Supplementary Data for:

Haptoglobin genotype and outcome after aneurysmal subarachnoid haemorrhage

Matthew J Morton PhD^{1#}, Isabel C Hostettler MD^{2#}, Nabila Kazmi PhD^{3#}, Varinder Alg MBBS², Stephen Bonner PhD⁴, Martin M Brown FRCP², Andrew Durnford MBBS⁵, Ben Gaastra MBBS⁵, Patrick Garland PhD¹, Joan Grieve MD⁶, Neil Kitchen PhD⁶, Daniel Walsh PhD⁷, Ardalan Zolnourian MBBS⁵, Henry Houlden PhD⁸, Tom R Gaunt PhD³, Diederik Bulters FRCS⁵, David J Werring PhD, FRCP^{2\$}, Ian Galea PhD, FRCP^{1\$*} on behalf of the Genetics and Observational Subarachnoid Haemorrhage (GOSH) Study investigators

[#] joint first authorship

^{\$} joint senior authorship

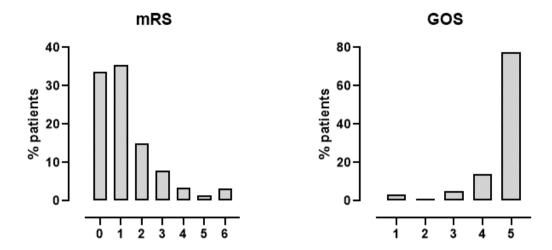
^{*} corresponding author

¹ Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, UK

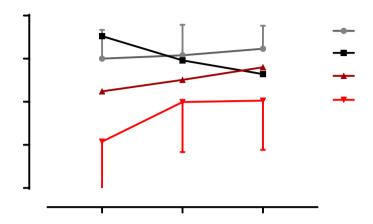
² Stroke Research Centre, UCL Queen Square Institute of Neurology, University College London, London, UK

³ MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

⁴ Department of Anaesthesia, The James Cook University Hospital, Middlesbrough, UK


⁵ Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK

⁶ Department of Neurosurgery, The National Hospital of Neurology and Neurosurgery, London, UK


⁷ Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK

⁸ Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK

Supplementary Figure 1. mRS and GOS in the analysis population.

Supplementary Figure 2. Mean predicted probability of favourable outcome (mRS: 0-1) \pm standard deviation, by *HP* CNV and undichotomized Fisher grade. Contrasts: (1) At high Fisher: p=0.013, Odds ratio = 2.69 (95% CI: 1.2-5.9) for HP2-2 *versus* HP1-1; (2) At low Fisher: p=0.42, Odds ratio = 2.33 (95% CI: 0.30-17.9) for HP2-2 *versus* HP1-1. Error bars are only shown for Fisher I and IV to enhance readability.

Supplementary Table 1. Frequencies of *HP* CNV and rs2000999 genotypes in GOSH and ALSPCA cohorts: n (%).

	HP1-1	HP2-1	HP2-2	Total	χ² vs GOSH
GOSH	205 16%	612 47%	481 37%	1298 100%	
ALSPAC	137 15%	418 45%	372 40%	927 100%	NS

	rs2000999 AA	rs2000999 AG	rs2000999 GG	Total	χ² vs GOSH
GOSH	57 5%	379 29%	854 66%	1290 100%	
ALSPAC	34 4%	229 31%	485 65%	748 100%	NS

Supplementary Table 2. Multivariable linear regression of plasma haptoglobin level *versus* the *HP* CNV and rs2000999 in the ALSPAC cohort (n=325). *HP* CNV was considered as the exposure and plasma haptoglobin level as the outcome, with adjustment for covariates rs2000999 and sex (model fit: r2=0.23, $p=2.2\times10^{-16}$).

	Coefficient	SE	Lower 95% CI	Upper 95% CI	p value
HP CNV	-0.2641	0.0354	-0.334	-0.195	8.46×10 ⁻¹³
rs2000999	-0.1356	0.041	-0.217	-0.054	0.00124
Sex (reference male)	-0.136	0.046	-0.227	-0.045	0.0037

Supplementary Table 3. Demographics and clinical characteristics of the CSF cohorts. Mean & SD^a , number and $\%^b$.

	High Fisher grade	Low Fisher grade
Collection	Prospective	Retrospective
Number	44	8
Age (years) ^a	59.8 ± 12.3	52.8 ± 9.0
Sex ^b male female	15 (34%) 29 (66%)	2 (25%) 6 (75%)
Hypertension ^b Yes No	23 (52.3%) 21 (47.7%)	1 (12.5%) 7 (87.5%)
WFNS ^b 1 2 3 4 5	5 (11.4%) 10 (18%) 6 (13.6%) 15 (29.5%) 8 (13.6%)	7 (87.5%) 1 (12.5%)
Fisher grade ^b 1 2 3 4	2 (4.5%) 42 (95.5%)	7 (87.5%) 1 (12.5%)
Aneurysmal management ^b Coiled Clipped Supportive	32 (72.7%) 5 (11.4%) 6 (13.6%)	3 (37.5%) 4 (50%) 1 (12.5%)

Supplementary Table 4. Analysis after imputation of missing values. Eight variables had missing values (range 0.7-7.4%). The findings were similar to the complete case analysis, namely (1) an interaction between *HP* and Fisher; (2) a protective effect of HP2-2 at high but not low Fisher grade; (3) a poor prognostic effect of a high Fisher category was present in HP1-1 but not HP2-2 patients.

Imputation number										Dooled im	tation
1		2		3		4		5 Pooled impu		outation	
OR	p	OR	p	OR	p	OR	p	OR	p	OR	p

Fisher x HP		0.008		0.052		0.014		0.032		0.003		
Fisher at HP1-1	3.9 (1.6-9.6)	0.003	3.4 (1.4-8.1)	0.005	4.7 (1.8-12.2)	0.001	3.1 (1.3-7.3)	0.008	3.7 (1.5-9.2)	0.004	3.7 (1.4-9.7)	0.007
Fisher at HP2-2	0.9 (0.5-1.5)	0.685	1.0 (0.6-1.8)	0.89	1.0 (0.6-1.7)	0.987	0.9 (0.5-1.6)	0.781	0.8 (0.5-1.6)	0.411	0.9 (0.5-1.6)	0.799
HP		0.011		0.046		0.043		0.012		0.025		
HP2-2 vs HP1-1 at low Fisher grade	0.5 (0.2-1.3)	0.151	0.6 (0.3-1.4)	0.255	0.4 (0.2-1.1)	0.077	0.7 (0.3-1.6)	0.373	0.4 (0.2-1.1)	0.073	0.5 (0.2-1.4)	0.194
HP2-2 vs HP1-1 at high Fisher grade	2.3 (1.3-4.0)	0.003	2.0 (1.2-3.5)	0.013	2.0 (1.2-3.5)	0.012	2.3 (1.3-4.0)	0.003	2.1 (1.2-3.6)	0.009	2.1 (1.2-3.8)	0.01