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Supplementary Methods  
 
 
1: Details on task versions, related to Figure 1. 
During the experiment, each participant performed two task versions of the experiment that 
differed in the type of predictor stimuli. The two versions were performed on different days. 
In one version, faces represented advisors that predicted a target accurately or less accurately. 
In a second version, fruits represented the target that fell with a small or large distance from a 
tree. Differences between versions aimed to compare social and non-social conditions. Both 
versions only differed in their framing but were matched in statistical properties and 
counterbalanced across subjects. Here, reported results are averaged across conditions as they 
do not differ between versions. The depiction of the experimental design summarises key 
features that were common to both social and non-social conditions.  
 
 
2: Alternative computational models, related to Figure 2, Extended Data Figure 1 and 2. 
 
This section relates to the Method: Alternative computational models section and to Extended 
Data Figure 1 and 2. Here, we describe in detail how these alternative computational models 
were derived. We constructed two alternative computational models: a) a Bayesian model 
with informative priors (Extended Data Figure 1) and b) a reinforcement learning model (RL) 
tracking payoff history (Extended Data Figure 2). 
 
Bayesian model with informative priors 
 
There is a possibility that by selecting different predictors across time, participants form a 
representation of the likelihood of sigma values that can be associated with predictors. In 
consequence, participants’ beliefs at a block start would not be represented by a uniform prior 
distribution but rather by a prior distribution that had been informed by past observations. To 
test this, we developed a Bayesian model with priors that have been informed by past 
observations, we refer to these as informative priors (Extended Data Figure 1A). Ultimately, 
we compare the model fit between a Bayesian model with informative and uniform priors, i.e. 
referred to as the original model used in the current study. 
We modified the Bayesian model to include block-wise priors that reflect the previous history 
of all observations (irrespective of predictor). First, to obtain informative priors for each 
block start, we constructed a separate Bayesian model that did not differentiate between 
predictor identity but instead learnt about all observations as derived from a single 
distribution (‘average predictor learner’). We used a uniform distribution for the first block 
for all participants. The subsequent prior distributions at the end of each block differed across 
participants as the shape of the distribution was dependent on individual choice behaviour 
and on the number of observations within a block.  
Second, we combined these informative priors with the original Bayesian model used in the 
manuscript. In other words, at the beginning of each block, we set the prior distribution for 
each predictor to the posterior of the average predictor learner from the end of the previous 
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block (Extended Data Figure 1A, bottom illustration). Then, however, each predictor’s 
distribution was updated according to the observations specific to each predictor (referred to 
as adaptive model, green colours). 
We derived estimates of accuracy and uncertainty and repeated all behavioural analyses of 
interest. We replicated all effects of interest even when using informative priors (accuracy, 
t(23) = 4.7, p<0.001, d=0.96, 95% confidence interval=[0.91 2.3]; uncertainty, t(23) = 1.2, p= 
0.25, d=-0.24, 95% confidence interval=[-0.77 0.21]; uncertainty x block time, t(23) = 6, 
p<0.001, d=1.2, 95% confidence interval=[0.83 1.73]; accuracy x block time, t(23) = 2.6, p= 
0.015, d=-0.54, 95% confidence interval=[-1.1 -0.13]) (Extended Data Figure 1B). Next, we 
compared the model fit between the adaptive and original Bayesian model (Extended Data 
Figure 1C). We show that a Bayesian model using uniform priors has a better fit to choice 
behaviour than the adaptive Bayesian model. One reason might be that a uniform prior 
provides more flexibility for estimates to converge towards their true value across time.  
It is important to keep in mind, that for behavioural and neural analyses, variables are 
constructed in relative terms, for example as the difference between left and right predictors 
or the difference between chosen and unchosen predictors. Hence, their relative values rather 
than their absolute values determine choice behaviour. When changing prior belief 
distributions, only the absolute values change while the relative values keep the same 
proportions (Extended Data Figure 1D). For this reason, our key results remain unchanged 
when modifying initial block-wise priors.  
Next, we used a descriptive analysis to show that prior beliefs do not show a major change 
across blocks (Extended Data Figure 1E). We used the confidence interval size at each block 
start averaged across four predictors as an index of prior beliefs and compared it across all 
(six) blocks. A one-way ANOVA applied to the first encounters across six blocks (red line) 
shows that participants increase their CI size across time (Mauchly’s test indicated a violation 
of equal variances: x2(14)=37.4,p=0.001, therefore we used Greenhouse Geiser test: 
F(2.9,66.23) = 17.15, p<0.001, h2=0.9). This effect however is mainly driven by the 
difference between the first and the remaining blocks. Excluding the first block from the 
analysis did not show credible evidence for a change of CI sizes during the first encounters 
across blocks (Mauchly’s test indicated a violation of equal variances: x2(9)=23,p=0.006, 
therefore we used Greenhouse Geiser: F(2.6,92) = 2.5, p =0.076, h2=0.71, Bayes 
factor10=0.91, error%=0.36). Participants performed practice trials before the actual 
experiment during which they encountered very accurate predictors. Although participants 
were instructed that these observations were not reflective of the real experiment, 
nevertheless beliefs prior to the first block might have been impacted by observations made 
during these practice trials. In conclusion, analysis of the CI does not support the contention 
that participants narrow their initial expectation about the predictors over the course of the 
experiment. This suggests further that a very broad initial prior is a plausible assumption for 
the Bayesian modelling and suggests why a Bayesian model using a uniform prior is a better 
model fit for choice behaviour. 
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Reinforcement learning model tracking payoff history 
 
Next, we compared the original Bayesian model to a reinforcement learning model (RL) 
(Extended Data Figure 2). We constructed an RL that learnt about the payoff history 
associated with each predictor. The payoff scheme used in this experiment reflects the 
participants’ beliefs in the accuracies and certainties associated with chosen predictors, 
however it may itself exert an additional independent effect on behaviour and neural activity.  
For every subject, we fitted a standard RL model to each predictor’s payoff history to 
estimate the expected value associated with that predictor at a given trial. On every trial t, the 
expected value associated with a predictor was updated using a prediction error (PE) based 

learning rule with a learning rate α as a free parameter: 

 

Value (t+1, predictor) = value (t, predictor) + α * PE (t, predictor)  

 
The PE was calculated according to the difference between the payoff and the value estimate 
for the specific predictor at the current trial t: 
 

PE (t+1,predictor) = payoff (t, predictor) – value (t, predictor) 

 
For behavioural analyses, we calculated a decision variable (DV) for each trial that reflected 
the difference in the expected values between the left and right predictors: 
 

DVleft-right predictors = value (left predictor) – value (right predictor) 

 

We used a softmax function with an inverse temperature ß to calculate the probability of 
making a leftwards choice on each trial: 
 

P(left predictor) = 1/ (1+ exp(-ß * DVleft-right predictors)) 
 

Note for neural analyses, the DV was calculated between the chosen and unchosen predictors 
in their respective expected value.  
First, we included the RL-derived value difference between predictors on a given trial into 
our main GLM to investigate whether the other effects of interest remained stable. We 
replicated all effects of interest when controlling for RL value difference (accuracy, t(23) = 
5.5, p<0.001, d=1.1, 95% confidence interval=[0.48 1.1]; uncertainty, t(23) = -3.1, p= 0.0049, 
d=-0.63, 95% confidence interval=[-0.75 -0.15]; uncertainty x block time, t(23) = 5.2, 
p<0.001, d=1.1 , 95% confidence interval=[0.49 1.13]; accuracy x block time, t(23) = -6.8, 
p<0.001, d=-1.4, 95% confidence interval=[-0.84 -0.44] and RL value difference, t(23) = 
11.9, p<0.001, d= 2.43, 95% confidence interval=[0.7 0.99]) (Extended Data Figure 2A). 
This is consistent with the relative lack of correlation between variables derived from the 
Bayesian model and the RL model (Extended Data Figure 2B). Next, we compared the fits 
between models of choice behavior for all trials (Extended Data Figure 2C). There are three 
possible models: a GLM applied to choice behaviour first, only including regressors from a 
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RL model (regressor: RL value difference, yellow) second, a model only including 
previously used Bayesian-derived regressors (regressors: Bayesian model/original model, 
grey) or third, a combination of regressors of both models (regressors: RL value difference 
and Bayesian model regressors). A GLM model that combined (combination shown in red 
bars) regressors of the RL value model and the original Bayesian model was the best fit for 
choice behaviour, supporting the relevance of value-based and information-based variables in 
explaining choice behaviour.  
As the combination of both RL-derived variables and Bayesian-derived variables showed the 
best model fit, we repeated a whole-brain analysis including regressors from both models to 
apply to neural data across all trials (see Methods, fMRI-GLM1 for details on the original 
model, to which we added RL value difference as regressor). This analysis had two aims: 
first, to replicate a domain general prediction difference across trials when controlling for 
variance explained by the RL value difference and second, to investigate brain regions 
associated with RL value difference. We replicated a domain general prediction difference in 
vmPFC even when we incorporated the RL value difference into the GLM model (Extended 
Data Figure 2D; top: domain general prediction difference; cluster-corrected, MNI x/y/z-peak 
coordinates: [4 44 -4]; z-value: 4.05). We did not find any activation significantly cluster-
corrected for RL value difference. However, the activation that was strongest was located 
within vmPFC (Extended Data Figure 2D; bottom panel: RL value difference; MNI x/y/z-
peak coordinates: [-10 46 -2]; z-value: 2.27]. In conclusion, RL value terms complement the 
Bayesian model but do not substitute for the Bayesian model terms as an explanation of 
behaviour; participants’ beliefs in the accuracy and uncertainty of a predictor explained 
additional variance in choice behaviour above and beyond that explained by their choice 
value estimates. 
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Supplementary Figures  
 
3: Information related to Method/ experimental design 
 

 
 
Supplementary Figure 1, related to Figure 3 and Figure 5. Correlation between 
variables included in behavioural and neural analyses.  
Correlations represent an average across all participants: first, correlations were averaged for 
each subject across sessions and then averaged across subjects. All regressors were 
normalized before they were applied to the data. Interaction terms were treated identical to 
the behavioural analyses: they were normalized before and after multiplication before 
including them into the analysis. See methods part for further details on the specific analyses. 
(A) Regressors used for behavioural choice GLM1. (B) Regressors used in neural fMRI-
GLM1. (C) Regressors used in neural fMRI-GLM2.  
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Supplementary Figure 2, related to Figure 4D. Correlation between accuracy, 
uncertainty and time. (A) The aim of the study is to show that choice behaviour and neural 
activity are influenced by two independent beliefs, the accuracy and uncertainty associated 
with an option. To be able to examine this, it is essential that variables are sufficiently 
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independent from each other. Here, we elaborate how experimental features of the design 
helped us to decorrelate accuracy and uncertainty across trials within the experiment. To 
make the impact of experimental features clear, we first simulate a scenario during which 
uncertainty and accuracy estimates are highly correlated and then we show that this simulated 
scenario does not apply to the current study and further we show why it does not apply. (A-i) 
Simulated scenario: If participants were to be repeatedly offered the same pair of predictors 
and if they were to repeatedly choose the good predictor over the bad one (illustration A-i), 
then accuracy and uncertainty would be highly correlated across time. (A-ii) The simulated 
scenario shows the development of accuracy and uncertainty (difference between chosen and 
unchosen predictor) across a long horizon when repeatedly selecting the same better predictor 
over the same bad predictor. (A-iii) In such a case, accuracy and uncertainty estimates would 
correlate highly, as both estimates decrease across time. (B) However, the procedure used in 
our experiment was quite different. (B-i) During the experiment, participants were not 
offered the same two predictors at each trial. Instead, blocks include four predictors of 
different sigma values. Further, predictors were introduced at slightly different times during 
the experiment and the net result of this was that the set of predictors available on each trial 
were associated with a range of accuracy and uncertainty estimates. (B-ii) Changing the 
predictor offers across time creates a variety of prediction differences during early and late 
phases within a block (illustrated with data from an example participant). This can be seen in 
the variety in values across time. This variety is much greater than in the first scenario 
illustrated in A-ii. (B-iii) In consequence, accuracy and uncertainty prediction differences are 
decorrelated across time within a block and that remains true even if we examine the first and 
second halves of blocks separately. (C) In a more general sense, one could ask how variables 
of accuracy and uncertainty prediction differences develop across time or whether they are 
correlated with a linear trend, i.e. a block time variable. (C-i) Here, we show that both 
prediction differences of accuracy and uncertainty correlate respectively, r=0.12 (95% 
confidence interval = [-0.3 0.5]) and r=0.3 (95% confidence interval = [-0.12 0.63])  with 
‘block time’ across participants. Hence, results depicted in the manuscript are not confounded 
by a ‘block time’ effect. (C-ii) To show that ‘block time’ does not account for the variance 
explained by the combination of accuracy and uncertainty prediction differences, we applied 
a similar GLM to fMRI-GLM1 (see Methods) across all trials including uncertainty and 
accuracy prediction differences and ‘block time’ as variables. Thereby, we controlled for 
variance explained by ‘block time’. A time course analysis was extracted from a previous 
cluster-corrected vmPFC ROI and showed that when controlling for ‘block time’, a domain 
general prediction difference could still be replicated in vmPFC (leave-one-out; t(23)=3, 
p=0.001, d=0.76, 95% confidence interval=[0.053 0.18]). (n = 24; error bars are SEM across 
participants). 
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4: Information related to neural results 
  
 

 
 
 
Supplementary Figure 3, related to Figure 4A. Domain general prediction difference 
across all trials.  
A “domain general prediction difference” correlated with activation in vmPFC. (A) The 
effect was tested, firstly, by calculating the mean across both absolute contrasts of uncertainty 
(Figure 4A-i) and accuracy prediction differences (Figure 4A-ii). (B) Secondly, we tested the 
effect as conjunction of shared variance between these two absolute contrasts. See Methods 
section for more details. (n=24; whole-brain effects were family-wise error cluster corrected 
with z > 2.3 and p < 0.05, see Table S17 for cluster peak coordinates. Z-thresholds indicated 
in figure panels are used for visualisation only.  
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Supplementary Figure 4, related to Figure 4,5. Absence of uncertainty prediction 
difference during random exploration in vmPFC and dACC.  
We showed that vmPFC and a more widespread network centred on dACC represents 
uncertainty prediction difference during directed exploration (Figure 5). Here, we show that 
this neural signature is unique to directed exploration and is absent during random 
explorative selections between predictors. (A) Selections during random explorative phases 
were defined as being directed towards inaccurate (negative accuracy prediction difference) 
and less uncertain predictors (negative uncertainty prediction difference). (B) We show that 
during random exploration, neither vmPFC (leave-one-out test, t(23) = -0.47, p= 0.64, d=-
0.096, 95% confidence interval = [-0.09 0.05], Bayes factor10 = 0.24, error %=0.034) nor 
dACC (leave-one-out test, t(23) = -1.1, p= 0.28, d=-0.23, 95% confidence interval = [-0.11 
0.032], Bayes factor10 = 0.37, error %=1.21e-4) represented an uncertainty prediction 
difference. (n = 24; error bars are SEM across participants). 
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Supplementary Figure 5, related to Figure 4C. Polarity change of uncertainty between 
behavioural modes cannot be explained by an absolute uncertainty prediction 
difference.  
We have shown that vmPFC represents the uncertainty between predictors with opposing 
signs during exploration (positive uncertainty prediction difference) and exploitation 
(negative uncertainty prediction difference). However, it is possible to construct an 
alternative account of the observed sustained uncertainty activation across behavioural 
modes, according to which it reflects an “absolute uncertainty prediction difference” within 
both modes. To test for this alternative, we included the absolute uncertainty prediction 
difference as an additional regressor into the previously used ROI-analysis (fMRI-GLM2). 
During exploration, both the absolute uncertainty and uncertainty prediction differences are 
identical as in both cases, trials are defined by a positive uncertainty prediction difference, 
i.e. choosing the more uncertain predictor. Therefore, we analysed the exploitation phase to 
dissociate between the two alternative explanations. Trials within exploitation are defined by 
both, positive and negative uncertainty prediction differences and therefore the polarity 
switch should not be affected by the additional regressor of an absolute uncertainty prediction 
difference. We can replicate the negative uncertainty prediction difference during 
exploitation when controlling for the absolute uncertainty prediction difference (t(23) = -4.5, 
p<0.001, d=-0.92,95% confidence interval=[-1.56 -0.06]; n = 24; error bars are SEM across 
participants). 
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Supplementary Figure 6, related to Figure 5. Dorsal anterior cingulate cortex encodes 
accuracy and uncertainty predictor differences during exploration.  
During exploration trials, in the decision phase, dorsal anterior cingulate cortex (dACC) 
exhibited a distinctive neural activity pattern by representing both features of the chosen 
predictor, as opposed to the unchosen predictor, that defined the exploration period (compare 
explore/exploit trial separation in Extended Data Figure 4): a positive uncertainty and 
negative accuracy prediction difference. (n=24; whole-brain effects family-wise error cluster 
corrected with z > 2.3 and p < 0.05.) 
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Supplementary Figure 7, related to Figure 5. Frontopolar cortex, dlPFC and dACC 
represent uncertainty prediction difference during exploration, but not exploitation and 
thereby show a distinct profile compared to vmPFC. 
(A) Our analyses also identified regions that have been previously associated with 
exploration, namely frontopolar cortex and dorsolateral prefrontal cortex (dlPFC). 
Frontopolar cortex has been causally linked to the exploration of uncertain options3(MNI 
x/y/z-peak coordinates: [35,50,15]). Similarly, dorsolateral prefrontal cortex has been 
associated with the mean uncertainty between two options4(MNI x/y/z-peak coordinates: [46 
14 28]). dACC is active during exploration5 and choosing alternative options during 
foraging6. Fixation crosses show the peak of brain clusters reported in these previous studies. 
In our study, our contrast of uncertainty prediction difference during the exploration decision 
phase highlights similar regions in frontopolar cortex (A-i: MNI x/y/z-peak coordinates: [-
40,50,14]), dlPFC (A-ii: MNI x/y/z-peak coordinates: [38 10 28]), and dACC6 (A-iii: MNI 
x/y/z-peak coordinates: [0, 28,30]) ). (B) We illustrate the effects of uncertainty prediction 
difference during exploitation. We used an ROI approach to visualise the (absence of an) 
uncertainty prediction difference in frontopolar cortex and dlPFC. ROIs were extracted 
according to cluster-corrected regions that were close to previous reported areas and 
associated with the uncertainty prediction difference during exploration (see coordinates in 
previous brackets). There was no polarity change in the representation of uncertainty when 
comparing exploration to exploitation, because none of the brain areas represented a negative 
prediction difference during exploitation (no cluster survived cluster-correction with z>2.3; 
time courses are shown for illustration). These areas, as well as vmPFC are involved in 
representing uncertainty during exploration, however their profile diverges during 
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exploitation as a polarity change is only observed in vmPFC. (n=24, whole-brain effects were 
family-wise error cluster corrected with z > 2.3 and p < 0.05.) 
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Supplementary Figure 8. Exploration/ Exploitation classification and the robustness of 
neural results when modifying their boundaries. (A-i) Here, we elaborate on the logic of 
exploration/exploitation classification used in the study. For detailed information on how 
trials were classified, see Extended Data Figure 4. (1) Exploration/ exploitation has often 
been described as a dichotomy or a trade-off, representing two distinct behavioural modes4,5. 
(2) Previous studies have defined exploitation and exploration, respectively as choosing 
options with higher or lower expected values, respectively5 (A-i, left panel). (3) Other 
studies, however, have defined exploration as being directed towards options with higher 
relative uncertainty4 (A-i, right panel ). However, we merged all three principles for 
distinguishing between explore-exploit trials and define exploration and exploitation in 
reference to both uncertainty and accuracy/value as used in the current study (A-ii). (B-i) We 
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tested the robustness of the polarity change in vmPFC’s representation of uncertainty during 
exploration and exploitation by examining the impact of modifying the classification 
boundary between exploration and exploitation. More precisely, trials with both a positive 
accuracy and a positive uncertainty prediction difference could, in fact, be allocated to either 
exploration or exploitation. We used a rule to classify these trials (see Extended Data Figure 
4), however here we show that neural results are robust when changing the classification 
boundaries. We removed the entire quadrant of trials (positive accuracy, positive uncertainty 
prediction differences) from our analyses and were still able to replicate the polarity switch of 
uncertainty prediction difference in vmPFC when comparing exploitation and exploration 
(paired t-test, t(23) = 2.8, p=0.01, d=0.56, 95% confidence interval=[0.03 0.23]). (B-ii) 
Another robustness check can be applied to the classification of trials that had a small 
difference between accuracy and uncertainty prediction differences (below an arbitrary value 
of 5). These trials were previously classified into both exploration and exploitation categories 
(Extended Data Figure 4). When excluding these trials from the analysis, a polarity change of 
uncertainty prediction difference in vmPFC could be replicated (paired t-test, t(23) = 3.5, 
p=0.003, d=0.67, 95% confidence interval=[0.035 0.15]). (n = 24; error bars are SEM across 
participants). 
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Supplementary Figure 9, related to Figure 7. (The absence of) accuracy-related signals 
during exploration, exploitation, and the transition between exploration and 
exploitation. These results relate to Figure 7 and support the contention that vmPFC 
processes accuracy prediction differences during the transition period between exploration 
and exploitation. (A) Example of one subject showing explore, exploit and transitional 
choices (one data point is one choice). Exploratory (blue crosses) and exploitative (red 
crosses) choices were categorised as described in Extended Data Figure 4A. Transitional 
trials (green circles) were identified independently of the criteria used to identify 
explore/exploit trials; they were defined by a positive but small accuracy prediction 
difference in the range of [5 20], which resulted into approximately 20% of the trials (see 
methods for details). (B) To further show the specificity of accuracy prediction difference in 
vmPFC during transitional trials, we show that vmPFC lacks an accuracy prediction 
difference signal during strong inaccuracy-driven (B-i; trials on the left-hand side of the 
transition trials) and strong accuracy-driven (B-ii; trials on the right-hand side of the 
transition trials) selections. These selections are likely to occur during very exploratory (A-i) 
or exploitative (A-ii) periods. Time courses of positive uncertainty (blue) and negative 
uncertainty (green) or accuracy (orange) prediction differences are plotted in the previously 
defined vmPFC region that showed a cluster-corrected effect of, respectively, accuracy or 
uncertainty prediction differences across all trials (see Figure 4A; we used the respective 
other contrast for ROI selection to guarantee independence of ROI analysis from ROI 
selection). Accuracy-processing is specific to the transitional period (Figure 7B) and does not 
occur during the period before (B-i: t(23)=-0.84, p=0.41, d=-0.17, 95% confidence 
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interval=[-0.13 0.055], Bayes factor10=0.296,%error=0.037) of after (B-ii: t(23)=-1.3, p=0.21, 
d=-0.27, 95% confidence interval=[-0.06 0.02], Bayes factor10=0.447,%error=1.178e-4). 
During extreme inaccuracy-driven choices that are prominent during exploration, uncertainty 
prediction difference had a marginally significant effect on vmPFC activity (t(23) = 2, p= 
0.059, d=0.4, 95% confidence interval= [-0.004 0.2], Bayes factor10=1.14,%error=1.002e-4) 
while during extreme accuracy-driven trials, which are prominent during exploitation, 
vmPFC activation represents a negative uncertainty prediction difference (t(23) = -3.8, 
p<0.001, d=-0.8, 95% confidence interval = [-0.12 -0.03]. Note that we used here an even 
stricter cut-off to define exploration/exploitation periods (compared to Extended Data Figure 
4), and it was still possible to show support for a change in the polarity of vmPFC signals, 
from positive to negative uncertainty, during exploration and exploitation, respectively 
(compare to Figure 4C). (C) Here, we show how choice behaviour during each learning 
period (exploration, exploitation and their transition) relate to neural findings in vmPFC. We 
applied a GLM including accuracy and uncertainty differences between left and right 
predictors to predict leftwards choices in each block period (exploration, transition, and 
exploitation). We observe an analogous result in choice behaviour during each learning 
period as was observed neurally in vmPFC: we observe a polarity change in the direction of 
influence of uncertainty on behaviour as well as neural activity when transitioning from 
exploration to the next block period. The effect of accuracy increases across learning phases, 
peaking within the transition period, before decreasing during exploitation. A fuller summary 
of the behavioural results shows that, choices are initially directed towards uncertain options, 
then accurate options, but the influence of accuracy diminishes towards the final exploitation 
period. Note that this GLM serves as a manipulation check only, as trials were separated into 
each category according to the difference between accuracy and uncertainty prediction 
differences (therefore standard errors are small). (D) In the present task, during exploitation, 
activity in parietal cortex reflected accuracy prediction difference (MNI x/y/z-peak 
coordinates: [44,-56,40]; z-value = -2.47). This is in line with previous studies, which have 
reported that activity in frontal regions such as vmPFC that is related to value difference is 
most important during difficult decisions7 that occur at an earlier rather than later stage in 
task experience8 (n = 24 for analyses shown here). 
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Supplementary Tables  
 
5: Peak- coordinates of cluster-corrected whole brain effects 
 
Supplementary table 1, related to Figure 4A. These cluster-corrected coordinates relate to 
results depicted in Figure 4A of the main manuscript. 
Contrast Region Peak Coordinates x/y/z 

(in mm MNI Space) 
Z Value 

Uncertainty prediction 
difference: chosen - 
unchosen 

Ventromedial prefrontal 
cortex 

4 44 -2 -4.44  

 Occipital cortex -8 -70 -4  -3.59 
Accuracy prediction 
difference: chosen - 
unchosen 

Ventromedial prefrontal 
cortex 

6 44 -4 3.98 

 Superior temporal gyrus  -52 -2 -12 3.38 
Family-wise error cluster corrected, z > 2.3, p < 0.05  
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Supplementary table 2, related to Figure 5. These cluster-corrected coordinates relate to 
results depicted in Figure 5 of the main manuscript.  
 
Contrast Region Peak Coordinates x/y/z 

(in mm MNI Space) 
Z Value 

Exploration: uncertainty 
prediction difference 

Ventromedial prefrontal 
cortex  

0 46 -4  3 

 Dorsal Anterior 
Cingulate Cortex  

-4 30 34 5.44 

 Dorsal lateral prefrontal 
cortex (right)  

38 10 28  5.75 

 Frontopolar cortex (left) -40 50 14 3 
 Superior temporal gyrus 48 -10 -14 4.38 
 Angular gyrus  30 -52 42 3.5 
 Fusiform gyrus 30 -76 -12 7.1 
Exploitation: 
uncertainty prediction 
difference  

Ventromedial prefrontal 
cortex 

-4 46 -2 -4.26 

 Anterior insular (right) 34 18 -10  -4.57 
 Ventral tegmental area  0 -22 -22 -4.11 
 Occipital cortex -24 -72 -12 -3.79 
 Occipital cortex 26 -80 -12 -3.99 
Exploration – 
Exploitation: 
uncertainty prediction 
difference 

Ventromedial prefrontal 
cortex 

-2 46 -4 5.1 

 Dorsal Anterior 
Cingulate Cortex 

-2 28 38  5.9 

 Fusiform gyrus 30 -76 -12 9 
 Cerebellum -2 -54 -36 6.7 
 Superior temporal gyrus 48 -8 -14 4.9 
Family-wise error cluster corrected, z > 2.3, p < 0.05  
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Supplementary table 3, related to Figure 4A. These cluster-corrected coordinates relate to 
results depicted in Supplementary Figure 3 of the supplementary material.  
 
Contrast Region Peak Coordinates x/y/z 

(in mm MNI Space) 
Z Value 

Domain general: 
(accuracy prediction 
difference – uncertainty 
prediction difference); 
absolute of each 
individual contrast 

Ventromedial prefrontal 
cortex 

6 44 -4 5.77 

 Posterior cingulate 
cortex 

-4 -38 38 4.1 

 Dorsolateral prefrontal 
cortex 

50 36 -4 4.05 

 Superior temporal gyrus -60 -4 -10 3.84 
 Superior temporal 

junction 
-64 -44 12 4.07 

 Brainstem 8 -48 -42 4.19 
Conjunction analysis: 
(accuracy prediction 
difference – uncertainty 
prediction difference); 
absolute of each 
individual contrast 

Ventromedial prefrontal 
cortex 

6 44 -4 3.9 

Family-wise error cluster corrected, z > 2.3, p < 0.05  
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