Supplemental Information For:

Structure of a proton-powered motor that drives protein transport and gliding motility

Rory Hennell James^{1,2*}, Justin C. Deme^{1,2,3*}, Andreas Kjær², Felicity Alcock^{2,4}, Augustinas Silale^{2,4}, Frédéric Lauber², Steven Johnson¹, Ben C. Berks²⁺, and Susan M. Lea^{1,3+}

¹ Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.

² Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

³ The Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, South Parks Road, Oxford OX1 3RQ, United Kingdom.

⁴ Current address: CBCB, Newcastle University, NE17RU UK

* These authors contributed equally to this work.

+ To whom correspondence should be addressed. S.M.Lea (<u>susan.lea@path.ox.ac.uk</u>); B.C.Berks (<u>ben.berks@bioch.ox.ac.uk</u>).

Created with SnapGene®

Supplementary Figure 1. Map of plasmid used for over-expression of GldLM' (see methods).

Strain	Genotype	Reference
E. coli		
S17-1	pro, res ⁻ hsdR17 (rK ⁻ mK ⁺) recA ⁻ , RP4-2-Tc::Mu- Km::Tn7, Tp ^r	(Simon et al., 1983)
BL21 Star [™] (DE3)	F ompT hsdS _B (r_B -, m_B -) gal dcm rne131 (DE3)	Invitrogen
F. johnsoniae		
UW101		(McBride and Braun, 2004)
Fl_004	UW101 Δ <i>sprA</i>	(Lauber et al., 2018)
Fl_030	UW101 Δ <i>porV</i>	(Lauber et al., 2018)
FI_082	UW101 ΔgldL	This study
Rhj_006	UW101 ΔgldM	This study
Rhj_017	UW101 gldL _{N10A}	This study
Rhj_018	UW101 gldL _{Y13A}	This study
Rhj_024	UW101 gldL _{Y13F}	This study
Rhj_019	UW101 <i>gldL</i> _{K27A}	This study
Rhj_011	UW101 gldL _{H30A}	This study
Rhj_013	UW101 gldL _{S43A}	This study
Rhj_020	UW101 gldL _{T48A}	This study
Rhj_021	UW101 gldL _{E49A}	This study
Rhj_022	UW101 gldL _{E49Q}	This study
Rhj_025	UW101 gldL _{E49D}	This study
Rhj_023	UW101 gldL _{S56A}	This study
Rhj_035	UW101 gldM _{R9A}	This study
Rhj_032	UW101 gldM _{R9K}	This study
Rhj_029	UW101 gldM _{R9E}	This study
Rhj_012	UW101 <i>gldM</i> _{Q10A}	This study

Rhj_030	UW101 gldM _{K11A}	This study
Rhj_016	UW101 <i>gldM</i> _{N14A}	This study
Rhj_014	UW101 <i>gldM</i> _{Y17A}	This study
Rhj_015	UW101 <i>gldM</i> _{Y17F}	This study
Rhj_028	UW101 <i>gldM</i> _{N27A}	This study
Ak_73	UW101 ΔporV halo-sprB	This study
Ak_203	AK_73 $\Delta gldM$	This study
Ak_205	AK_73 $\Delta gldL$	This study
Ak_196	AK_73 <i>gldL</i> _{Y13A}	This study
Ak_197	AK_73 <i>gldL</i> _{H30A}	This study
Ak_198	AK_73 <i>gldL</i> _{K27A}	This study
Ak_199	AK_73 <i>gldM</i> _{Y17F}	This study
Ak_289	Ak_73 <i>gldM</i> _{R9K}	This study

Table S1 Bacterial strains used in this study.

Plasmid	Description ^a	Reference
pGEM-T	General cloning vector; Ap ^r	Promega
pWALDO- sfGFPd	pET28(a+) derived expression vector fusing a TEV cleavage site, superfolder GFP, and a His ₈ tag to the C-terminus of the expressed protein; Kan ^r	(Drew et al. <i>,</i> 2006)
pCDFDuet-1	Co-expression of two <i>orfs</i> under the control of T7 <i>lac</i> promoters; <i>ori</i> CDF, Sm ^r	Novagen
pETDuet-1	Co-expression of two <i>orfs</i> under the control of T7 <i>lac</i> promoters; <i>ori</i> ColE1, Ap ^r	Novagen
pT12_ SpaPQR ^{3xFLAG}	Encodes Salmonella enterica serovar Typhimurium SpaPQR operon with a C-terminal 3xFLAG tag on SpaR under the control of the <i>E. coli rhaB</i> promoter; ori cloDF13, Kan ^r	(Dietsche et al., 2016)
pYT313	<i>sacB</i> -containing mobilizable suicide vector; Ap ^r (Em ^r)	(Zhu et al., 2017)
рҮТ354	<i>sacB</i> -containing mobilizable suicide vector; Ap ^r (Em ^r)	(Zhu et al., 2017)
pRHJ006	pETDuet-1 porL-(tev)-gfp-8xHis porM-twinstrep	This study
pRHJ007	pT12 gldL gldM(1-225)-twinstrep	This study
pRHJ008	pT12 gldL gldM(1-232)-twinstrep	This study
pRHJ011	Suicide plasmid used to delete <i>gldM</i> ; 2.7-kbp upstream and 2.5-kbp downstream of <i>gldM</i> in pYT354	This study
pRHJ012	pGEM-T <i>gldL</i>	This study
pRHJ013	pGEM-T <i>gldM</i>	This study
pRHJ036	Suicide plasmid used to introduce the N10A codon change into gldL; gldL(N10A) in pYT354	This study
pRHJ037	Suicide plasmid used to introduce the Y13A codon change into gldL; gldL(Y13A) in pYT354	This study
pRHJ038	Suicide plasmid used to introduce the Y13F codon change into gldL; gldL(Y13F) in pYT354	This study
pRHJ039	Suicide plasmid used to introduce the K27A codon change into gldL; gldL(K27A) in pYT354	This study
pRHJ040	Suicide plasmid used to introduce the H30A codon change into gldL; gldL(H30A) in pYT354	This study
pRHJ041	Suicide plasmid used to introduce the S43A codon change into gldL; gldL(S43A) in pYT354	This study
pRHJ042	Suicide plasmid used to introduce the T48A codon change into gldL; gldL(T48A) in pYT354	This study
pRHJ043	Suicide plasmid used to introduce the E49A codon change into gldL; gldL(E49A) in pYT354	This study
pRHJ044	Suicide plasmid used to introduce the E49Q codon change into gldL; gldL(E49Q) in pYT354	This study
pRHJ045	Suicide plasmid used to introduce the E49D codon change into gldL; gldL(E49D) in pYT354	This study
pRHJ046	Suicide plasmid used to introduce the S56A codon change into gldL; gldL(S56A) in pYT354	This study
pRHJ047	Suicide plasmid used to introduce the R9A codon change into gldM; gldM(R9A) in pYT354	This study
pRHJ048	Suicide plasmid used to introduce the R9K codon change into <i>gldM; gldM(R9K)</i> in pYT354	This study
pRHJ049	Suicide plasmid used to introduce the R9E codon change into <i>gldM</i> ; <i>gldM(R9E)</i> in pYT354	This study
pRHJ050	Suicide plasmid used to introduce the Q10A codon change into <i>gldM</i> ; <i>gldM(Q10A)</i> in pYT354	This study
pRHJ051	Suicide plasmid used to introduce the K11A codon change into gldM; gldM(K11A) in pYT354	This study
pRHJ052	Suicide plasmid used to introduce the N14A codon change into <i>gldM</i> ; <i>gldM(N14A)</i> in pYT354	This study
pRHJ053	Suicide plasmid used to introduce the Y17A codon change into gldM; gldM(Y17A) in pYT354	This study
pRHJ054	Suicide plasmid t used to introduce the Y17F codon change into <i>gldM; gldM(Y17F)</i> in pYT354	This study

pRHJ055	Suicide plasmid used to introduce the N27A codon change into <i>gldM</i> ; <i>gldM</i> (<i>N27A</i>) in pYT354	This study
pAK021	Suicide plasmid used to insert a HaloTag domain after the signal peptide of SprB	This study
pFL43	Expresses the cytoplasmic domain of GldL; pWALDO-sfGFPd gldL(66-215)	This study
pFL44	Expresses the periplasmic domain of GldM; pWALDO-sfGFPd gldM(78-513)	This study
pFL80	Suicide plasmid used to delete <i>porV</i> ; 2.5-kbp upstream and 2.5-kbp downstream of <i>porV</i> in pYT313	(Lauber et al., 2018)
pFL89	Suicide plasmid used to delete <i>gldL</i> ; 2.6-kbp upstream and 2.5-kbp downstream of <i>gldL</i> in pYT313	This study
pPG01	Expresses the first 50 amino acids of RemA fused to mCherry and the C-terminal 97 amino acids of RemA; pCP-remA _{us} -mch-CTD97 _{remA}	This study
pPG02	Expresses the first 50 amino acids of RemA fused to mCherry and the C-terminal 97 amino acids of RemA with the K1432A point mutation; pCP-remA _{us} -mch-CTD97(K1432A) _{remA}	This study

Table S2 Plasmids used in this study.

^a Selection markers functional in *F. johnsoniae* are in brackets.

Primer	Sequence 5'-3'	Used in the construction of
FL125		pFL43, Ndel site is underlined
	AAAAATTT <u>GGATCC</u> TCCTTTGTTACTCATTGCAGAAAGCATACCACC	
FI 126		nELA2 RamHI site is underlined
	AAAAAAAAAA <u>CATATG</u> GCTCACAAAGTTCAGGCTGCTTCAAAAG	
FL128		pFL44, NdeI site is underlined
	AAAAAAAA <u>dgattu</u> iigtattitugtaaattaccogagcagtettigg	
FL129		pFL44, BamHI site is underlined
FL309	GCAGCGGAAAAATTCGGGGACGATTTAGAGCAAATGGTAAATATGG	pFL89
EL 210		-5100
FL310		ргьзя
FL311	GTAAAAAAGTTATGAATTTCGCTGGTGGTATGCTTTCTGCAATGAGTAAC	pFL89
FL312	GACCATGATTACGCCAAGCTTGCAGTACTTCACGTGCATTTGG	pFL89
FL313	CCCAAATGCACGTGAAGTACTGCAAGCTTGGCGTAATCATGGTCATAG	pFL89
FL314	CCATTTGCTCTAAATCGTCCCCGAATTTTTCCGCTGCATAACC	pFL89
AK39	tggctccaagcgctcatatgagaaattaaattttgcgagtaggaggca	pAK021
AK37	Actcgcaaaatttaatttctcatatgagcgcttggagccac	pAK021
AK40	TTACGCCAAGCTTGCATGCcctcttcaggcaaaacaagcgact	pAK021
۵ка1	canttatttacctassasaGCATGCAAGCTTGGCG	n^K021
		PAROZI
AK59	TGACCCCGAAGCAGGGTTATaatatcatctaatgtcaagtcaattccaaaatcaacagc	pAK021
AK60	AGATTTCCGGTGAGCTcttttttaattcaaagtttgataaaaacttgaaggaaaatatctttctaaaagc	рАК021
AK61	ttatcaaactttgaattaaaaaagAGCTCACCGGAAATCTCCA	pAK021
AK62	acttgacattagatgatattATAACCCTGCTTCGGGGTCA	рАК021
	TGGATCGGGAGGTTCAGCGTGGAGCCACCCGCAGTTCGAGAAATAACTCGAGTCTGGTA	pRHJ006, twinstrep tag sequence is
RHJ025	AAGAAACC	underlined
	CCGCCAGAACCTCCACCTTTTTCGAACTGCGGGTGGCTCCAAGCGCT GGTACCGACGTCA	pRHJ006, twinstrep tag sequence is
RHJ026	GCGAT	underlined
	CCAGAGTCGGCCAAGGAACCGGCAGTT	pRHJ006, mutated residues are
RHJ046		underlined
	CCAGAGTCGGCCAAGGAACCGGCAGTT	pRHJ006, mutated residues are
RHJ047		underlined.
RHJ051	GCGCGC <u>CCATGG</u> GTCATTATAGAAGATACAAG	pRHJ006, Ncol site underlined
RHJ052	AAAAAA <u>GGATCC</u> TAAGGGTGAGCTGCC	pRHJ006, BamHI site underlined
RHJ057	GCACGTCATATGGCAGTAGGTTCTAATGG	pRHJ006. Ndel site underlined

RHJ058	AACCAA <u>GGTACC</u> GTTCACAATTACTTCAATGGC	pRHJ006, KpnI site underlined
RHJ110	AAAAAA <u>GGATCC</u> TCCGCTGGAAGAAGAGGGAAC	pRHJ011, BamHI site underlined
RHJ111	AAAAAAGTCGACCTGTCTAGGGGTTAATTTTCCTCC	sequencing
RHJ112	AAAAAAGTCGACACCAAGAACTGCTCCGGTAATTTAC	sequencing
RHJ113	AAAAAA <u>GGTACC</u> ACAAGCCTCCTGCAATTCTCGAAG	pRHJ011, KpnI site underlined
RHJ114	CAGTTGAGGATGAATTAGATTGG	screening for <i>gldM</i> mutations and sequencing
RHJ115	TAGAAGGTCGACCTCCAGCGATAGAAACAATAGC	screening for <i>gldM</i> mutations and sequencing
RHJ117	AAAAAAGTCGACCATAACTTTTTACTTAATAATGCCAT	sequencing
RHJ118	GATGAGTATTATGCTGAAGTAATGG	sequencing
RHJ123	AAAAAAGGTACCAGAAGCAGCAACTG	sequencing
RHJ124	AAAAAAGGATCCTTTACCTAATGCACTGTTGTAAACG	sequencing
RHJ144	GTCGACCATATGGGAGAGCTCC	pRHJ010
RHJ145	GCATGCGACGTCGGGCC	pRHJ010
RHJ146	CCCGACGTCGCATGCGGCTGAGCCTGTATTTCGAGATG	pRHJ012
RHJ147	TCTCCCATATGGTCGACACAAGCCTCCTGCAATTCTCG	pRHJ010 and pRHJ013
RHJ148	CCCGACGTCGCATGCTCCGCTGGAAGAAGAGGGAACTTGTG	pRHJ010 and pRHJ013
RHJ149	TCTCCCATATGGTCGACCAGTACTTCACGTGCATTTGGGAAG	pRHJ012
RHJ154	CTCAAGTAACAGGAGGCGG	screening for <i>gldL</i> mutations and sequencing
RHJ155	AAGAAATGTCTATGGCAGCTGC	sequencing
RHJ156	GCTTCAGCAGCTTTTTGATC	screening for gldL mutations
RHJ157	AGTCCGATCTGAGCAGGAG	sequencing
RHJ160	AGTTCTTGGTCTGTCTAGGGGTTAATTTTCCTCCTGC	pRHJ010
RHJ161	CCTAGACAGACCAAGAACTGCTCCGGTAATT	pRHJ010 and sequencing
RHJ162	GAAAACCTGTACTTCCAGG	pRHJ007, pRHJ008, pRHJ009
RHJ163	GGTGAATTCCTCCTGAATTTC	pRHJ007, pRHJ008, pRHJ009
RHJ164	AAATTCAGGAGGAATTCACCATGGCATTATTAAGTAAAAAAGTTATGAATTT	pRHJ007
RHJ165	CCTGGAAGTACAGGTTTTCTTTACCTAATGCACTGTTGTAAAC	pRHJ007
RHJ166	AAATTCAGGAGGAATTCACCATGGCATTATTAAGTAAAAAAGTTATGAATTT	pRHJ008
RHJ167	CCTGGAAGTACAGGTTTTCAGAAGCAGCAGCAACT	pRHJ008
RHJ168	AAATTCAGGAGGAATTCACCATGGGTCATTATAGAAGATACAAGAAC	pRHJ009

RHJ169	CCTGGAAGTACAGGTTTTCCTTTACCAGATCGGCAAGT	pRHJ009
RHJ174	CGGCTGTGGTAAGTCAGG	sequencing
RHJ175	CAGCACTTCCAATTTCTTTCG	sequencing
RHJ269	ACCTGATG <u>GC</u> TCTGGTTTTCATCGCAATG	<i>gldM(Y17A)</i> mutations, mutation site is underlined
RHJ270	AAACCAGA <u>GC</u> CATCAGGTTAATCATCTTCTG	<i>gldM(Y17A)</i> mutations, mutation site is underlined
RHJ271	TAGCAATG <u>GC</u> CGTATCAAAAGAAGTTATTTCTGC	<i>gldM(N27A)</i> mutations, mutation site is underlined
RHJ272	TTGATACG <u>GC</u> CATTGCTAACATTGCGATG	<i>gldM(N27A)</i> mutations, mutation site is underlined
RHJ273	CTTTATTC <u>GC</u> AATTACTCACTTTGAGATTGGG	<i>gldL(K27A)</i> mutations, mutation site is underlined
RHJ274	TGAGTAATT <u>GC</u> GAATAAAGCTCCAACGATTACC	<i>gldL(K27A)</i> mutations, mutation site is underlined
RHJ275	AAATTACT <u>GC</u> CTTTGAGATTGGGCCATTAAC	<i>gldL(H30A)</i> mutations, mutation site is underlined
RHJ276	ATCTCAAAG <u>GC</u> AGTAATTTTGAATAAAGCTCCAAC	<i>gldL(H30A)</i> mutations, mutation site is underlined
RHJ277	TTTTGACTG <u>C</u> GGCATTAATCTTTGCGTTATCTG	<i>gldL(E49A</i>) mutations, mutation site is underlined
RHJ278	ATTAATGCC <u>G</u> CAGTCAAAAGACCGATAGAAAG	<i>gldL(E49A</i>) mutations, mutation site is underlined
RHJ279	GTCTTTTGGCTGAG <u>G</u> CATTAATCTTTGCG	<i>gldL(T48A)</i> mutations, mutation site is underlined
RHJ280	TGCCTCAG <u>C</u> CAAAAGACCGATAGAAAGCATC	<i>gldL(T48A)</i> mutations, mutation site is underlined
RHJ281	GTCTACACGAACCCTTTGG	sequencing
RHJ310	AAGTTATG <u>GC</u> TTTCGCTTATGGTATGGGAG	<i>gldL(N10A)</i> mutations, mutation site is underlined
RHJ311	AAGCGAAA <u>GC</u> CATAACTTTTTACTTAATAATGCCATAATAATTC	<i>gldL(N10A)</i> mutations, mutation site is underlined
RHJ312	ATTTCGCT <u>GC</u> TGGTATGGGAGCGGC	<i>gldL(Y13A)</i> mutations, mutation site is underlined
RHJ313	CCATACCA <u>GC</u> AGCGAAATTCATAACTTTTTACTTAATAATG	<i>gldL(Y13A)</i> mutations, mutation site is underlined
RHJ314	TGATGCTT <u>G</u> CTATCGGTCTTTTGACTGAGG	<i>gldL(S43A)</i> mutations, mutation site is underlined
RHJ315	GACCGATAG <u>C</u> AAGCATCACTGTCCCTG	<i>gldL(S43A)</i> mutations, mutation site is underlined

RHJ316	TTGCGTTA <u>G</u> CTGCTTTTGAACCAGTTGAG	gldL(S56A) mutations, mutation site is underlined
RHJ317	AAAAGCAG <u>C</u> TAACGCAAAGATTAATGCCTC	<i>gldL(S56A)</i> mutations, mutation site is underlined
RHJ318	CCTGATGT <u>T</u> TCTGGTTTTCATCGCAATG	<i>gldM(Y17F)</i> mutations, mutation site is underlined
RHJ319	AAACCAGA <u>A</u> ACATCAGGTTAATCATCTTCTG	gldM(Y17F) mutations, mutation site is underlined
RHJ320	CCCCTAGA <u>GC</u> GAAGATGATTAACCTGATGTATCTG	<i>gldM(Q10A)</i> mutations, mutation site is underlined
RHJ321	TCATCTTC <u>GC</u> TCTAGGGGTTAATTTTCCTCCTG	<i>gldM(Q10A)</i> mutations, mutation site is underlined
RHJ322	TTTTGACT <u>C</u> AGGCATTAATCTTTGCGTTATC	<i>gldL(E49Q)</i> mutations, mutation site is underlined
RHJ323	TAATGCCT <u>G</u> AGTCAAAAGACCGATAGAAAGC	<i>gldL(E49Q)</i> mutations, mutation site is underlined
RHJ341	CGGCCGCTCTAGAACTAGTGGATCCGCTGAGCCTGTATTTCGAG	suicide vectors for gldL mutations
RHJ342	TACCGGGCCCCCCCCGAGGTCGACCAGTACTTCACG	suicide vectors for <i>gldL</i> mutations
RHJ343	CGGCCGCTCTAGAACTAGTGGATCCCGCTGGAAGAAGAGG	suicide vectors for <i>gldM</i> mutations
RHJ344	TACCGGGCCCCCCTCGAGGTCGACCAAGCCTCCTGCAATTC	suicide vectors for <i>gldM</i> mutations
RHJ345	CCTGACTTACCACAGCCG	sequencing
RHJ346	CGTCATTTTTGATCCGCGG	verifying F. johnsoniae co-integrants
RHJ347	CTCCGGTAAACATTACGGC	verifying F. johnsoniae co-integrants
RHJ348	TTTCGCTT <u>T</u> TGGTATGGGAGCGGC	<i>gldL(Y13F)</i> mutations, mutation site is underlined
RHJ349	CCATACCAAAAGCGAAATTCATAACTTTTTACTTAATAATG	<i>gldL(Y13F)</i> mutations, mutation site is underlined
RHJ350	TTGACTGA <u>T</u> GCATTAATCTTTGCGTTATCTG	gldL(E49D) mutations, mutation site is underlined
RHJ351	ATTAATGC <u>A</u> TCAGTCAAAAGACCGATAGAAAG	gldL(E49D) mutations, mutation site is underlined
RHJ352	TAACCCCT <u>GC</u> ACAGAAGATGATTAACCTGATGTATC	<i>gldM(R9A)</i> mutations, mutation site is underlined
RHJ353	TCTTCTGT <u>GC</u> AGGGGTTAATTTTCCTCCTG	<i>gldM(R9A)</i> mutations, mutation site is underlined
RHJ354	AACCCCTA <u>A</u> ACAGAAGATGATTAACCTGATG	<i>gldM(R9K)</i> mutations, mutation site is underlined
RHJ355	тсттстбт <u>т</u> таббббттааттттсстсстб	<i>gldM(R9K)</i> mutations, mutation site is underlined

RHJ356	TAACCCCT <u>GA</u> ACAGAAGATGATTAACCTGATG	gldM(R9E) mutations, mutation site is underlined
RHJ357	TCTTCTGT <u>TC</u> AGGGGTTAATTTTCCTCCTG	<i>gldM(R9E)</i> mutations, mutation site is underlined
RHJ358	CTAGACAG <u>GC</u> GATGATTAACCTGATGTATCTGGTTTTC	gldM(K11A) mutations, mutation site is underlined
RHJ359	TTAATCATC <u>GC</u> CTGTCTAGGGGTTAATTTTCC	gldM(K11A) mutations, mutation site is underlined
RHJ360	TACCGGGCCCCCCCCGAGGTCGACCAGTACTTCACGTGCATTTG	suicide vectors for gldM mutations
PG001	AGCTAG <u>TCTAGA</u> ACGTTCCTGATAGGCACAAAAATG	pCP-remA _{us} -mch-CTD97 _{remA} , Xbal iste is underlined
PG002	AGCTAG <u>ACTAGT</u> GCCATTAGTTGGCATTCCAGG	pCP-remA _{us} -mch-CTD97 _{remA} , Spel site is underlined
PG003	CGTT <u>ACTAGT</u> ATGGTGAGCAAGGGCGAGGAGGATAAC	pCP-remA _{us} -mch-CTD97 _{remA} , Spel site is underlined
PG004	GACA <u>GAGCTC</u> CTTGTACAGCTCGTCCATGCC	pCP-remAus-mch-CTD97remA, SacI site is underlined
PG005	GACA <u>GAGCTC</u> GATCGTTTTGCACTTCGTTACAC	pCP-remA _{us} -mch-CTD97 _{remA} , Sacl site is underlined
PG006	GGAC <u>GTCGAC</u> GTCTTACTTGGCAAATGGATTTTT	pCP-remAus-mch-CTD97remA, Sall site is underlined
PG007	GCCCAGATAACCAGA <u>GC</u> AGTGATCTTTAAATAG	pCP-remA _{us} -mch-CTD97 _{remA(K1433A)} , mutation site is underlined
PG008	CTATTTAAAGATCACT <u>GC</u> TCTGGTTATCTGGGC	pCP-remA _{us} -mch-CTD97 _{remA(K1433A)} , mutation site is underlined

Table S3. Oligonucleotides used in this study.

Supplemental Video1: Mutant strains gliding on glass. Wild type, $gldL_{Y13A}$, $gldL_{Y13F}$, $gldL_{K27A}$, $gldL_{H30A}$, $gldL_{E49D}$, $gldM_{R9K}$, $gldM_{Y17A}$ and $gldM_{Y17F}$ cells are shown.

Supplemental Video 2: Fluorophore-labelled SprB adhesin moving on the surface of a wild type cell. Supplemental Video 3: Fluorophore-labelled SprB adhesin moving on the surface of a *gldL*_{Y13A} cell. Supplemental Video 4: Fluorophore-labelled SprB adhesin moving on the surface of a *gldL*_{K27A} cell. Supplemental Video 5: Fluorophore-labelled SprB adhesin moving on the surface of a *gldL*_{H30A} cell. Supplemental Video 6: Fluorophore-labelled SprB adhesin moving on the surface of a *gldL*_{H30A} cell. Supplemental Video 6: Fluorophore-labelled SprB adhesin moving on the surface of a *gldM*_{R9K} cell. Supplemental Video 7: Fluorophore-labelled SprB adhesin moving on the surface of a *gldM*_{R9K} cell. Supplemental Video 7: Fluorophore-labelled SprB adhesin moving on the surface of a *gldM*_{Y17F} cell.