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GeneDx Data Sharing 

The American College of Genetics and Genomics (ACMG) position statement on genomic data 

sharing helps inform GeneDx’s philosophy regarding data use: “To ensure that our patients 

receive the most informed care possible, the American College of Medical Genetics and 

Genomics advocates for extensive sharing of laboratory and clinical data from individuals who 

have undergone genomic testing. Information that underpins health-care service delivery should 

be treated neither as intellectual property nor as a trade secret when other patients may benefit 

from the knowledge being widely available” 1. With this in mind, as part of its clinical testing 

program, per patient consent and without sharing any non-deidentified data, and as described 

on the website (https://www.genedx.com/all-forms/use-of-specimen-and-genetic-information/). 

GeneDx uses resources such as GeneMatcher1,2 (https://genematcher.org) in order to help 

identify evidence that variants in a given gene may contribute to an observed phenotype. 

Similarly, the endeavor described in this work allows GeneDx analysts and scientists to identify 

affected patients in other cohorts, which translates to the ability to better clinically interpret 

variants in specific genes of interest and provide reports to referring clinicians. This process is 

also useful for updating variants from those binned as candidate genes to more clearly 

causative disease explanations; GeneDx has updated over 200 clinical reports regarding such 

genes since 2000, affecting more than 3,000 individual cases. 
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Sample collection and individual QC 

DDD 

Patients with severe, undiagnosed developmental disorders were recruited from 24 regional 

genetics services within the United Kingdom National Health Service and the Republic of 

Ireland. Families gave informed consent to participate, and the study was approved by the UK 

Research Ethics Committee (10/H0305/83 granted by the Cambridge South Research Ethics 

Committee, and GEN/284/12 granted by the Republic of Ireland Research Ethics Committee). 

Additional details on sample collection, exome sequencing, alignment, variant calling (inherited 

and de novo) and variant annotation have been described previously3. These analyses involve 

9,858 trios from 9,307 families, a subset of whom have been analyzed in previous 

publications3,4. 

GeneDx 

Patients were referred to GeneDx for clinical whole-exome sequencing for diagnosis of 

suspected Mendelian disorders as previously described5. Patient medical records were 

abstracted into HPO terms using Neji concept recognition6 with manual review by laboratory 

genetic counselors or clinicians. Patients were selected for inclusion in this study based on 

having one or more HPO phenotypes overlapping the inclusion criteria for the DDD study4. The 

study was conducted in accordance with all guidelines set forth by the Western Institutional 

Review Board, Puyallup, WA (WIRB 20162523). Informed consent for genetic testing was 

obtained from all individuals undergoing testing, and WIRB waived authorization for use of de-

identified aggregate data. Individuals or institutions who opted out of this type of data use were 

excluded. 

 

Data was sequenced and aligned as previously described5 with either SureSelect Human All 

Exon v4 (Agilent Technologies, Santa Clara, CA), Clinical Research Exome (Agilent 

Technologies, Santa Clara, CA), or xGen Exome Research Panel v1.0 (IDT, Coralville, IA) and 

sequenced with either 2x100 or 2x150bp reads on HiSeq 2000, 2500, 4000, or NovaSeq 6000 

(Illumina, San Diego, CA). Alignment BAM files were then converted to CRAM format with 

Samtools version 1.3.1 and indexed. Individual GVCF files were called with GATK v3.7-0 

HaplotypeCaller7,8 in GVCF mode by restricting output regions to plus/minus 50bp of the 

RefGene primary coding regions. Single-sample GVCF files were then combined into multi-

sample GVCF files with each combined file contained 200 samples. These multi-sample GVCF 

files were then joint-genotyped using GATK GenotypeGVCFs. The cohort of 18,789 trios was 
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joint-genotyped in two separate batches, one with 10,138 trios and the other 8651 trios. GATK 

VariantRecalibrator (VQSR) was applied for both SNPs and INDELs, with known SNPs from 

1000 Genomes phase 1 high confidence set and “gold standard” INDELs from Mills et al9. 

 

Variants in VQSR VCF files were annotated with Ensembl Variant Effect Predictor (VEP)10 using 

RefSeq transcripts. The transcript with the most severe consequence was selected, and all 

associated VEP annotations were based on the predicted effect of the variant on that particular 

transcript. Variants called in the proband and not in the parents were selected as potential de 

novo mutations. Filtering of these de novo mutations is described below. 

Radboud University Medical Center 

The Department of Human Genetics from the Radboud University Medical Center (RUMC) is a 

tertiary referral center for clinical genetics. This study was approved by the institutional review 

board ‘Commissie Mensgebonden Onderzoek Regio Arnhem-Nijmegen’ under number 

2011/188. Approximately 350 individuals with unexplained intellectual disability (ID) are referred 

annually to our clinic for diagnostic evaluation. Since September 2011 whole exome sequencing 

(WES) is part of the routine diagnostic work-up aimed at the identification of the genetic cause 

underlying disease11. For individuals with unexplained ID, a family-based WES approach is 

used which allows the identification of de novo mutations (DNMs) as well as variants 

segregating according to other types of inheritance, including recessive mutations and 

maternally inherited X-linked recessive mutations in males12. For this study, we selected all 

individuals with ID who had family-based WES using the Agilent SureSelect v4 and v5 

enrichment kit combined with sequencing on the Illumina HiSeq platform in the time period 

2013-2018. This selection yielded a set of 2418 individual probands, including 1040 females 

and 1378 males across 2387 different families. The level of ID ranged between mild (IQ 50-70) 

and severe-profound (IQ<30). 

 

Families gave informed consent for both the diagnostic procedure as well as for forthcoming 

research that could result in the identification of new genes underlying ID by meta-analysis, as 

presented here.  

 
The exomes of 2418 patient-parent trios were sequenced, using DNA isolated from blood, at the 

Beijing Genomics Institute (BGI) in Copenhagen. Exome capture was performed using Agilent 

SureSelect v4 and v5 and samples were sequenced on an Illumina HiSeq 4000 instrument with 

paired-end reads to a median target coverage of 112x. Sequence reads were aligned to the 
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hg19 reference genome using BWA version v0.7.12 and duplicate marking by Picard v1.90. 

Variants were subsequently called by the GATK haplotypecaller (version v3.4-46).  

 
The diagnostic WES process as outlined above only reports (de novo) variants that can be 

linked to the individuals’ phenotype. In this study, we systematically collected all DNMs in 

regions in or close to (200bp) a capture target. DNMs were called as described previously12. 

Briefly, variants called within parental samples were removed from the variants called in the 

child. For the remaining variants pileups were generated from the alignments of the child and 

both parents. Based on pileup results variants were then classified into the following categories: 

“maternal (for identified in the mother only)”, “paternal (for identified in the father only)”, “low 

coverage” (for insufficient read depth in either parent), “shared” (for identified in both parents)”, 

and “possibly de novo” (for absent in the parents). Variants classified as possibly de novo were 

included in this study. 

  

We applied various quality filters to ensure that only the most reliable calls were included in the 

study, these are described in the quality control section below.  

Definition of diagnostic lists 

For various analyses in this work, we wanted a list of known developmental disorder genes. In 

order to define this list, we collected diagnostic lists from each center and created sets of 

“consensus” and “discordant” genes. For the initial submission and preprint, we used diagnostic 

lists from September 2018. While under revision, a number of genes were added to each 

center’s diagnostic list. To more accurately reflect the current state of the field, we updated 

these diagnostic gene lists to versions curated in September 2019 to January 2020. 

 

For the DDD cohort, we used the Developmental Disorders Genotype-Phenotype Database 

(DDG2P) list, which is a curated list of genes specifically associated with developmental 

disorders. For every gene on the list, DDG2P provides the level of certainty, consequence of the 

mutation, and allelic status of variants associated with developmental disorders. We 

downloaded the DDG2P list on 22 September 2019 from 

https://www.ebi.ac.uk/gene2phenotype/downloads. In order to define diagnostic genes that act 

in a dominant fashion, we selected only genes that were considered "probable", "confirmed", or 

"both RD and IF" (i.e. high levels of certainty of being a true DD-associated gene) and had an 

allelic status of "monoallelic", "x-linked dominant", "hemizygous", or "imprinted". 
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GeneDx maintains a continually curated list of genes, used to define reporting categories for 

clinical exome and genome testing, which have been definitively or putatively implicated in 

human Mendelian disease, with modes of inheritance noted for each gene. Starting with the 

January 2020 curation list, those genes with dominant modes of inheritance and definitive 

implications in disease were manually reviewed to remove any genes with no association to 

developmental disorders either because of no phenotypic overlap with the inclusion criteria for 

this study or because the relevant phenotypes were adult onset. 

 

For the list from RUMC, gene panels for intellectual disability, epilepsy, and craniofacial 

anomalies/Multiple congenital anomalies were designed by multidisciplinary expert teams 

consisting of a clinical laboratory geneticist, a molecular geneticist, and a clinical specialist. 

Each set contained all genes known to be associated with the disease. We used the gene panel 

version from December 2019 (DGD-2.17). From each of the three gene lists, we selected genes 

with a reported inheritance of “AD”, “AD,AR”, “AD,IMP”, “AD/AR”, “xl”, “XL”, “XLD”, “XLR,XLD”, 

or “XLR/XLD”. 

 

After mapping to HGNC IDs and symbols, any gene that was considered diagnostic by all three 

centers was designated as a “consensus” gene (n=380). For genes on one or two of the 

diagnostic lists, we considered them “discordant” genes (n=607). 
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Joint quality control of dataset 

De novo mutation filtering 

We applied the following filters across all three datasets: 

● Removed DNMs outside coding regions  

● Removed mutations that fell within known segmental duplication regions as defined by 

UCSC 

(http://humanparalogy.gs.washington.edu/build37/data/GRCh37GenomicSuperDup.tab) 

● Keep only the most severe DNM in each gene per individual according to the 

consequence severity from VEP10 

 

The following filters were applied specifically to each center. These were chosen to minimise the 

number of false positive DNMs. The filters were applied in this specific order. 

● DDD 

○ Autosomes 

■ The minor allele frequency (MAF) < 0.01 across all DDD samples, Exome 

Aggregation Consortium (ExAC)13, and 1000 Genomes14 populations 

■ Read depth (RD) of child > 7, mother RD > 5, father RD > 5 

■ Fisher exact test on strand bias p-value > 10-3  

■ Remove DNM if any two of the following conditions are met: 

● Both parents had ≥ 1 supporting the alternative allele 

● There is an excess of parental alternative allele within the cohort 

at the DNMs position. This is defined as p-value <10-3 under a 

one-sided binomial test given an expected site error rate of 0.002 

● There is an excess of alternative alleles within the cohort for 

DNMs in a gene. This is defined as p-value < 10-3 under a one-

sided binomial test given an expected site error rate of 0.002 

■ Filter only applied to indels: 

● Remove the indel if all three conditions are met: 

○ Variant allele frequency (VAF) in child < 0.2 

○ MAF > 0 for any of the following cohorts: across all DDD 

samples, ExAC, 1000 Genomes populations 

○ Size of indel < 5bp 

■ Posterior probability of being a de novo mutation (output from DeNovo 

Gear) > 0.00781 for autosomal DNMs. These thresholds have been 



12 

determined through earlier work such that the observed number of 

synonymous DNMs match the expected number3,15 

■ Filter out mutations in sites with more than one mutation with VAF < 0.3 

○ X chromosome 

■ We ran DeNovoGear as previously described, but with a different set of 

hard filters to account for the lower coverage in males and to maximise 

sensitivity and specificity. We examined all candidate DNMs in males and 

a large subset of those in females manually in IGV16, and used this to 

settled on the following set of filters:  

● We removed DNMs in the pseudoautosomal regions.  

● The variant had to be called heterozygous or, for males, 

hemizygous in the child in the original GATK calls, and called 

homozygous reference in the parents. 

● We removed variants in segmental duplications. 

● For male probands, we required the following: in the child, 

alternate allele depth > 2 and RD > 2; in the mother, RD > 5 

● For female probands, we required the following: in the child, 

alternate allele depth > 2, RD > 7; in the mother, RD > 5; in the 

father, RD > 1 

● For single nucleotide variants, we required p > 10-3 on a Fisher’s 

exact test for strand bias, pooling across trios (ignoring fathers of 

male probands) where a de novo was called at the same site by 

DeNovoGear. 

● For female probands, we removed indels < 5bp if they had VAF < 

0.3 or MAF > 0, since these were vastly over-represented and 

seemed to be a common error mode. 

● Removed DNMs if any two of the following conditions were met 

(these conditions were applied separately for males and females): 

○ Lowest alternative read count for the parents (or, for 

males, the mothers) is higher than the maximum allowable 

given the depth, an error rate of 0.002, and a probability 

threshold of 0.98 (using the mindepth function in 

DeNovoFilter) 

○ An excess of parental (or, for males, maternal) alternative 

alleles with a putative de novo at that site, defined as p-

value < 10-3 under a one-sided binomial test given an 

expected error rate of 0.002 
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○ An excess of parental (or, for males, maternal) alternative 

alleles with a putative de novo in the same gene, defined 

as p-value > 10-3 under a one-sided binomial test given an 

expected error rate of 0.002 

● We set a cutoff for the ppDNM from DeNovoGear to > 0.00085 

based on matching the observed number of synonymous DNMs in 

females to the expected number 

● GeneDx 

○ RD > 10 for child, mother, and father 

○ VAF > 0.15 for child for SNVs and VAF > 0.25 for indels 

○ More than 3 reads supporting the alternative allele 

○ Genotype Quality (GQ) score > 40 

○ Phred-scaled p-value using Fisher's exact test to detect strand bias < 30 

○ Log odds of being a true variant versus being false from VQSR > -10 outputted 

from GATK 

○ Any variant with general population frequency above 0.01 was also excluded 

based on 1000 Genomes and Exome Aggregation Consortium (ExAC) variant 

population frequency data 

○ Filtered out de novo variants called > 4 times in the parental samples in the 

cohort 

○ Filter out DNMs with VAF < 0.3 and VQSLOD < 7 where VQSLOD is the log 

odds ratio of being a true variant outputted from GATK 

○ Filter out de novo indels > 100bp 

○ Filter out DNMs, not on chromosome X, with a VAF of 1 

○ Filter out 5 individuals with more than 10 coding DNMs. These appeared to be 

due to relatively poor sample quality. 

● RUMC 

○ GATK Quality score > 450 

○ Minimal number of variant reads: 10 

○ Minimal number of total reads: 20 

○ Minimal percentage of variant reads: 20% 

○ Frequency in dbSNP < 0.1% 

○ Coverage in parents of at least 10 reads 

○ We discarded 15 complex variants after manual inspection in IGV 
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Duplicate samples 

We selected a set of 50 common exonic SNPs (only 47 of which could be evaluated across all 

three centers) and collected genotypes at these SNPs for every sample with a de novo mutation 

found in another individual in the joint set (n=781 DDD, 1307 GeneDx, and 164 RUMC). We 

then used the gtcheck function from bcftools (https://samtools.github.io/bcftools/bcftools.html) to 

find discordance between each pair of samples. Pairs with low discordance were manually 

confirmed, leading to a total of 8 duplicate samples identified. One individual from each 

duplicate pair was removed from the analyses, leaving 31,058 samples for downstream 

analyses. 

Removing variants from siblings 

Siblings will sometimes share DNMs that arose as the same mutational event in one of their 

parental germlines. To avoid double counting these shared DNMs, we identified siblings in each 

cohort and randomly removed one of each pair of shared variants. In total, we removed 11 

DNMs found in siblings. 

 

Additionally, we removed 20 false positive variants identified in genes identified as novel in our 

initial submission (see below). After filtering we had a total set of 45,221 coding DNMs (Sup 
Table 1). We found 0-11 DNMs per exome. The filtered VAFs across the three datasets are 

displayed in Sup Fig 1.  

Supplementary Figure 1: Variant allele fraction (VAF) for all de novo coding mutations, split by 

center. Note that mutations with a VAF of ~1 are hemizygous de novo mutations in males. DDD 

= Deciphering Developmental Disorders. RUMC = Radboud University Medical Center. 

 

Supplementary Table 1. De novo mutations from 31,058 individuals with developmental 

disorders. For every de novo mutation, we provide: proband ID (‘id’), chromosome (‘chrom’), 
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position in GRCh37 (‘pos’), the reference allele (‘ref’), the alternative allele (‘alt’), the VEP 

consequence of the mutation (‘consequence’), the HGNC symbol (‘symbol’), the center which 

sequence the proband (‘study’), the fraction of reads that are from the alternative allele 

(‘altprop_child’), and the HGNC ID (‘hgnc_id’). 
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Comparing datasets 

All three cohorts are comprised of individuals with severe developmental disorders. We found 

that the cohorts had comparable rates of male to female probands (55-57% male cohorts; Sup 
Fig 2a) as well as similar DNM rates (average 1.81-1.96 per individual exome). The DDD study 

has a significantly higher rate of synonymous DNMs (0.31 de novo synonymous DNMs per 

exome) compared to individuals from GeneDx (GDX; 0.28 per exome; Poisson rate test p = 5.2 

x 10-7) or Radboud University Medical Center (RUMC; 0.28 per exome; Poisson rate test p = 

0.0132), which is likely due to differences in de novo identification pipelines (Sup Fig 2b). 

Specifically, as described in McRae et al3 and mentioned above, the DDD study selected a 

ppDNM (posterior probability of a de novo mutation) threshold such that the observed number of 

synonymous DNMs matched the expected number. 

 

All three cohorts have far more carriers of nonsynonymous DNMs in the consensus genes than 

expected based on a null mutational model (Sup Fig 2c). The specific rate of such carriers 

differs between cohorts, with GeneDx showing the lowest fraction of such cases, which can be 

explained by the varying ascertainment between centers. 

 

 
Supplementary Figure 2: Comparing cohorts from the three centers. A) Fraction of each cohort 

that is female (gray) vs male (black). For DDD, there are 4,198 female and 5,660 male patients. 

For GeneDx, there are 8,398 female and 10,385 male patients. For RUMC, there are 1,040 

female and 1,377 male patients. B) Enrichment of observed de novo mutations compared to the 

expected number from a sequence-context based mutational model17 for each cohort (9,858 

DDD patients, 18,783 GeneDx patients, and 2,417 RUMC patients). A dashed line at 1 indicates 

that observed and expected mutation counts match perfectly. C) Rate of nonsynonymous de 

novo mutations (excluding inframe indels) in the 380 consensus genes in each cohort as well as 

the expected rate based on the aforementioned mutational model. DDD = Deciphering 

Developmental Disorders. GDX = GeneDx. RUMC = Radboud University Medical Center. Syn = 
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synonymous. Mis = missense. Lof = loss-of-function (including nonsense/stop gained, essential 

splice site, and frameshift variants). 

Confirming variants in novel genes 

We wanted to confirm all DNMs in the significant genes not previously considered diagnostic by 

any center (the “novel” genes). Between the initial submission and revision, variants were 

evaluated in 67 genes. Each center validated every DNM in these genes either via Sanger 

sequencing or manual inspection of IGV plots. Across the three centers, only 21 variants 

appeared to be false positives; these variants were removed from subsequent analyses. The 

final set of 45,221 de novo mutations is included as Sup Table 1. 
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DeNovoWEST  

 

DeNovoWEST (De Novo Weighted Enrichment Simulation Test) is the testing framework we 

used to assess gene-wise de novo mutation enrichment 

(https://github.com/queenjobo/DeNovoWEST). Each observed DNM in our dataset was 

assigned a mutation severity score. This severity score is a proxy for how deleterious we expect 

the mutation to be. Details of how these were calculated are given below. For each gene we 

then calculated a gene severity score which is the sum of all mutation severity scores that fall 

into that gene. There are two components to DeNovoWEST: the overall enrichment test which 

includes all variant consequences and the gain-of-function specific test which assess 

enrichment and clustering of missense variants only.  

 

Enrichment Test 

We used a simulation-based approach to evaluate whether these observed gene severity 

scores are higher than what we would expect under the null hypothesis of no de novo mutation 

enrichment. To calculate the probability of observing a gene score that is as or more extreme 

than the one that we observe for this gene (the p-value) we considered the case of observing k 

number of DNMs in the gene where k ranged from 0 to 250. This upper limit was chosen as it is 

far above the number of DNMs we see in any individual gene in our dataset and the probability 

of observing more than that number of DNMs for our cohort in a single gene is negligible with 

respect to our significance threshold. The enrichment p-value, pEnrich, was then calculated as 

the sum of these probabilities as summarized by the following equation where S denotes the 

gene score, s is the observed gene score and K is the number of DNMs in the gene: 

 
These probabilities were calculated as follows: 

● We calculated  which is the probability of observing 0 mutations in this gene. 

This was calculated based on our sample size (N) and the mutation rate of the gene 

assuming mutations follow a Poisson distribution with . This was adjusted 

to  for genes that fall on the X chromosome.  
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● We also analytically calculated , the probability that the 

severity score of 1 mutation was greater than what we observed. This was calculated 

using the mutability of each position and the annotated score for that mutation.  

● We then used a simulation-based approach to calculate , the 

probability of observing an as or more extreme gene score if we see 2 to 250 DNMs in 

this gene. We calculated  analytically under the null assuming the DNMs 

followed a poisson distribution (as above). We then multiplied this with a simulation-

based estimate for , the probability of observing a gene score greater than or 

equal to the one we observe. To calculate the latter probability we simulated the 

distribution of gene scores as follows: 

○ Simulate k DNMs across the gene. The probability of mutation was weighted by 

the trinucleotide sequence context at every base position in that gene.  

○ Assign the simulated de novo mutations a mutation severity score 

○ Sum the simulated mutation severity scores to get the simulated gene severity 

score 

○ We performed 109 x  simulations for every k. This was the equivalent 

of 109 simulations per gene and meant that our p-value was robust to 

stochasticity far below our p-value threshold. 

Determination of Weights 

We calculated the weights used in the DeNovoWEST test from observed enrichments across 

consequence classes, shet values, missense constraint information and, for some, CADD score 

bins (version 1.0)18. shet refers to the estimated selective effect of heterozygous PTVs19. We 

stratified genes into two groups of ‘high’ shet and ‘low’ shet. We defined high shet genes as those 

with a shet ≥0.15 and low shet genes as those with an estimate <0.15. This threshold was one 

suggested by Cassa et al to define selectively disadvantageous genes. Enrichments were 

calculated by dividing the number of observed DNMs by the number of expected DNMsacross 

all sites in the exome that fell into a specific strata. We calculated the number of expected 

mutations given our sample size and the triplet context mutation rates at the sites17. Details for 

the weight calibration for each consequence class are given below: 

● Missense mutations were stratified based on whether they fell in a low or high shet 

gene19, whether or not they fell into a region of missense constraint20, and finally into 

CADD score bins of size 6. We fit four LOESS lines on the enrichments for mutations 

that were in high shet genes + missense constrained regions, high shet genes + not in a 
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missense constrained region, low shet genes + missense constrained regions, low shet 

genes + not in a missense constrained region. 

● Nonsense mutations were stratified based on whether they fell in a low or high shet gene, 

and then into CADD score bins of size 15 for the high shet genes and CADD score bins of 

7.5 for low shet genes. We fit two LOESS lines on the enrichments for mutations that 

were in high shet genes vs those in low shet genes. 

● Synonymous mutations were stratified based on whether they fell in a low or high shet 

gene. 

● Canonical splice site variants were stratified based on whether they fell in a low or high 

shet gene. 

● Inframe indels were assigned weights based on the overall enrichment of missense 

mutations as an appropriate approximation for their deleteriousness. These were 

stratified by whether they fell in a low or high shet gene but not stratified by CADD score 

bins. 

● Frameshift indels were assigned the same weights as nonsense mutations with a CADD 

score ≥ 45 and whether they fell in a low or high shet gene. 

 

These enrichments are depicted in Sup Fig 3. The enrichment values or odds ratio (OR) for 

each stratum were normalised by the level of synonymous enrichment and converted into a 

positive predictive value (PPV) using the following formula: 

 𝑃𝑃𝑉 = 	%&	'(
%&

 

 

The synonymous variants were artificially given a PPV of 0.001 as we would expect 1 in 1000 

synonymous DNMs in our cohort to be pathogenic. This was estimated from the enrichment of 

synonymous variants predicted to be pathogenic according to splice AI scores. The PPV 

weights are depicted in Sup Fig 3. 
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Supplementary Figure 3: Enrichment of consequence classes and corresponding PPV 
weights used for DeNovoWEST test. (a) Depicts the observed enrichment in each 

consequence class with 95% Poisson confidence intervals around the point estimate of the 

enrichment of observed de novo mutations compared to the expected number under a null 

mutational model17. The lines fit in the missense and nonsense class are LOESS fits. (b) 

Depicts the PPV derived from these observed enrichments. In all these plots points and lines 

are colored red if the variants occurred in a gene with a high shet value (≥ 0.15)19 or gray if the 

gene had a shet value < 0.15 (“low shet” genes). For missense variants, dashed lines indicate that 

the variants fell within missense constrained regions (MCR) while solid lines fell outside of 

MCRs. 

Missense enrichment and clustering test 

This test is designed to detect genes that may be acting via a gain-of-function mechanism and 

consists of two parts. The first is implementing the enrichment test (as described above) but 

only considering missense variants to obtain a pMisEnrich p-value. The second part consists of 

a missense clustering test. We assessed clustering of missense DNMs within genes to identify 

genes where DNMs may be acting through dominant negative or activating mechanisms. For 

this we used DeNovoNear, which has been described previously3 and is available on Github 

(https://github.com/jeremymcrae/denovonear). We refer to this clustering p-value as 
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pClustering. We combined pMisEnrich and pClustering using Fisher’s method to obtain pMEC. 

To ensure Fisher’s method was appropriate we confirmed that these two p-values were 

independent by simulating DNMs under the null for >20,000 tests and found the p-values were 

uncorrelated.  

Combining Tests 

We combined the results from the overall enrichment test and the missense 

enrichment/clustering test by taking the minimum of the two p-values as follows:  

 

pDeNovoWest = min(pEnrich, pMEC) 

Multiple Testing Correction 

To correct for multiple testing, we used a Bonferonni corrected significance threshold of 

0.05/(18762 * 2) for pDeNovoWest. This accounts for testing all 18,762 genes that we were able 

to conduct tests for and for 2 tests per gene: the overall enrichment test and the specific gain-of-

function test. The final set of DeNovoWEST p-values are listed in Sup Table 2. The full 

framework for DeNovoWEST is depicted in Sup Fig 4. 

 

Supplementary Table 2. Results of DeNovoWEST. Contains results from analysis on full 

cohort and on undiagnosed subset along with gene-level DNM counts per consequence. 

Column headers are described within the file. 

 

Supplementary Table 3. Novel genes. For each of the 28 novel genes in this analysis, we 

determined if it had an associated phenotype in OMIM, any publications about an association 

between mutations in that gene and developmental disorders, and whether it was significant in a 

study of inherited and de novo mutations in autism spectrum disorders21 (“sig_ASD”) or a meta-

analysis of de novo mutations in individuals with neurodevelopmental disorders22 (“sig_meta”). 
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Supplementary Figure 4: Overview of DeNovoWEST method. 
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Comparing DeNovoWEST to previous enrichment test 

To evaluate our new statistical framework we ran DeNovoWEST on the DNMs from the ~4k 

DDD trios from the 2017 publication3 (not including those from the meta-analysis). We 

compared the results of the old and new test (Sup Fig 5). Using the previous enrichment test, 

82 genes were found to be significantly associated with DD while DeNovoWEST identified 91 

significant genes. Seventy-eight of these genes overlapped with the previous results, 13 genes 

were significant in DeNovoWEST results that were not previously and 4 genes that were 

previously significant were no longer significant. These three genes that we are lost are 

consensus genes (AUTS2, BRPF1, EEF1A2, IQSEC2) that were close to the threshold. For the 

13 genes that were gained with DeNovoWEST, 10 were consensus, 1 was discordant and 2 

were not on any of the diagnostic lists. This demonstrates that we gain substantially more genes 

than we lose when applying our new enrichment framework.  

 

 
Supplementary Figure 5: Figure comparing p-values from published results on 4k DD trios 

to re-analysis of this data with the new method (DeNovoWEST). Due to constraints on the 

number of simulations we do not achieve p-values < 10-14, therefore the old results are capped 

at this value for appropriate comparison. Lines show multiple testing (Bonferroni) corrected 

threshold. 
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Synonymous-only enrichment test 

As part of quality control, we repeated the enrichment framework using only synonymous  

DNMs. While synonymous mutations can be pathogenic, we expect that—as a class—they will 

not be significantly enriched in any gene. There were 6029 genes with a de novo synonymous 

mutation, but none of these genes was significantly enriched (enrichment p < 2.66 x 10-6, 

Bonferroni corrected for 18,762 tests; Sup Fig 6). Here, we are using the p-value provided after 

the simulation segment of DeNovoWEST. 

 

Of note, the gene with the highest synonymous enrichment p-value from DeNovoWEST is 

KAT6B (synonymous enrichment p = 3.1 x 10-5), which contains 9 de novo synonymous 

mutations in the joint set. Six of those 9 synonymous variants are the known pathogenic 

synonymous variant (p.Pro1049Pro) that causes Say-Barber-Biesecker/Young-Simpson 

syndrome via aberrant splicing of KAT6B23. 

 

 
Supplementary Figure 6. Comparison of enrichment p-values from the full analysis vs the 

synonymous-only analysis. Genes with a p-value of 0 have been removed from the plot for 

clarity. The p-values are one-sided and the significance threshold (indicated with a dashed line) 

has been Bonferroni corrected.  
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Analysis of undiagnosed cases 

We defined diagnosed cases as those carrying a nonsynonymous DNM in one of the 380 

consensus diagnostic genes (n=6770 individuals; 3437 female and 3333 male). We then 

repeated the enrichment analysis only the remaining 24,288 ‘undiagnosed’ cases with the same 

weights generated from the analysis of the full set of individuals. 

 

There is a strong correlation between DeNovoWEST p-values in the full dataset compared to 

those in the undiagnosed-only analysis (Sup Fig 7; r = 0.793 for all genes with non-NA 

DeNovoWEST p-values in both analyses). In total, 94 genes were significant in the 

undiagnosed-only analysis (DeNovoWEST p < 0.05/(18,762*2)). Of the significant genes, 61 

were discordant and 33 were novel. As mentioned above, all DNMs in the novel genes were 

confirmed via Sanger sequencing or IGV inspection. 

 

 
Supplementary Figure 7. Comparison between DeNovoWEST p-values for the full analysis vs 

undiagnosed-only analysis. Note that consensus genes have been removed since individuals 

with de novo nonsynonymous mutations in those genes were considered diagnosed and 

removed from the undiagnosed-only analysis. Genes are colored by their diagnostic list 
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(discordant = blue; novel = orange; no list / none = gray). All p-values are one-sided and the 

significance thresholds (the dashed lines) have been Bonferroni corrected. 

 

Removing synonymous outlier genes 

We noticed that some of the putatively novel genes had significantly more synonymous variants 

than expected in the gnomAD24 database. For example, HIST1H4E has 88 observed 

synonymous variants in gnomAD when only 25 were expected (observed/expected = 3.51, 

synonymous Z = -9.89). These outliers are indicative that the underlying mutational model is not 

properly modeling these genes, and may be underpredicting the number of expected variants. 

We do not want to highlight false positive diagnostic genes (e.g. those that are significant in our 

test because the underlying model is wrong and are therefore not truly associated with 

developmental disorders). To address this, we selected the 11 of 33 putatively novel genes that 

had significantly elevated rates of synonymous variants in gnomAD compared to expectation 

(defined as synonymous Z ≤ -1.65, one tailed p ~ 0.05), multiplied all of their mutation rates by 

the observed/expected synonymous value (oe_syn) in gnomAD, and re-ran DeNovoWEST 

using these modified mutation rates. Five of these 11 genes (EEF2, HIST1H2AC, HIST1H4E, 

SPTBN1, ZFHX) failed to pass the exome-wide significance threshold (p < 0.025/18762) and 

were subsequently removed from our novel list, leaving 28 novel genes. 
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Withholding the 10 most mutated genes from weight creation 

One potential weakness of our approach is the circularity in defining weights based on mutation 

enrichments in our cohort and then applying those weights to the same data. Ideally, we would 

generate weights with each gene held out and then apply weights to the held out gene. 

However, we hypothesized that doing so would have a minimal impact on the final enrichment 

results. To test this, we removed the mutations in the 10 most mutated genes (DDX3X, ARID1B, 

ANKRD11, KMT2A, MECP2, DYRK1A, SCN2A, STXBP1, MED13L, CREBBP), regenerated 

weights, and applied those weights to the full dataset. 

 

We found that the DeNovoWEST p-values for the full analysis vs this analysis were highly 

correlated (r =0.99), including nearly identical p-values for the 10 genes withheld from weight 

creation. There was 1 gene that was significant in the full analysis but not in this analysis 

(PCBP2, p= 1.1 x 10-6 in full analysis; p = 1.8 x 10-6 in analysis with the top 10 genes removed 

from weight calculation). There was one gene that was significant in this analysis but not in the 

full analysis (SLC39A8, p= 1.4 x 10-6 in full analysis; p = 1.1 x 10-6 in analysis with the top 10 

genes removed from weight calculation). For both differing genes the p-values were very similar 

and close to the significance threshold. These minimal differences support that our approach is 

robust to this form of circularity. 
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Evaluating potential cryptic splice site variants 

While it is known that the terminal exonic guanine before a splice site can have a strong impact 

on splicing and be involved in developmental disorders25,26, there are too few of them as a class 

to treat as a separate group when determining weights in the enrichment framework. To 

address these bases and others that may act as cryptic splice sites, we downloaded all publicly 

available SpliceAI scores27, which were provided for single nucleotide variants with a maximum 

delta score ≥ 0.1. We annotated our DNMs with the largest SpliceAI delta score of the four 

possible scores (acceptor gain, acceptor loss, donor gain, and donor loss). Only 8% (n = 

3329/40992) of our single nucleotide DNMs could be annotated with a SpliceAI delta score, but 

92% of single nucleotide splice acceptor and donor variants (n = 948/1032) received a score. 

We selected a threshold of 0.8 to define a set of potentially splice disrupting variants based on 

three major lines of evidence from Jaganathan, Kyriazopoulou, McRae et al27: 

1. Exons that are nearly always included in transcripts (high exon inclusion rate) have 

higher maximum delta scores 

2. Higher delta scores were associated with a higher validation rate (but lower sensitivity) 

when studying GTEx RNA-seq data 

3. Variants with higher delta scores (specifically those with a score ≥ 0.8) showed a lower 

rate of tissue specific usage of reference vs aberrant transcripts 

 

In our data, 1059 DNMs have a delta score ≥ 0.8; the vast majority (83%; n = 874) of these are 

splice acceptor and donor variants. There were 43 synonymous DNMs with high (≥ 0.8) SpliceAI 

delta scores that were found in 36 unique genes. The only genes with multiple such 

synonymous DNMs were KAT6B (n = 6), ARID1B (n = 2), and DDX3X (n = 2), all of which are 

on the consensus list and significant in the full analysis. The other 33 genes would gain at most 

one additional potential PTV. However, one additional PTV would not make any of the non-

significant genes significant. As an example, the gene closest to significance was RAB5C 

(undiagnosed-only simulation enrichment p = 1 x 10-3; DeNovoWEST undiagnosed p = 1 x 10-3). 

A classic burden test with the synonymous variant considered as a PTV does not survive 

Bonferroni correction (unadjusted Poisson p = 4 x 10-5). 

 

Additionally, we extracted the mutational context for all sites with a SpliceAI delta score ≥ 0.8 

and used the sample size and triplet context mutation rates17 to determine the expected 

numbers of DNMs in our cohort. There is a significant enrichment of DNMs that have a SpliceAI 

≥ 0.8 (1.76 fold enriched, Poisson p < 10-50; Sup Table 4), which remains when removing 

known splice sites (1.55 fold enriched; Poisson p = 2 x 10-8). The enrichment of synonymous 

DNMs with high SpliceAI scores is also significant (1.56 fold enrichment; Poisson p = 0.0037; 
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Sup Table 4). The six KAT6B synonymous variants mentioned in the previous paragraph (and 

included in the 43 variants) are a known pathogenic synonymous variant23. If those six variants 

are removed from the enrichment calculations, the p-value is only nominally significant (p = 

0.0328, 1.35 fold enriched). 

 

 Observed 
DNMs 

Expected 
DNMs 

Enrichment Poisson 
p-value 

All variants 1059 601.56 1.76 1 x 10-63 

All non-splice variants 185 119.23 1.55 2 x 10-8 

Synonymous variants 43 27.48 1.56 0.0037 

Supplementary Table 4. Comparing observed to expected variants with SpliceAI delta scores ≥ 

0.8. The sample size (n = 31,058) and triplet context mutation rates17 were used to determine 

the expected number of DNMs for sites with high SpliceAI delta scores (≥ 0.8)27. Poisson p-

values were computed comparing the observed number of mutations to the expected number. 

For “All non-splice variants”, DNMs with the consequences of “splice_acceptor_variant” and 

“splice_donor_variant” were removed. 
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Estimating the fraction of cases explained by de novo mutations 

We previously estimated that the proportion of DDD individuals explained by diagnostic de novo 

coding mutations in known or as-yet-undiscovered genes was between 0.461 and 0.48615. For 

this analysis, we define diagnostic variants as de novo nonsynonymous mutations in all 

consensus genes and in the significant discordant and novel genes. Overall, 25.0% of our 

cohort harbors a DNM that would be considered diagnostic by the previous criteria, with the 

largest fraction of cases harboring mutations in one of the 380 consensus genes (21.8% of 

cases; Fig 1b). 

Splitting by cohort 

When evaluating each study separately, we observe 27.5% of DDD probands, 23.6% of 

GeneDx probands, and 26.7% of RUMC probands harbor a nonsynonymous DNM in a 

consensus or significant DD-associated gene. There are no significant differences between 

cohorts in the rate of individuals who harbor these ‘diagnostic’ DNMs in novel genes (chi-

squared p = 0.9443) or discordant genes (chi-squared p = 0.4997). Consensus genes, however, 

show significantly different rates of diagnostic DNM carriers between cohorts (chi-squared p = 

1.41 x 10-12). This difference is driven primarily by a lower rate in GeneDx samples: 20.4% in 

GeneDx vs 24.1% in DDD (chi-squared p = 9.48 x 10-13) and 23.3% in RUMC (chi-squared p = 

0.0009). Since the GeneDx cohort is composed entirely of referrals, many patients with 

suspected genetic disorders in high-prevalence genes are removed from the referral pool by 

receiving a positive diagnosis via targeted single-gene or panel testing. There is no significant 

difference in rates between diagnostic DNM carriers in DDD and RUMC for the consensus 

genes (chi-squared p = 0.4626). For the 315 individuals with multiple damaging DNMs, we gave 

priority first to DNMs in consensus genes then discordant genes and finally to novel genes. 

Splitting by sex 

When we split the cohorts by the sex of the proband, we find that a significantly higher fraction 

of females have a nonsynonymous DNM in an autosomal diagnostic genes (as above, all 

consensus genes, significant discordant genes, and novel genes) when compared to males (OR 

= 1.15, Fisher’s p = 3.3 x 10-7). This difference is driven by the autosomal consensus genes, in 

which a higher fraction of females harbor nonsynonymous DNMs compared to males (OR = 

1.16, Fisher’s p = 4.43 x 10-7; Sup Fig 8). We find no significant differences between males and 

females in the significant discordant genes (autosomal only; OR = 1.03, Fisher’s p = 0.7183) or 

novel autosomal genes (OR = 0.85, Fisher’s p = 0.1946). Note that these results are only for 
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autosomal genes since we expect varying diagnostic rates on the X chromosome between 

males and females. 

 

 
Supplementary Figure 8: Fraction of cases with a nonsynonymous de novo mutation (DNM), 

split by sex and diagnostic list. Females are depicted in gray and males in black. Consensus 

here is all consensus genes (n = 380 genes). Discordant is only significant discordant genes (n 

= 61 genes). Novel is the significant novel genes (n = 28 genes). The only significant difference 

is for the consensus genes, where females have a higher rate of nonsynonymous DNMs than 

males (OR = 1.16; two-sided, Fisher’s p = 4.43 x 10-7). 

 

 

When considering all autosomal genes, no significant difference is found between the fraction of 

female vs male cases who harbored a nonsynonymous DNM (OR = 1.03, Fisher’s p = 0.2876). 

Even when removing individuals with a nonsynonymous DNM in a diagnostic gene (n = 7776), 

there is no difference in the fraction of female vs male cases carrying a nonsynonymous DNM in 

autosomal genes (OR = 0.98, Fisher’s p = 0.4919). Additionally, we do not observe significantly 

different proportions of nonsynonymous to all DNMs in autosomal genes in females vs males for 

either the full set of individuals (p = 0.5346, proportions test) or the subset of individuals without 

a nonsynonymous DNM in a diagnostic gene (p = 0.6350, proportions test).  
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Comparing the new and known genes 

Phenotypic similarity between new and known genes 

Semantic similarity between any two phenotype terms in the Human Phenotype Ontology (HPO) 

was calculated using the Hybrid Relative Specificity Similarity (HRSS) measure28. The 

information content of each phenotype term was modified by averaging the information content 

calculated from the HPO phenotype-to-gene annotation file and the information content 

calculated from the cohort phenotype-to-proband annotations. For this analysis only the most 

informative phenotypes were used. The set of each proband’s phenotypes were pruned so that 

the final set contained no pairs of phenotype terms where one term was an ancestor of another. 

The phenotypic similarity between any two probands was defined as the best-match average of 

HRSS scores for the cross product of the two sets of phenotypes. By definition, both HRSS 

scores and phenotypic similarity scores range from 0.0 to 1.0. 

 

To compare the phenotypic similarity between the consensus and novel genes, we computed 

the phenotypic similarity for each pair of probands who had DNMs (excluding synonymous 

variants) in the same gene and repeated this for every consensus and novel gene. There were 

154,464 pairwise scores representing comparisons of the probands with DNMs in consensus 

and novel genes. For comparison to a null model, we randomly selected 100,000 pairs of 

probands from a downsampled subset of the entire cohort of 31,058 probands. We found that 

the random selection of probands is significantly less phenotypically similar than probands with 

DNMs in novel or consensus genes (p-value = 2.0 x 10-30 and p-value = <10-100, Wilcoxon rank-

sum test). We present results of pairwise semantic similarity for probands in each individual 

novel gene, where genes with lower median pairwise semantic similarity scores display more 

phenotypic heterogeneity. (Sup Fig 9) The software used to perform the phenotypic similarity 

calculations is available at https://github.com/GeneDx/phenopy.  
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Supplementary Figure 9. Pairwise Similarity Scores in Novel Genes. Ten of the 28 novel 

genes (AP2S1, ARF1, PRKAR1B, H3F3A, ATP6V0A1, KCNK3, UPF1, FBXW7, SPEN, and 

RAB14) had a higher median semantic similarity score than the median semantic similarity 

score in 196 consensus known genes (0.08, dashed red line). Grey dots in each row represent 

a semantic similarity score between two cases with de novo missense or PTV in that gene 



35 

(n=134,591 pairwise scores in consensus known genes and n=1,727 pairwise scores in novel 

genes). 

Functional similarity between new and known genes 

To compare the functional similarity between the consensus and novel genes we looked across 

various properties that have been known to be important in classifying haploinsufficiency29. The 

details of each variable we have used are detailed below: 

● Somatic driver gene: a binary variable of whether the gene is a known somatic driver 

gene30. 

● Median RPKM fetal brain: the median RPKM in the fetal brain taken from BrainSpan31. 

● Relevant GO term: a binary variable of whether the gene was annotated with one of 

twenty GO terms that were enriched in consensus DD genes. To select these terms we 

annotated all genes with GO terms and looked at the enrichment of each GO term 

between consensus DD genes and non-DD genes (genes that are not significant in our 

analysis and are not on either the discordant or consensus genes lists). We defined 

relevant GO terms as the top 20 most enriched terms that appear in at least 20 of the 

380 consensus genes. This was to ensure that we were picking terms that were 

generalisable to the entire set were not specific to only a few genes. The terms selected 

are detailed in Sup Table 5. At least one of these 20 terms were present in 237 (71%) of 

consensus genes and 2,874 (16%) of non-DD genes.  

● Network distance to consensus genes: As in Huang et al29, we created a protein-protein 

interaction network by integrating information from the Human Protein Reference 

Database32, STRING33, and Reactome34. We then calculated the shortest path distance 

(a measure of proximity) between each gene and consensus genes. 

● Network degree and betweenness: We used MCL35 (version 14-137; 

https://micans.org/mcl/) to determine network degree and betweenness (both measures 

of centrality). Specifically, we used commands mcl query and mcl ctty. 

● Promoter GERP and Coding GERP: These were calculated as described in Huang et 

al.29 

● pLI: the gnomAD pLI scores were used here24. 

● Macaque dN/dS: downloaded from Ensembl. 

 

We compared the mean of these variables across consensus and novel genes compared to 

non-DD genes (Figure 2b) and found that the novel and consensus genes had very similar 

enrichments across most variables. The only significant difference was found in the network 

distance to another consensus DD gene (p-value 0.004, Wilcoxon test). 
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GO ID GO name 
Number of 
non-DD genes 
with GO term 

Number of 
consensus 
DD genes 
with GO term 

Enrichment of 
GO term in 
consensus vs 
non-DD genes 

GO:0001501 skeletal system development 119 31 12.577748 

GO:0007507 heart development 161 33 9.896377 

GO:0007605 sensory perception of sound 107 21 9.47597 

GO:0008543 fibroblast growth factor 
receptor signaling pathway 

138 24 8.396926 

GO:0001701 in utero embryonic 
development 

217 37 8.23247 

GO:0044212 transcription regulatory region 
DNA binding 

168 28 8.047054 

GO:0003682 chromatin binding 326 53 7.84958 

GO:0010628 positive regulation of gene 
expression 

155 24 7.475972 

GO:0007411 axon guidance 295 44 7.201431 

GO:0000122 negative regulation of 
transcription from RNA 
polymerase II promoter 

535 76 6.858797 

GO:0043234 protein complex 323 42 6.278197 

GO:0045893 positive regulation of 
transcription, DNA-dependent 

512 66 6.223893 

GO:0007268 synaptic transmission 359 45 6.052102 

GO:0007420 brain development 200 25 6.03529 

GO:0005667 transcription factor complex 220 27 5.925558 

GO:0045944 positive regulation of 
transcription from RNA 
polymerase II promoter 

711 85 5.772148 

GO:0007399 nervous system development 285 33 5.590585 

GO:0003713 transcription coactivator activity 223 25 5.412816 

GO:0008134 transcription factor binding 281 30 5.154696 

GO:0048011 neurotrophin TRK receptor 
signaling pathway 

256 27 5.092276 

 

Supplementary Table 5: Table showing the GO terms selected as being relevant to consensus 

DD genes.  
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Evaluating potentially smaller mutational targets in the novel genes 

We hypothesize that the novel genes may have a smaller mutational target than the previously 

established genes. In the following set of analyses, we only consider significant consensus 

genes (n = 196) and compare them to the significant discordant and novel genes (n = 94). 

 

Many of the known developmental disorder genes act via haploinsufficiency (e.g. > 50% of the 

monoallelic DDG2P list have “loss of function” as their listed mutation consequence) and could 

therefore be caused by almost all true loss-of-function variants within a gene. Disorders due to 

gain-of-function mutations, however, would be caused by a much smaller number of mutations 

within a gene and would therefore require large sample sizes to be significantly burdened by 

DNMs. To investigate if the new genes (here both the discordant and novel) were more likely to 

act via a gain-of-function mechanism, we compared the ratio of missense to PTV DNMs in the 

gene sets and found that the consensus genes have a significantly lower missense:PTV ratio 

than the discordant and novel genes (ratio 1.20 vs 2.51; chi-squared p = 1.22 x 10-25). 

 

Alternatively, a smaller mutational target could be due to a shorter gene length. We would 

expect this to be most obvious for genes predicted to act via haploinsufficiency. To define such 

likely haploinsufficient genes, we subsetted the 285 genes to 149 with significant PTV 

enrichment (p < 1 x 10-6). We, however, do not find significant differences in gene length or PTV 

mutability between the consensus genes compared to discordant and novel genes (Wilcox p = 

0.9404 and 0.8534, respectively). 

Comparison of constraint metrics 

Additionally, we compared various constraint metrics between the significant consensus genes 

and the significant discordant and novel genes. To correct for mutability, for each of these 

metrics, we assigned missing genes the median value. We then ran a regression of the 

probability of mutation on the constraint metric and used the residuals in Wilcoxon rank sum 

tests. Using these residuals therefore corrects for systematic differences in length in between 

gene sets. When correcting for mutability in this way, we find no significant differences between 

the two gene sets for shet
19 (Wilcox p = 0.1185), pLI24 (Wilcox p = 0.6039), or LOEUF (Wilcox p = 

0.8010). We also find no significant difference between the known and novel genes for the rate 

of observed/expected missense variants in gnomAD (oe_mis; Wilcox p = 0.9228). 
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Clustering of PTVs at the end of transcripts 

We also wanted to search for clustering of de novo PTVs specifically at the terminal end of 

genes since transcripts with such PTVs can sometimes escape from nonsense mediated decay 

(NMD). To test this, we selected all genes with > 2 de novo PTVs in our cohort and determined 

the probability of a PTV mutation in regions likely to escape from NMD (the last exon and 50bp 

into the penultimate exon36). We then used a Poisson test to compare the rate of PTVs in the 

NMD escape region to the rate in the rest of the gene. With a Bonferroni corrected threshold of 

1 x 10-6, this analysis identified two significant genes: UBE3A (consensus gene; Poisson test p 

= 1.96 x 10-9) and MN1 (discordant gene; Poisson test p = 1.58 x 10-7). NMD-escaping PTVs in 

MN1 were recently tied to a novel developmental disorder: MN1 C-terminal Truncation 

syndrome37.  

 

 
 
Supplementary Figure 10: Models of PSMC5, a novel gene that likely operates via gain-of-

function (a) 3D structure (PDB ID: 5GJQ) of novel gene PSMC5, highlighting the clustered 

missense mutations. Modeled and visualized using YASARA & WHAT IF Twinset38. (b) Gene 

model of novel genes PSMC5. De novo mutations are depicted on each gene model colored by 

the type of mutation (synonymous in green, missense in red, nonsense in black, and frameshift 

in orange). The mutation labels are colored by the cohort in which the mutation was found 

(purple for GeneDx, green for DDD, and yellow for RUMC). 
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Protein domain analysis 

Annotation of transcripts, protein positions, and protein domains to genomic 

coordinates 

We used a local version of the MetaDome web server39 

(https://stuart.radboudumc.nl/metadome) to query genomic positions of our variants and obtain 

corresponding GENCODE40 transcripts, protein positions in UniProtKB/Swiss-Prot databank 

entries for the human species41, and Pfam-A v30.0 protein domains42. 

 

In order to avoid different variant effect interpretations because of different exon composition 

and/or reading frames in alternative transcripts, we used a single transcript per gene for the 

protein domain analysis. A GENCODE transcript was chosen for each gene based on the 

following criteria in order: 

1. The transcript corresponds to a human canonical or isoform entry in Swiss-Prot 

2. This transcript contains all (or most) of the de novo mutations for the corresponding 

gene 

3. The transcript translates to the longest protein sequence length 

4. If multiple transcripts remain for a gene, one of these is selected 

All variant consequences were reannotated in context of the chosen transcript. After this 

selection of transcripts 92.7% of missense, 94.35% of synonymous, and 89.94% of stop-gained 

variants remained. 

Counting variants by type and correcting for region-specific bias 

The protein domain region coverage (i.e. percentage of a protein that is a protein domain) over 

all genes (n = 11,983) in the joint de novo set is 42.71%. There are on average 2.4 protein 

domains in each of these genes. Of the 37,089 SNVs in the entire dataset 17,902 (48.27%) are 

located in a protein domain, and of the variants located in a protein domain, 73.25% are 

missense, 21.57% are synonymous, and 5.17% are nonsense. 

We tested whether specific variant types were more likely to be found within protein domain 

regions of the cDNA of a gene versus the non-protein domain parts. In this analysis we only 

focussed on single nucleotide variants in the protein coding part of the gene, and therefore only 

considered missense, synonymous and stop-gained variants. We counted how often a variant 

type occurred and in which part of the gene (i.e. protein domain or the remaining gene area). 

Counts were corrected for the percentage of protein domain region coverage in a gene and for 

the nucleotide sequence context based on the codon table. 
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To correct for the protein domain region coverage in a gene we define 𝑃(𝑑𝑜𝑚𝑎𝑖𝑛) as the 

percentage of domain region and𝑃(¬	𝑑𝑜𝑚𝑎𝑖𝑛) as the percentage of the remaining gene region. 

For the sequence context we extract the nucleotide sequence from the protein domain parts of 

the gene and use the codon table to compute the probability per codon on variant type𝑣𝑎𝑟 ∈

{6𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒6, ′𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠6, ′𝑠𝑡𝑜𝑝𝑔𝑎𝑖𝑛𝑒𝑑′	}. We define the corresponding probability of a variant 

type in the protein domain region as𝑃(𝑣𝑎𝑟ABC) and the probability of a variant in the remaining 

gene region as 𝑃(𝑣𝑎𝑟¬ABC). 

The probability of a specific variant type to be found within a protein domain region can then be 

presented as𝑃(𝑣𝑎𝑟ABC|	𝑑𝑜𝑚𝑎𝑖𝑛) = 	𝑃(𝑣𝑎𝑟ABC) ⋅ 𝑃(𝑑𝑜𝑚𝑎𝑖𝑛), and 𝑃(𝑣𝑎𝑟¬ABC|	¬𝑑𝑜𝑚𝑎𝑖𝑛) =

	𝑃(𝑣𝑎𝑟¬ABC) ⋅ 𝑃(¬𝑑𝑜𝑚𝑎𝑖𝑛) for variants in the remaining region of the gene. In general 

𝑃(𝑣𝑎𝑟ABC|	𝑑𝑜𝑚𝑎𝑖𝑛	) + 𝑃(𝑣𝑎𝑟¬ABC|	𝑑𝑜𝑚𝑎𝑖𝑛) ≠ 1.0. To use these probabilities as corrections we 

need to normalize in the following way:  𝑃(𝑣𝑎𝑟ABC|	𝑑𝑜𝑚𝑎𝑖𝑛)KBLC =
M(NOLPQR|	ABCOSK)

M(NOLPQR|	ABCOSK)TM(NOL¬PQR|	¬ABCOSK)
 and 𝑃(𝑣𝑎𝑟¬ABC|	¬𝑑𝑜𝑚𝑎𝑖𝑛)KBLC =

M(NOL¬PQR|	¬ABCOSK)
M(NOLPQR|	ABCOSK)TM(NOL¬PQR|	¬ABCOSK)

. The variant counts are then subsequently corrected by 

counting the variants located in domain regions and multiplying this with (.U
M(NOLPQR|	ABCOSK)VQWR

 

and for variants found in the remaining gene regions with (.U
M(NOL¬PQR|	¬ABCOSK)VQWR

 . 

(a) In domain region In remaining gene 
region 

Percentage in domain 
region 

Missense (corrected) 28,982.13 23,799.43 54.91 % 

Synonymous (corrected) 8,358.50 8,157.82 50.61 % 

Stop gained (corrected) 2,517.72 2,334.40 51.89 % 

 

(b) In domain region In remaining gene 
region 

Percentage in domain 
region 

Missense (corrected) 6,321.19 2,406.55 72.43% 

Synonymous (corrected) 360.10 343.13 51.21% 

Stop gained (corrected) 1,250.63 994.53 55.70% 

 

(c) In domain region In remaining gene 
region 

Percentage in domain 
region 

Missense (corrected) 240.18 133.68 64.24% 

Synonymous (corrected) 30.85 42.64 42.32% 

Stop gained (corrected) 17.99 37.51 37.51% 
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Supplementary Table 6. (a) Contingency table for all de novo single nucleotide variants after 

correction. G-test: p-value = 3.92 x 10-22 (Bonferroni correction: N = 3), test statistic = 100.78, 

degrees of freedom = 2. Counts of variants are corrected for relative domain fraction of a gene 

and codon composition. (b) Contingency table for de novo single nucleotide variants after 

correction observed in the consensus genes G-test: p-value = 2.19 x 10-68 (Bonferroni 

correction: N=3), test statistic = 313.78, degrees of freedom = 2. Counts of variants are 

corrected for relative domain fraction of a gene and codon composition. (c) Contingency table 

for de novo single nucleotide variants after correction observed in the novel genes. G-test: p-

value = 8.04 x 10-5 (Bonferroni correction: N=3), test statistic = 21.05, degrees of freedom = 2. 

Counts of variants are corrected for relative domain fraction of a gene and codon composition. 

Computing variant enrichment in protein domains 

To determine whether domain families are enriched with variants of a specific type (i.e. 𝑣𝑎𝑟	 ∈

{6𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒6, ′𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠6, ′𝑠𝑡𝑜𝑝𝑔𝑎𝑖𝑛𝑒𝑑′	}), we aggregated the variant counts of each type over 

the occurrences of that domain family: 𝑜𝑏𝑠_𝑛NOL(𝑥), where𝑥represents the domain family. We 

compare this to the number of expected variants per domain family: 𝑒𝑥𝑝_𝑛NOL(𝑥). We then 

contrast the observed and expected variant counts in a contingency table to calculate a 

potential enrichment or depletion via a G-test. Bonferroni correction is applied based on the 

number of domain families present in the enrichment test set. The contingency table for domain 

family 𝑥:  

 Variants in domain family Variants in other domains 

Observed variants 𝑜𝑏𝑠_𝑛NOL(𝑥) [
\,\]^	

𝑜𝑏𝑠_𝑛NOL(𝑦) 

Expected variants 𝑒𝑥𝑝_𝑛NOL(𝑥) [
\,\]^	

𝑒𝑥𝑝_𝑛NOL(𝑦) 

 

The expected number of variants𝑒𝑥𝑝_𝑛NOL(𝑥)for a protein domain family is based on a 

redistribution of𝑜𝑏𝑠_𝑛NOL(𝑥)over the entire set of domain families. This redistribution is corrected 

for any potential bias that could affect the number of variants. Specifically, we correct for the 

total sequence context of domain regions, the total number of occurrences of a domain family, 

and the mutation rate of protein regions containing the domain family of interest. 

We correct for variant type preference based on the sequence context by extracting the 

nucleotide sequence of each protein domain region belonging to a family𝑥and use the codon 

table to count the number of possible SNVs that would result into the variant of type 𝑣𝑎𝑟: 
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𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥). The correction for family 𝑥 is comparing the total possible SNVs of type 𝑣𝑎𝑟 for 

family 𝑥 to the total of the entire set of domain families: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥) 	=

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥)	/∑\ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑦). 

The number of protein domain occurrences is another aspect we correct for. The number of 

occurrences of family 𝑥 is given by𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠^ and is compared to the total number of protein 

domain occurrences: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑥) = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠^/∑\ 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠\. 

The mutation rate of the protein in which a protein domain occurs might be biased. To correct 

for this we count the total number of mutations found in all the proteins that contain a domain of 

family 𝑥 and define that as 𝑝𝑟𝑜𝑡_𝑜𝑏𝑠_𝑛NOL(𝑥), then we divide that by the total protein sequence 

length of all of these proteins 𝑙𝑒𝑛𝑔𝑡ℎ_𝑝𝑟𝑜𝑡(𝑥)to obtain the mutation rate: 𝑚𝑢𝑡𝑟𝑎𝑡𝑒_𝑝𝑟𝑜𝑡NOL(𝑥) =

𝑝𝑟𝑜𝑡_𝑜𝑏𝑠_𝑛NOL(𝑥)	/	𝑙𝑒𝑛𝑔𝑡ℎ_𝑝𝑟𝑜𝑡(𝑥). To correct for the mutation rate we compare it to the total 

mutation rate for all domains and their corresponding proteins 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑢𝑡𝑟𝑎𝑡𝑒NOL(𝑥) 	=

𝑚𝑢𝑡𝑟𝑎𝑡𝑒_𝑝𝑟𝑜𝑡NOL(𝑥)	/ 	∑\ 𝑚𝑢𝑡𝑟𝑎𝑡𝑒_𝑝𝑟𝑜𝑡NOL(𝑦) 

An example of the input for assessing domain family enrichment. In this example there are three 

domain families named A, B, and C: 

Domain family 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥) 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠^ 𝑚𝑢𝑡𝑟𝑎𝑡𝑒_𝑝𝑟𝑜𝑡NOL(𝑥) 𝑜𝑏𝑠_𝑛NOL(𝑥) 

A 170 3 0.3 7 

B 160 2 0.1 2 

C 30 1 0.05 10 

Total 360 6 0.45 19 
 

The correction variables are computed to calculate the expected number of variants for 

assessing domain family enrichment: 

Domain 
family 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑥) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑢𝑡𝑟𝑎𝑡𝑒NOL(𝑥) 

A 170/360 3/6 0.3/0.45 

B 160/360 2/6 0.1/0.45 

C 30/360 1/6 0.05/0.45 

Total 1.0 1.0 1.0 
 

The expected number of variants is a redistribution of the total number of variants found over all 
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domain families and this is multiplied by each of the correction terms for domain family x. Each 

of the correction terms are weighed equally and 𝑒𝑥𝑝_𝑛NOL(𝑥) is thus calculated as: 

𝑒𝑥𝑝_𝑛NOL(𝑥) = 

∑\ 𝑜𝑏𝑠_𝑛NOL(𝑦) ⋅
(
d
(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒NOL(𝑥) 	+ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑥) 	+

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑢𝑡𝑟𝑎𝑡𝑒NOL(𝑥))		  

For our example the expected variants are:  

Domain 
family 

𝑒𝑥𝑝_𝑛NOL(𝑥) 

A 19	 ⋅
1
3 ⋅ (170/360	 + 	3/6	 + 	0.3/0.45) 	= 10.38 

B 19	 ⋅
1
3 ⋅ (160/360	 + 	2/6	 + 	0.1/0.45) 	= 6.33 

C 19	 ⋅
1
3 ⋅ (30/360	 + 	1/6	 + 	0.05/0.45) 	= 2.29 

Total 19 
 

We assessed if specific domain families are enriched for variant types via this enrichment test 

for the domains present in the consensus diagnostic genes and these results can be found in 

Supplementary Table 7. We find six domain families enriched with DNM missense variants. 

The molecular functions and disease associations due to missense variants of these missense 

enriched domain families can be found in Supplementary Table 8. We did not find any 

enrichment or depletion when this test was performed for synonymous or stop-gained DNM 

variants. 

 

Domain families Depleted/ 

Enriched 

DNM 
Observe
d 

DNM 
Expected 

Domain 
instances 

Genes Corrected 
P-value 

Ion transport 
protein (PF00520) 

Enriched 338 ~231 44 19 6.88e-04 

Ligand-gated ion 
channel (PF00060) 

Enriched 82 ~25 4 4 4.00e-06 

Protein kinase 
domain (PF00069) 

Enriched 132 ~78 13 12 4.30e-02 

Protein 
phosphatase 2A 

Enriched 43 ~12 1 1 8.50e-03 
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regulatory B 
subunit (B56 
family) (PF01603) 
Sec1 family 
(PF00995) 

Enriched 47 ~14 1 1 6.01e-03 

Kinesin motor 
domain (PF00225) 

Enriched 57 ~22 4 4 2.68e-02 

Supplementary Table 7. Significant missense variant enrichment of domain families in the 

consensus diagnostic genes (N total domain families = 272, used for Bonferroni correction on 

the P-value). There is no significant enrichment for synonymous variants. 

 

Domain Molecular function Associated diseases (due 
to missense) 

Ligand-gated ion channel 
(PF00060) 

Occur as ionotropic 
glutamate receptors 
(iGluRs) and plays a critical 
role in synaptic 
communication and 
plasticity (Bortolotto 199943, 
Croset 201044) 

(neurological) 
channelopathies (Catterall 
200845) 

Ion transport protein 
(PF00520) 

Neuronal excitability and 
synaptic transmission 
through the central and 
peripheral nervous systems 
(Spillane 201646). 

(neurological) 
channelopathies (Spillane 
201646, Catterall 200845) 

Protein phosphatase 2A 
regulatory B subunit (B56 
family) (PF01603) 

Regulatory function involved 
in multiple aspects of cell 
growth and metabolism 
(McCright and Virshup 
199547). 

Intellectual disability (ID), 
Autism, Hypotonia, 
Macrocephaly (Shang 
201648) 

Protein kinase domain 
(PF00069) 

Regulatory domain that 
functions as an on/off switch 
for many cellular processes 
(Manning 200249) 

Associated with many 
different diseases, including 
developmental ID (Hamilton 
201850) 

Sec1 family (PF00995) Neurotransmitter release by 
exocytosis (Halachmi and 
Lev 199651). Whereas their 
interaction with syntaxin 
molecules represent a 
negative regulatory step in 
secretion (Bracher 200052). 

Epileptic Encephalopathy 
(Saitsu 200853) 

Supplementary Table 8. Molecular functions and disease associations of the protein domains 

that are significantly enriched with missense variants. 
 



45 

Overlap with somatic driver genes and mutations 

We downloaded a list of 369 somatic driver genes identified in Martincorena et al30, which we 

then mapped to their HGNC identifier for comparison with genes in our analysis. There are 70 

genes shared between the somatic driver gene list and the 285 significant genes in our full 

analysis (56 consensus, 9 discordant, and 5 novel). This overlap between the two lists is 

significant when correcting for shet
19 (logistic regression, p = 1.7 x 10-49). 

 

To determine the enrichment of DNMs in the somatic driver genes, we used the previously-

mentioned sequence context-based mutational model to predict the expected number DNMs in 

the gene set13,17. The somatic driver genes are significantly enriched for nonsynonymous DNMs 

compared to expectation (missense and PTVs; Poisson p < 10-50 for both categories; Sup Table 
9A). This enrichment remains when removing the 70 somatic driver genes that are significant in 

the de novo analysis (Poisson p = 8.0 x 10-21 for missense and 2.8 x 10-27 for PTVs; Sup Table 
9B). Overall, 9.4% of cases carry a nonsynonymous DNM in a somatic driver gene; in 6.7% of 

cases, the somatic driver gene impacted is also significant in the de novo analyses. 

 

A) All somatic driver genes 

 Observed 
DNMs 

Expected 
DNMs 

Enrichment Poisson p-
value 

Synonymous 286 304.77 0.938 0.1474 

Missense 1810 686.17 2.638 6.2 x 10-277 

Protein-truncating variant 1114 94.84 11.746 p < 10-300 

 

B) Somatic driver genes not significant in the de novo analysis 

 Observed 
DNMs 

Expected 
DNMs 

Enrichment Poisson p-
value 

Synonymous 204 220.98 0.923 0.1331 

Missense 713 492.65 1.447 8.0 x 10-21 

Protein-truncating variant 174 67.59 2.574 2.8 x 10-27 

Supplementary Table 9. Enrichment of de novo mutations in somatic driver genes. Using a 

sequence-context based mutational model13,17 and the size of the cohort, we predicted the 

expected number of de novo mutations (DNMs) by mutational consequence in 369 somatic 

driver genes30 (a) and the somatic driver genes that were not significant in the de novo analysis 

(b). These expectations were compared to the observed number of DNMs with a Poisson test. 
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We took a list of recurrently mutated sites (≥ 3 patients) in the MC3 calls from The Cancer 

Genome Atlas (TCGA), which included 10,224 cancer patients across 30 cancer types60. 

Overall, we find 117 DNMs at 76 unique sites in our cohort that are recurrently mutated in the 

TCGA data in at least three patients. To determine enrichment at these recurrently mutated 

sites in TCGA, we focused on single nucleotide variants only. We extracted the local sequence 

context and used triplet context mutation rates17 and the sample size to determine the expected 

numbers of DNMs in our cohort at these recurrently mutated single nucleotide sites. We 

performed this analysis while varying the number of patients in TCGA in which the mutation was 

found (from three or more patients to 10 or more patients). For example, there are 112 DNMs at 

71 unique sites in our cohort that are recurrently mutated in the TCGA data in at least three 

patients (Poisson p < 10-50; Sup Fig 11). If we were to use a recurrence threshold of 10 in 

TCGA, however, we find 28 DNMs at 12 unique sites (Poisson p = 1.2 x 10-39). As the 

recurrence threshold in TCGA is increased, an increasingly large proportion of the DNMs are 

recurrently mutated in our cohort.  

 

 
Supplementary Figure 11. Enrichment of de novo mutations (DNMs) in our cohort of 

developmental disorder patients at sites that are recurrently mutated in 3 or more patients in 

The Cancer Genome Atlas (TCGA). Nonsynonymous DNMs (red, n = 109 mutations) are 

significantly enriched (p = 4.96 x 10-101, one-sided Poisson test), but synonymous DNMs (gray, n 

= 3 mutations) are not (p = 0.1314, one-sided Poisson test). 
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Recurrent Mutations 

We identified 773 recurrent mutations in our combined dataset (736 single nucleotide variants 

and 37 indels). The most recurrently mutated sites are listed in Extended Data Table 1. 

 

Germline selection genes 

We found 39 mutations that fell in 12 known germline selection genes (FGFR2, FGFR3, 

PTPN11, HRAS, KRAS, RET, BRAF, CBL, MAP2K1, MAP2K2, RAF1, SOS1)57,58. To determine 

if the observed mutations in germline selection genes are known to be activating, we first 

confirmed that these were all genes known to be acting through gain-of-function mechanisms. 

All of these genes are known monoallelic DD-associated genes annotated as having activating 

mutation consequences according to DDG2P4. We then confirmed that all these recurrent 

mutations are listed as pathogenic or likely pathogenic variants in ClinVar59.  
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DNM burden in non-significant genes 

We calculated the remaining DNM burden in the genes that were not significantly associated 

with developmental disorders (DD) in our analysis and were not a consensus DD genes. There 

were 2,172 genes that were not associated with DD and had a pLI ≥ 0.9 (high pLI) and 10,472 

genes with a pLI < 0.9 (low pLI)24. The burden was calculated by calculating the 

observed/expected number of DNMs across the four groups of genes categorised by both 

missense/PTV mutations and low/high pLI. While there was a remaining burden across all 

groups, we found that the highest remaining enrichment was in PTV DNMs in high pLI genes. 

We then repeated the analysis removing nominally significant genes (unadjusted p-value > 

0.05). We saw that the PTV enrichment dropped substantially more than the missense 

enrichment in both low and high pLI genes (Sup Fig 12). This suggests that our test is still not 

as well positioned to identify genes with mutations acting via gain-of-function mechanisms that 

tend to be driven by missense mutations. 

 
 
(a)       (b) 

 
Supplementary Figure 12: DNM enrichment in non-significant genes. (a) The enrichment of 

missense and PTVs separated by high pLI (red) and low pLI (blue). Unassociated genes are 

defined as those not on any diagnostic list (not consensus or discordant) and not significant in 

our analysis after multiple testing correction (DeNovoWEST p-value > 0.05/(2*18,762)).  

 (b) The same as (a) except here the genes have been subsetted further to those that are not 

nominally significant in our analysis (DeNovoWEST p-value >0.05). 
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Impact of pre/perinatal death on power 

A structural malformation (detected via ultrasound) during pregnancy is associated with 

pre/perinatal death, which here encompasses spontaneous fetal loss, stillbirth, early neonatal 

death, and termination of pregnancy for fetal anomaly. To understand the impact that 

pre/perinatal death may have had on our power to detect DD-associated genes we asked a 

clinician to assign each consensus DD gene (n=380) a low, medium or high likelihood of a 

patient with a pathogenic mutation in the gene presenting with a structural malformation on 

ultrasound. We subsetted these to those known to be haploinsufficient according to DDG2P (n= 

217).We then calculated the ratio of the number of observed de novo PTVs in each group to the 

total number of expected de novo PTVs across each group. We found that genes with a 

medium/high likelihood were significantly less PTV enriched in our cohort compared to genes 

with a low likelihood (p =4.6 x 10-5, Poisson test). The difference between medium and low was 

significantly different (p = 0.00012, Poisson test) but the difference between low and high was 

not (p = 0.08, Poisson test). 

 

For the DDD data, we also had information on whether there had been an abnormal ultrasound 

during pregnancy for the patients. To verify that the classification was valid, we compared the 

proportion of individuals in the DDD study with nonsynonymous mutations in the three gene 

groups that were reported to have an abnormal scan during pregnancy. We found that the 

proportion of patients with an abnormal ultrasound for those with a nonsynonymous DNM in a 

gene with a high or medium likelihood of abnormal ultrasound was significantly higher than for 

those with a DNM in a gene with a low likelihood classification (12.8% (low) vs 28.0% 

(medium/high), chi-sq test p = 7.34 x 10-13 ). We also looked at DNMs called in 640 trios from 

the Prenatal Assessment of Genomes and Exomes (PAGE)61 study and found that there was a 

higher enrichment of nonsynonymous DNMs in genes with a medium/high likelihood of 

presenting with an ultrasound abnormality compared to the genes with a low likelihood but this 

was not significant (2.3 (low) vs 4.8 (medium/high) enrichment, p = 0.052, Poisson test).  

 

We regressed the proportion of individuals with a nonsynonymous mutation in a consensus HI 

gene who had an abnormal ultrasound against the observed PTV enrichment in that gene. We 

performed a generalized linear model with a quasipoisson family on the count of PTVs per 

genes with the expected count and the proportion of abnormal ultrasounds as independent 

variables. We did not find a significant regression coefficient for proportion of abnormal 

ultrasounds (p = 0.33). 

 



50 

To assess whether mutations in novel genes are more likely to be associated with pre/perinatal 

death than consensus genes we compared the nonsynonymous de novo enrichment of these 

two groups in PAGE. We did not find a significant difference between the enrichment in novel 

genes (3.4) compared to consensus genes (2.9) (p = 0.44, Poisson test). We are not well 

powered here, and would need to include more samples to detect a significant difference. We 

also did not find that individuals in DDD with mutations in novel genes were significantly more 

likely to have an abnormal ultrasound compared to consensus genes (proportion abnormal for 

novel 0.24, proportion abnormal for consensus 0.17; chi-sq test p = 0.08).  
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Penetrance 

To begin to explore potential variable penetrance, we focused on 172 genes with significant 

PTV enrichment (p < 1 x 10-6) in our cohort (based solely on the number of PTV mutations 

without any variant weighting, and thus independent of gnomAD data) and extracted their 

observed PTV and synonymous counts in gnomAD24 from the released gene-level constraint file 

(gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz). Since we planned to compare the PTV to 

synonymous ratio in these genes, we wanted to remove any genes that were outliers in 

gnomAD or would have higher-than-expected PTV counts due to biological reasons. We 

therefore removed the 13 genes that had a constraint flag in the gnomAD file (10 with 

“syn_outlier”, 2 with “mis_too_many|syn_outlier”, and 1 with “lof_too_many”) as well as three 

genes associated with clonal hematopoiesis of indeterminate potential (DNMT3A, ASXL1, and 

PPM1D)62,63 that were in the 172 PTV enriched genes. 

 

The remaining 156 genes were divided into five bins based on their log10(PTV enrichment). 

Specifically, the bins were equally spaced in log10(PTV enrichment) space, and therefore vary 

in the number of genes in each bin (range 9 to 62). For each bin, we determined the PTV to 

synonymous ratio in gnomAD (Fig 3c). Then, we regressed the PTV to synonymous ratio on the 

PTV enrichment bin and weighted it by the number of genes in each bin. The slope of this 

regression was nominally significant (p = 0.03069). 
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Power analysis 

Calculating power tailored specifically according to our de novo enrichment test was challenging 

as we would be required to make assumptions about the distribution of mutation consequences 

according to undiscovered DD-associated genes. Even with these assumptions, the calculation 

would be computationally intensive given the simulation based framework. We decided to 

calculate power in the context of the enrichment of PTV mutations. Therefore this power 

measure is specifically the power to detect haploinsufficient genes. Power was defined as the 

power to detect the median PTV enrichment in known monoallelic DD-associated genes. The 

set of known monoallelic DD-associated genes was defined as 163 genes in the consensus 

gene list that had at least one observed de novo PTV in our dataset. This set of genes were 

chosen as we wanted the selected genes to be defined independently of our test results. 

Conditioning on at least 1 PTV was to remove most genes that are not likely to be ascertained 

into our cohorts (for example genes with very distinctive clinical phenotypes that are not typically 

diagnosed by exome sequencing). We calculated the PTV enrichment by dividing the observed 

number of de novo PTVs in each gene by the expected number of de novo PTVs as defined by 

the gene-specific mutation rate. The median of the PTV enrichment distribution was 34.0. Power 

was then calculated as the probability of observing a significant p-value under the Poisson test if 

we assume the median PTV enrichment.  

 

Downsampling 

To assess if our discovery of DD-associated genes via DNM enrichment has begun to plateau, 

we downsampled the cohort to 5k, 10k, 15k, 20k and 25k and ran the DeNovoWEST framework 

to identify the number of significant genes. As is depicted in Extended Data Figure 1a, we do 

not see evidence of a plateau, indicating there is still much to be gained from DNM enrichment 

analyses. 
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Modelling remaining DNM burden 

We modelled the remaining DNM burden separately for PTV and missense mutations.  

Model for PTV DNM burden 

We simulated the number of de novo PTVs across a range of numbers of remaining 

haploinsufficient genes and the PTV enrichment we would observe in these genes. Our PTV 

model made the following assumptions:  

● PTV enrichment was the same across all remaining undiscovered HI DD-associated 

genes. 

● All undiscovered HI DD-associated genes have the same level of penetrance 

● The likelihood of being an undiscovered HI DD-associated gene was 1 − 𝑝𝑜𝑤𝑒𝑟, where 

power was calculated as described in a previous section 

● The probability of a currently unassociated gene being selected as a HI DD gene was 

higher if the gene was intolerant of loss-of-function variation. Specifically the likelihood 

was multiplied by the observed relative likelihood of being a DD-associated gene 

(significant in our analysis or a consensus gene) for genes with pLI ≥ 0.9. This was 

defined as: 
𝑃(𝐷𝐷	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑔𝑒𝑛𝑒	|	𝑝𝐿𝐼 ≥ 0.9	&	𝑝𝑜𝑤𝑒𝑟 > 0.8)
𝑃(𝐷𝐷	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑔𝑒𝑛𝑒|𝑝𝐿𝐼 < 0.9	&	𝑝𝑜𝑤𝑒𝑟 > 0.8)  

● The PTV enrichment for known DD-associated genes (significant in our analysis or 

consensus) was taken as the observed enrichment in our cohort 

● We ignore missense variants that may act as loss-of-function 

● ‘Known’ DD-associated genes were defined as those that were significant in our analysis 

and/or on the consensus known gene list 

 

To assess the likelihood of the model we calculated the following across the distribution of all 

200 simulations per scenario: 

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	 = 	𝑃(6,861	𝑃𝑇𝑉	𝐷𝑁𝑀𝑠) × 𝑃(147	𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦	𝑃𝑇𝑉𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑	𝑔𝑒𝑛𝑒𝑠)	 

× 𝑃(2,929	𝑔𝑒𝑛𝑒𝑠	𝑤𝑖𝑡ℎ	𝑃𝑇𝑉	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	 > 2) 

 

This captures three essential parts of the distribution of observed de novo PTVs: the total 

number of de novo PTVs, the number of genes that are currently significantly enriched for PTVs 

in our cohort (regardless of whether they appear in our consensus or discordant known gene 

groups) and the number of genes that are not significant but have an elevated PTV enrichment ( 

> 2). 
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In Extended Data Figure 1b we have also annotated the median PTV enrichment in significant 

HI genes which is 39.7. This was calculated as the median PTV enrichment for genes that are 

significant in our analysis and annotated as monoallelic with a loss of function mechanism 

according to DDG2P.  

Model for missense DNM burden 

The set up for the model for missense mutations was very similar to the PTV model with a few 

key differences. We simulated the number of de novo missense variants across a range of 

numbers of genes with a pathogenic DD-associated variant, mean missense enrichments in 

these genes and distributions of missense enrichment. We included a third dimension to the 

likelihood space which allowed us to model the distribution of missense enrichment across the 

genes with a pathogenic DD-associated missense variant.  

 

We modelled the distribution of missense enrichment using the gamma distribution. We used 6 

different shape parameters to represent different scenarios (0.1,0.5,1,510,20) (Sup Fig 13(a)). 
Missense mutations acting via gain-of-function mechanisms are likely to act on a small 

mutational target and have a small missense enrichment. A shape parameter of 0.1 represents 

the model that most genes with pathogenic missense DNMs are acting via gain-of-function and 

have smaller missense enrichment values. Missense mutations acting via loss-of-function 

mechanisms in haploinsufficient genes will have a distribution similar to PTV enrichment values 

which tend to be larger. A shape parameter of 20 represents the model where most genes with 

pathogenic missense variants are acting via loss-of-function and have larger PTV enrichments. 

The other major difference from the PTV model was that the likelihood of being selected as a 

DD-associated gene in the simulations was not a function of pLI. It was only proportional to 1 −

𝑝𝑜𝑤𝑒𝑟.  

 

To assess the likelihood of the model we calculated the following across the distribution of all 

200 simulations per scenario: 

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	 = 	𝑃(27,139	𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒	𝐷𝑁𝑀𝑠) × 𝑃(130	𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦	𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒	𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑	𝑔𝑒𝑛𝑒𝑠)	 

× 𝑃(3,764	𝑔𝑒𝑛𝑒𝑠	𝑤𝑖𝑡ℎ	𝑚𝑖𝑠𝑠𝑒𝑛𝑠𝑒	𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	 > 2) 

 

We found that the most likely scenario was that the shape for the missense enrichment 

distribution was 20. According to this shape there are ~1000 genes with pathogenic DD 

missense mutations with ~3 fold enrichment of missense mutations. This result complements 
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the implications of the PTV model and suggests that the majority of the remaining pathogenic 

missense mutations are acting via haploinsufficiency Sup Fig 13(b). 
 

(a) 

 
(b) 

 

Supplementary Figure 13: (a) Depiction of gamma distribution for 4 shape values used in 

simulations. Here the mean of each distribution is set at 2. (b) Likelihood of scenario under 

variety of shapes for gamma distribution and under varying values of missense enrichment and 

number of genes with pathogenic missense variants. The 90% (yellow line) and 50% (red line) 

credible intervals are calculated across all shapes considered. 
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Expression in fetal brain 

We defined expression in the fetal brain for a gene as having a median RPKM > 0 in the 

BrainSpan dataset31. We observed that the genes that were not significant in our analysis were 

significantly less likely to be expressed in the fetal brain (p = 1.05 x 10-29, proportion test). We 

then subsetted genes into those with a high pLI (pLI ≥ 0.9). We found that there was no 

significant difference between the proportion of the unassociated high pLI genes expressed in 

the fetal brain compared to the significant high pLI genes (p = 0.11 , proportion test; Sup Fig 
14). This suggests that a number of these high pLI genes might be associated with DD as 

sample size increases. 

 

 
Supplementary Figure 14: Comparison of proportion of genes expressed in fetal brain. 
The proportion of genes between significant and non-significant genes in our analysis split by 

low (<0.9) and high (>0.9) pLI. The set of significant genes also includes all genes on the 

consensus diagnostic list (331 significant high pLI genes, 2372 non-significant high pLI genes, 

112 significant low pLI genes, 10,687 non-significant high pLI genes). Exact binomial 95% 

confidence intervals shown. Genes that were not significant in our analysis were significantly 

less likely to be expressed in the fetal brain (p = 1.05 x 10-29, two-sided proportion test) 
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