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Supplementary Figure 1. SIPR3 is a myeloid-associated S1P receptor not expressed in human HSPC. A, Representa-
tive flow cytometry plots showing gating scheme for T cells, B cells, CD33* myeloid, and CD34+ cells from freshly
isolated CB mononuclear cells (MNCs, n=4), 2 samples were single units and 2 samples were pools of 6 CB units. B,
Representative flow cytometry plots showing S1PR3 staining for T cells, B cells, CD33+ myeloid, and CD34* overlaid on
all cells from FMO control (gray). C, SIPR3 mean fluorescence quantification with S1IPR3 antibody (blue) or FMO control
(gray) (n=4). D, Representative flow cytometry plots showing overlapping expression of SIPR3 and the myeloid marker
CD33 in CB MNC:s for control (FMO, black) and S1PR3 antibody containing sample (+Ab, blue). E, The distribution of T
cells, B cells, CD33* myeloid and CD34* are shown. A subset of CD33" cells co-stains for SIPR3 (myeloid-S1PR3"). F,
The percentage of SIPR3*, CD14* monocytic, CD15" granulocytic, and CD34" primitive cells in previously frozen CB
MNCs (n=3), related to Fig. 1b-c). G, Representative flow cytometry plots showing co-expression of SIPR3 and the
myeloid marker CD14 in CB MNCs (n=3) for a Fluorescence minus one (FMO, black) control and S1PR3 antibody stained
sample (+Ab, blue). H, SIPR3 MFI in CD14*, CD15%, and CD34" cells. I, Representative flow cytometry plots showing
gating scheme and S1PR3 staining for LT-HSC, ST-HSC, MLP, GMP, and CD34-CD38" cells from 3 pools of lin" CB. J,
Quantification of SIPR3 MFI in indicated populations. *** P<0.001** p<0.01, *<0.05, unpaired Student t-test. Data are
mean and s.d.
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Supplementary Figure 2. Pro-inflammatory cytokines regulates SIPR3 surface expression in human HSPC. A,
Experimental schematic for in vitro treatment of TNFa or IL6 of CB cells, lineage depleted to enrich for HSPC, in ex vivo
culture and then analysis for SIPR3 surface expression in immunophenotypic HSPC populations by flow cytometry. B,
Gating scheme for cultured LT-HSC (cLT-HSC, CD34"CD38CD90'CD45RA"), cultured ST-HSC (cST-HSC,
CD34*CD38CD90"CD45RA"), and GMP (CD34*CD38*CD7-CD10-CD45RA™") for control media or with TNFa or IL6
treatment. C, Percentage of cLT-HSC, ¢cST-HSC and GMP cells at day 3 culture. D, Relative fluorescence intensity (RFI)
of S1PR3 calculated as ratio of SIPR3 MFI to FMO controls in the indicated populations at day 3 culture. E, Percentage
of CD14+ cells at day 8 culture. Statistical significance by unpaired Student t-test. Data are mean and s.d.
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Supplementary Figure 3. SIPR3 overexpression is sufficient to promote myeloid differentiation at the expense of
erythroid differentiation in human HSPC. A, Representative flow cytometry plots for SIPR3 and CD34 expression in
progeny of LT-HSC or ST-HSC at day 9 following lentiviral transduction with control or S/PR3OE. B, Relative S1PR3
expression determined by real-time PCR in MOLM13 cells transduced with the indicated lentiviral vectors. C, Representative
flow cytometry plots for CD33 and GlyA following lentiviral knockdown with shCtrl or 2 vectors to SIPR3. D, CD14
expression following lentiviral knockdown of SIPR3 in LT-HSC and ST-HSC at 8 or 10 days post-transduction (n=2 CB). E,
Experimental scheme for in vitro single cell colony forming cell (CFC) assays on methylcellulose or MS5 stromal
differentiation assays. F, Representative sorting scheme for human HSPC populations with multilineage differentiation
capacity analyzed in (E). F1 populations for CMP and MEP were previously described to contain myeloid, erythroid, and
megakaryocytic differentiation capacity. G, Cloning efficiency of single cell stromal assays (Fig. 2D). H, Percentage of cells
scored in stromal assays that yielded CD41" megakaryocytic progeny. I, The number of colonies for 100 transduced cells from
the indicated populations at 10 days of a CFC assay for shCtrl or SIPR3 lentiviral knockdown vectors (n=3). J, Normalized
colony distribution for (I). BFU (burst-forming units); macrophage (M); G (granulocyte); GEMM (granulocyte erythrocyte
monocyte megakaryocyte). , ¥<0.05, unpaired Student t-test. Data are mean and s.d.
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Supplementary Figure 4. SIPR3 overexpression in CD34*CD38- HSPC disrupts engraftment in xenotransplantation
assays. A, Human CD45 chimerism in non-injected bones at 4 weeks post xenotransplantation. The percentage of transduced
cells marked by BFP* in human CD45" cells of the B, injected femur and C, non-injected bones. D, The percentage of human
GlyA™ cells in the injected femur. E, Percentage of transduced cells marked by BFP+ in human GlyA* cells from (D). ***
P<0.001** p<0.01, *<0.05, unpaired Student t-test. Data are mean and s.d.
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Supplementary Figure 5. RNAseq analysis of LT-HSC and ST-HSC following S7PR3 overexpression A, Principal
component analysis of RNAseq samples. B, Unsupervised clustering of samples based of gene expression in 1000 most variable
genes with heatmap visualization. GSEA plots shows enrichment of SIPR3OE samples in granulocyte (GRAN) and depletion in
HSC gene sets in C, LT-HSC and D, ST-HSC. E, Pathway enrichment map of the GSEA results using the BaderLab gene-sets at
FDR value = 0.0001. HSC and GRAN gene lists were added as gene-sets to the enrichment map and the significance of overlap
with gene-sets was calculated using the integrated hypergeometric test at p = 0.01.
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Supplementary Figure 6. AML patients enriched for a differentiated myeloid signature show high expression of
S1PR3 and of a subset of NF-kB pathway genes. A, Heatmaps of NF-«kB common genes (rows) in the Beat-AML, TCGA-
AML and GSE6891 cohorts. SIPR3 gene expression and GSVA correlation values for the myeloid and HSC/Progenitor
signatures are shown on top of the heatmap. B, Heatmap of 75 genes in the LSC- subpopulations from GSE76008 indicates
samples with high S/PR3 gene expression are enriched for the myeloid signature and deficient for the HSC/Progenitor
signature while also enriched for the set of 75 NF-kB genes as in unfractionated patient samples. However, those LSC~
samples with low SIPR3 expression show heterogeneity for the myeloid and HSC/Progenitor signatures as well as
expression of the 75 NF-kB gene set. C, Venetoclax tolerance expressed as AUC (area under the curve) values for 114

AML samples from Beat-AML based on 50/50 split at median S/PR3 expression. SIPR3"g" samples have greater tolerance
for Venetoclax.
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Supplementary Figure 7. Gating scheme for S1PR3 in patient AMLs for xenotransplantation. Related to Fig. 6B-D.
Flow cytometry data for AML patients analyzed for LSC frequency in limiting xenotransplantation experiments are

shown.
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Supplementary Figure 8. SIPR3 in SIPR3low AML cell lines regulates myeloid differentiation. A, LSC104 correlation
score by nanostring analysis relative to SIPR3 MFI in 6 AML cell lines shows AML lines with high LSC104 score indicating a
more stem-like state has lower S1PR3 expression. B, S/PR30E induces a decrease in phenotypic CD34+ and increase in CD34-
cells in KG1 cells at day 7 post-transduction (n=3). C, ME-1 cells are predominantly CD34", but showed an immunophenotypic
increase in CD15% cells with S/PR30OE (n=1). D, Kasumi-1 cells exhibit increased CD15+ and decreased CD34+
immunophenotypic changes with S/PR3OE relative to controls (n=3) 7 days following lentiviral transduction. E, CD34*
Kasumi cells were isolated, transduced with control or S/PR3OE lentivectors, and flow cytometry analysis were performed at
day 7 and day 17 for CD15 and CD34 expression showing a delay in immunophenotypic CD15 and CD34 changes. S/PR30E
induced loss of CD34* populations and increase in CD157CD34- cells from day 7 to day 17 (n=1, in duplicate). F, SIPR3
expression in Kasumi-1 subpopulations normalized to an untreated CD34+CD15- sample 9 days post-treatment with 10ng/ml
TNFa (n=3). G-I, Representative flow cytometry plots and quantitation for CD15 and CD34 markers 9 days post-treatment
with DMSO or 5pM TY51256 alone or with 10ng/ml TNFa in Kasumi-1 CD34+ cells at day 9 post-treatment (n=3). J,
Representative flow cytometry plots and quantitation for CD15 and CD34 markers 9 days post-transduction in transduced cells
marked by BFP (n=3). *<0.05, ** p<0.01, *** P<0.001. Unpaired Student t-test for B,D and one-way ANOVA for F-K. Data
are mean and s.d.
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Supplementary Figure 9. Lipidomics confirms gene expression analysis that AML patient LSC+ and LSC- subpopula-
tions have distinct sphingolipidome profiles. A, Schematic showing the sphingolipid metabolic pathway and the species
analyzed by LC/MS mass spectrometry. B, Sphingolipid distribution profiled by LC/MS mass spectrometry in functionally
defined individual LSC+ (n=7) and LSC-(n=7) fractions from 10 patient AMLs as determined by xenotransplantation and
normal stem (CD34*CD38") and progenitor (CD34*CD38*) fractions (CB, n=3). CD34 and CD38 marker status of each
sample are indicated. C-H, Quantification of sphingolipid species measured as pmoles of indicated sphingolipid/nmoles of
inorganic phosphate (Pi) including C, hexosylceramides (HexCer) which are sphingolipids containing glucose or galactose
sugar moieties, D, dihydroceramide (dhCer), E, S1P, F, ceramide, G, sphingosine, and H, sphingomyelin.
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Supplementary Figure 10. The S1P prodrug FTY720 decreases AML burden and decreases LSC frequency in AML
including relapse and treatment refractory patients. Related to Fig. 7A-F. A, Human AML engraftment marked by
CD457CD33" cells at 6 weeks post-transplantation for individual mice engrafted with the indicated AML patient samples in
the injected femur or non-injected bones following treatment with DMSO vehicle or FTY720. These are the 9 samples that
did not show significant change in engraftment between vehicle and FTY720. B. Percentage of CD15+ cells in A.



