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Simulations for computational performance assessment 

To assess computational efficiency, we produced two test datasets ("small" and "large") 
performing neutral coalescent simulations using msprime 0.7.4 (Kelleher et al. 2016). To 
produce the input data for and convert the output of msprime, we used custom python 
functions available in the pypopgen3 repository (https://github.com/feilchenfeldt/pypopgen3/; 
last accessed 30/07/2020, commit 759570fb58819ff6042d83d542bcd37842164fa5). In 
particular, we first produced random trees using the function 
treetools.get_random_geneflow_species_tree with options n_species=20, 
n_geneflow_events=5 and n_species=100, n_geneflow_events=10 for the small and 
large simulation set, respectively. The sample size of each species was set to two diploid 
individuals by sample_sizes=4 and the ete3 python package was used to produce random 
trees (option random_tree_process='ete3'). The other parameters were left at their default 
values, which means:  

● The function produced a species tree with random branch lengths and sample 
relationships, an initial ingroup-divergence of 1 million years ago (mya) and a 
divergence of the ingroup from an additional outgroup lineage 2 mya.  

● For each gene flow event, a time was chosen uniformly in the interval [1e6, 0], and a 
donor and a recipient branch were drawn from all the branches existing at this time 
point. The strength of the gene flow event was determined by numpy.random.beta(2, 
5) * 0.3. 

● Effective population sizes for each branch were set 50 000, except for the outgroup 
branch; effective population size for the outgroup was set to 1 to ensure that the 
outgroup was fixed for alleles segregating in the ingroups   

We then used the gene flow tree as input to msprime directly producing VCF files via the 
pypopgen3 simulate module 

(samples,  
population_configurations,  
sorted_events,  
sample_to_pop, sample_names,  

 id_to_name) = simulate.msprime_input_from_split_tree(tree) 
 
tree_sequence = simulate.simulate_to_vcf(vcf_fn_chrom, 
                                         samples,  

  population_configurations, 
                                         sorted_events, 
                                         mutation_rate,  

 recombination_rate, 
 genomic_length,  

                                         sample_names=sample_names, 
        chrom_id=chrom_id  ) 

Using the above functions, we simulated 20 and 100 chromosomes for the small and large 
simulation runs, respectively, each of a length of one Megabase, using per site mutation and 



recombination rates of 1e-8. The two simulation runs resulted in totals of 4,342,77 and 
97,201,601 single nucleotide polymorphisms (SNPs), respectively (Table 2). For the first run, 
all VCF files were concatenated using bcftools concat before running the different D 
statistic calculation tools, while for the large dataset tools were run on each of the 100 
chromosomes individually. See Table 3 for results and Fig. 3.  

Simulations for f-branch power assessment 

In order to assess how often f-branch is able to correctly identify a gene flow event, we 
performed coalescent simulations on random trees similar to above, but with a single gene 
flow event, different combinations of gene flow strength (0.01, 0.025. 0.05. 0.1, 0.2) and 
different numbers of SNPs used as input for Dsuite (1e4, 1e5, 1e6), producing 100 replicates 
per parameter combination. We then assessed whether the strongest signal in the f-branch 
matrix is consistent with the gene flow receptor and donor.  

In particular, random species trees were produced using: 
dendropy's treesim.birth_death_tree function  
with options birth_rate=1, death_rate=0, num_extant_tips=n_species, gsa_ntax=n_species+1 
and random_tree_process='birth_death' 
 
Gene flow events were added using the function 
treetools.get_random_geneflow_species_tree 
with options n_species=30, n_gene_flow_events=1, sample_sizes=2 (single diploid 
individuals), and a variable gene flow strength between 0.01 and 0.2 (see Fig. 4).  

In order to specifically assess the performance of f-branch in identifying internal branches that 
receive gene flow (which is not possible with regular D statistics or f4-ratios), we produced for 
each parameter combination 100 replicates where the gene flow recipient was a terminal 
branch, and 100 replicates where the gene flow recipient was an internal branch.  

Simulations were run using the same parameters and functions as in the simulation to assess 
computational performance of Dsuite (simulate.msprime_input_from_split_tree, 
simulate.simulate_to_vcf), but, here, a single chromosome of 10 Megabases was 
simulated per replicate. This yielded VCF files with ~ 2.5 million SNPs per replicate. We then 
ran Dsuite Dtrios and Dsuite Fbranch three times on each replicate, providing the original 
simulation tree, and using the --region=1,{n_snps} option of Dsuite Dtrios to restrict the 
analyses to 1e4, 1e5, and 1e6 SNPs, respectively.  

We then assessed, for each replicate, whether the recipient and donor were correctly identified 
in the following way: 

● A recipient branch was scored as correct if the row (b, "y-axis") of the maximum f-
branch signal corresponded to the gene flow recipient branch. 

● A donor was scored as correct if the column (P3, "x-axis") of the maximum f-branch 
signal corresponded to the gene flow donor branch or its descendant. (The latter is 
necessary because there are no internal branches among the columns of f-branch. 
Internal donor branches cannot be directly identified.)  

● Since gene flow into a branch also results in excess allele sharing of its sister branch 
with their closest relatives, we also assessed cases where the row of the maximum f-



branch signal corresponded to the sister branch of the true gene flow recipient. These 
cases are shown with light colour shades in Fig. 4a,b..  

● Conversely, cases where the column of the maximum f-branch signal corresponded to 
a descendant of the sister branch of the true donor are shown in light colour shades in 
Fig. 4c,d. 



Using genotype likelihoods or probabilities in allele frequency estimates  

Dsuite estimates allele frequencies for each biallelic SNP and each population by default 
from the called genotypes in the VCF file (the GT field). In addition, we provide an option to 
use genotype probabilities (GP field) produced for example by genotype imputation software 
such as BEAGLE, or genotype likelihoods (either GL or PL fields) produced by variant callers 
such as GATK.   
 
For each biallelic SNPs and population, we estimate 𝐴𝐹#!", the alternative allele frequency 
from genotype probabilities as: 

𝐴𝐹#!" =
∑ 𝑃(𝐺# = 1|𝐷) + 2 ∗ 𝑃(𝐺# = 2|𝐷)$
#%&

2𝑛  

where, for each individual 𝑖 among {1…𝑛} sampled from a population, 𝑃(𝐺# = 1|𝐷) denotes 
the posterior probability of a heterozygous genotype, and 𝑃(𝐺# = 2|𝐷) is the posterior 
probability of the genotype homozygous for the alternative allele.  

 
We base genotype priors for each individual on estimates of allele frequency obtained from 
called genotypes (𝐴𝐹#!') and assume Hardy-Weinberg Equilibrium. Therefore, we set the 
genotype priors as follows: 

𝑃(𝐺# = 0) = 	 3𝐴𝐹#!'4
( 

𝑃(𝐺# = 1) = 	𝐴𝐹#!' ∗ 31 − 𝐴𝐹#!'4 

𝑃(𝐺# = 2) = 	 3𝐴𝐹#!'4
( 

where 𝑃(𝐺# = 0) denotes the prior probability for the genotype homozygous for the reference 
allele, 𝑃(𝐺# = 1) for the heterozygous genotype, and 𝑃(𝐺# = 2)	for the genotype homozygous 
for the alternative allele. 
 
Finally, we obtain the posterior genotype probabilities from genotype likelihoods by calculating 
for each possible genotype 𝑔 = {0,1,2} 

𝑃(𝐺# = 𝑔|𝐷) = 	
𝑃(𝐷|𝐺# = 𝑔) ∗ 𝑃(𝐺# = 𝑔)

∑ 𝑃(𝐷|𝐺# = 𝑔) ∗ 𝑃(𝐺# = 𝑔))
 

where 𝑃(𝐷|𝐺# = 𝑔) denotes the likelihood of genotype 𝑔. 


