cerebrovascular disease &

Presence or a history of neurologic signs as evidence for cerebrovascular disease such as hemiparesis, lower facial weakness, Babinski sign, sensory deficit, dysarthria, gait disorder, extrapyramidal signs consistent with brain lesion(s)

&

By brain imaging consistent with relevant cerebrovascular disease, but without signs of normal pressure hydrocephalus and specific causes of white matter lesions (e.g. multiple sclerosis, sarcoidosis, brain irradiation).