# Analogous and diverse functions of APSES-type transcription factors in the morphogenesis of the entomopathogenic fungus, *Metarhizium rileyi*

Caiyan Xin<sup>a#</sup>, Jinping Zhang<sup>a#</sup>, Siji Nian<sup>a</sup>, Guangxi Wang<sup>a</sup>, Zhongkang Wang<sup>b</sup>, Zhangyong Song<sup>a</sup>\*, Guangwei Ren<sup>c</sup>

a School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, People's Republic of China.

b Chongqing Engineering Research Center for Fungal Insecticide, School of LifeScience, Chongqing University, Chongqing 400030, People's Republic of China.c Institute of Qingdao Economic Crop Chinese Academy of Agricultural Sciences,

Qingdao 266101, People's Republic of China.

# These authors contributed equally to this work.

| Author 1: Given name: Caiyan    | Family name: Xin   |
|---------------------------------|--------------------|
| Email: xincy0211@126.com        |                    |
| Author 2: Given name: Jinping   | Family name: Zhang |
| Email: zhangjpwcx@163.com       |                    |
| Author 3: Given name: Siji      | Family name: Nian  |
| Email: sijinian@swmu.edu.cn     |                    |
| Author 4: Given name: Guangxi   | Family name: Wang  |
| Email: <u>2371966379@qq.com</u> |                    |
| Author 5: Given name: Zhongkang | Family name: Wang  |
| Email: w-zk@163.com             |                    |
| Author 6: Given name: Zhangyong | Family name: Song  |

# Email: <u>szy83529@163.com</u>

Tel/Fax: +86-0830-3161506

Author 7: Given name: Guangwei

Family name: Ren

Email: renguangwei@caas.cn

## **Supporting information**

**Table S1** Gene expression in  $\triangle MrStuA$  mutants relative to wild-type (WT) during dimorphic transition.

**Table S2** Gene expression in  $\triangle MrXbp$  mutants relative to WT during dimorphic transition.

Table S3 Gene expression in  $\triangle MrStuA$  mutants relative to WT duringmicrosclerotium development.

**Table S4** Gene expression in  $\Delta MrXbp$  mutants relative to WT duringmicrosclerotium development.

Fig. S1 Structural and phylogenetic analysis of MrXbp and MrStuA proteins.

Fig. S2 Confirmation of gene disruption.

**Fig. S3** Gene ontology (GO) annotation of differentially expressed genes (DEGs) and all genes in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants during dimorphic transition.

Fig. S4 Clusters of orthologous groups (COG)classifications in the (A)  $\Delta MrStuA$  and

(B)  $\triangle MrXbp$  mutants during dimorphic transition.

**Fig. S5** Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways of DEGs the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants during dimorphic transition.

**Fig. S6** GO annotation of DEGs and all genes the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants during microsclerotium development.

Fig. S7 COG classifications the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants during microsclerotium development.

Fig. S8 KEGG enrichment pathways of DEGs the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$ 

mutants during microsclerotium development.

**Fig. S9** RT-qPCR of WT,  $\triangle MrStuA$  and  $\triangle MrXbp$  mutants during (A) dimorphic transition and (B) microsclerotium development.

**Fig. S10** GO annotation of DEGs and all genes in the two morphogenesis in the (A)  $\triangle MrStuA$  and (B)  $\triangle MrXbp$  mutants.

**Fig. S11** COG classifications of consensus sequence in the two morphogenesis in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants.

Fig. S12 KEGG enrichment pathways of DEGs in the two morphogenesis in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants.

**Fig. S13** Venn diagram showing the number of shared differentially expressed genes in the three fungal transcription factors.

| Annotation from NCBI Nr           | Gene  |          |          |          |          |          |          |         | Up/Down | FDR      |
|-----------------------------------|-------|----------|----------|----------|----------|----------|----------|---------|---------|----------|
| protein database                  | Name  | GW1_FPKM | GW2_FPKM | GW3_FPKM | GS1_FPKM | GS2_FPKM | GS3_FPKM | log2FC  |         |          |
| Cellulase                         | Cel   | 7.641    | 5.207    | 5.092    | 1.429    | 0.991    | 0.967    | -2.213  | Down    | 6.32E-05 |
| Cytochrome P450                   | Cp450 | 0.609    | 0.346    | 0.162    | 2.113    | 1.627    | 1.288    | 2.357   | Up      | 1.80E-6  |
| Heat shock protein 101            | H101  | 90.944   | 107.584  | 84.997   | 882.414  | 713.167  | 717.310  | 3.214   | Up      | 9.46E-45 |
| GATA transcription factor         | NsdD  | 4.169    | 4.167    | 3.989    | 9.684    | 9.626    | 8.946    | 1.450   | Up      | 1.94E-08 |
| Heat shock protein 90             | H90   | 554.026  | 352.991  | 567.606  | 1395.486 | 1391.291 | 1242.497 | 1.634   | Up      | 2.08E-24 |
| Cell wall beta-glucan synthesis   | Cwb   | 1340.449 | 1271.608 | 1278.913 | 1121.157 | 1099.003 | 1045.579 | -0.0677 | Normal  | 0.8755   |
| Protein-tyrosine phosphatase      | Ptp   | 65.210   | 66.009   | 70.078   | 43.187   | 44.949   | 41.099   | -0.454  | Normal  | 0.120    |
| bZIP transcription factor<br>HapX | HapX  | 106.516  | 100.291  | 97.252   | 43.285   | 37.952   | 41.278   | -1.125  | Down    | 5.01E-10 |
| MAP kinase kinase EMK1            | Emk1  | 114.815  | 107.860  | 100.243  | 129.258  | 112.718  | 119.672  | 0.3439  | Normal  | 0.181    |
| Cytochrome c peroxidase           | Сср   | 94.366   | 99.565   | 99.157   | 58.498   | 88.807   | 61.365   | 0.6509  | Normal  | 0.00093  |
| ATPase assembly factor<br>ATP10   | Atp10 | 89.720   | 83.323   | 80.491   | 60.525   | 63.557   | 62.765   | -0.255  | Normal  | 0.391    |
| Mob1/phocein                      | Mob   | 23.610   | 17.309   | 22.918   | 25.562   | 16.770   | 18.760   | 0.6037  | Normal  | 0.2491   |

**Table S1** Gene expression in  $\Delta MrStuA$  mutants relative to wild-type (WT) during dimorphic transition

| DNA-repair protein rad2 | Rad2 | 6.245  | 10.622 | 9.246  | 8.141  | 9.635  | 9.040  | 0.596 Normal  | 0.221 |
|-------------------------|------|--------|--------|--------|--------|--------|--------|---------------|-------|
| ChaC-like protein       | Clp  | 56.621 | 45.068 | 56.537 | 52.606 | 51.923 | 22.517 | 0.8753 Normal | 0.131 |

Abbreviation used: RPKM: fragments per kilobase million; FDR: false discovery rate; FC: fold change; Up/Down: up-/down-regulated. GW1, GW2, and GW3 were three samples of the WT strain during dimorphic transition. GS1, GS2, and GS3 were three samples of the  $\Delta MrStuA$  mutants during dimorphic transition.

| Annotation from NCBI Nr         | Gene  |          |          |          |          |          |          |           | Up/Down | FDR      |
|---------------------------------|-------|----------|----------|----------|----------|----------|----------|-----------|---------|----------|
| protein database                | Name  | GW1_FPKM | GW2_FPKM | GW3_FPKM | GX1_FPKM | GX2_FPKM | GX3_FPKM | log2FC    |         |          |
| Cytochrome P450                 | Cp450 | 0.609    | 0.346    | 0.162    | 0.169    | 0.280    | 0.161    | -0.824    | Normal  | 0.371    |
| GATA transcription factor       | NsdD  | 4.169    | 4.167    | 3.989    | 10.440   | 12.405   | 10.568   | 1.561     | Up      | 7.58E-11 |
| Cellulase                       | Cel   | 7.641    | 5.207    | 5.092    | 0        | 0        | 0        |           | Down    | 7.12E-31 |
| Heat shock protein 101          | H101  | 90.944   | 107.584  | 84.997   | 219.451  | 335.662  | 256.553  | 1.554     | Up      | 3.02E-06 |
| Heat shock protein 90           | H90   | 554.026  | 352.991  | 567.606  | 1395.564 | 962.506  | 1596.451 | 1.452     | Up      | 2.36E-05 |
| Cell wall beta-glucan syntheses | Cwb   | 1340.449 | 1271.608 | 1278.913 | 3061.632 | 2841.773 | 2976.183 | 1.222     | Up      | 2.99E-20 |
| Protein-tyrosine<br>phosphatase | Ptp   | 65.210   | 66.009   | 70.078   | 13.032   | 13.125   | 11.998   | -2.366    | Down    | 1.32E-20 |
| MAP kinase kinase EMK1          | Emk1  | 114.815  | 107.860  | 100.243  | 3061.631 | 2841.772 | 2976.182 | 1.222     | Up      | 2.98E-20 |
| Cytochrome c peroxidase         | Сср   | 94.366   | 99.565   | 99.157   | 297.820  | 292.440  | 299.596  | 2.050     | Up      | 1.31E-34 |
| ATPase assembly factor<br>ATP10 | Atp10 | 89.720   | 83.323   | 80.491   | 85.463   | 83.348   | 78.939   | -0.000419 | Normal  | 0.997    |
| Mob1/phocein                    | Mob   | 23.610   | 17.309   | 22.918   | 14.267   | 15.234   | 14.845   | -0.372    | Normal  | 0.1642   |
| DNA-repair protein rad2         | Rad2  | 6.245    | 10.622   | 9.246    | 15.466   | 16.311   | 15.420   | 0.00005   | Normal  | 0.833    |
| ChaC-like protein               | Clp   | 56.621   | 45.068   | 56.537   | 48.013   | 24.020   | 46.171   | -0.3970   | Normal  | 0.238    |
|                                 |       |          |          |          |          |          |          |           |         |          |

**Table S2** Gene expression in  $\triangle MrXbp$  mutants relative to WT during dimorphic transition

| bZIP transcription factor | HapX 106 516             | 100 201          | 07 252         | 28 235           | 25.508        | 23.601       | -1.942 Down        | 1.64E-28 |
|---------------------------|--------------------------|------------------|----------------|------------------|---------------|--------------|--------------------|----------|
| НарХ                      | 100.510                  | 100.291          | 91.232         | 20.235           | 25.508        | 23.001       |                    |          |
| Abbreviation used: RPKM:  | fragments per kilobase n | nillion; FDR: fa | alse discovery | y rate; FC: fold | change; Up/De | own: up-/dov | vn-regulated. GW1, | GW2, and |

GW3 were three samples of the WT strain during dimorphic transition. GX1, GX2, and GX3 were three samples of the  $\Delta MrXbp$  mutants during dimorphic transition.

| Annotation from NCBI Nr     | Gene Name | W1 FDKM        | W? FDKM       | W3_FPK  | N1 FDKM  |          | N2 FDKM             |        | Up/Down | FDR             |
|-----------------------------|-----------|----------------|---------------|---------|----------|----------|---------------------|--------|---------|-----------------|
| protein database            |           | VV 1_F F K.IVI | VV 2_F F KIVI | Μ       | N1_FFKW  | N2_FPKM  | IN <b>3_FF</b> KIVI | log2FC |         |                 |
| Heat shock protein 101      | H101      | 298.837        | 123.399       | 390.334 | 3331.313 | 29995.36 | 1220.111            | 2.737  | Up      | 0.00562         |
| Ubiquitin-conjugating       | Uce       | 16 510         | 10 925        | 15 171  | 0.741    | 0.200    | 0.552               | 5 009  | D       | <b>2</b> 00E 10 |
| enzyme                      |           | 10.518         | 12.835        | 15.171  | 0.741    | 0.399    | 0.553               | -5.098 | Down    | 2.00E-10        |
| Heat shock protein 90       | H90       | 841.821        | 1072.921      | 982.204 | 3700.62  | 4038.17  | 3571.412            | 1.342  | Up      | 0.0307          |
| Mob1/phocein                | Mob       | 268.787        | 282.770       | 252.793 | 88.544   | 75.437   | 92.271              | -2.099 | Down    | 0.000104        |
| ChaC-like protein           | Clp       | 23.874         | 44.283        | 46.679  | 14.739   | 13.585   | 15.763              | -1.709 | Down    | 0.000405        |
| MAP kinase kinase EMK1      | Emk1      | 39.946         | 50.166        | 55.233  | 29.705   | 21.825   | 30.360              | -1.227 | Down    | 0.002           |
| Cell surface protein (Mas1) | Mas1      | 1.649          | 1.525         | 1.871   | 20.657   | 25.723   | 39.557              | 3.626  | Up      | 1.13E-06        |
| Sodium/calcium exchanger    | Sem       | 0 (04          | 10.075        | 11 427  | 7 001    | 10 700   | 11 500              | 0.261  | NT 1    | 0.600           |
| membrane region             |           | 9.694          | 10.275        | 11.437  | /.801    | 10.792   | 11.529              | -0.361 | Normal  | 0.629           |
| DNA-repair protein rad2     | Rad2      | 8.583          | 3.697         | 2.232   | 29.018   | 24.406   | 37.987              | 2.30   | Up      | 2.31E-10        |
| Cytochrome c peroxidase     | Сср       | 193.788        | 133.213       | 165.189 | 145.535  | 93.391   | 89.990              | -1.513 | Down    | 0.00187         |
| Membrane protein Tapt1      | Tapt l    | 12.885         | 15.915        | 11.571  | 12.765   | 14.495   | 12.518              | 0.619  | Normal  | 0.3194          |
| GATA transcription factor   | NsdD      | 13.459         | 7.622         | 9.299   | 16.071   | 11.646   | 9.490               | 0.312  | Normal  | 0.650           |

**Table S3** Gene expression in  $\triangle MrStuA$  mutants relative to WT during microsclerotium development

| Carbohydrate-binding Wsc | Wsc   | 25.114        | 23.851  | 20.4269       | 23.877 | 74.704 | 52.111 | 1.243  | Up    | 0.00227  |
|--------------------------|-------|---------------|---------|---------------|--------|--------|--------|--------|-------|----------|
| ATPase assembly factor   | Atp10 | <u>91 900</u> | 125 420 | <u>81 020</u> | 54 520 | 40 112 | 45 221 | 1 500  | D     | 0.000406 |
| ATP10                    |       | 01.090        | 155.420 | 01.929        | 54.550 | 40.112 | 45.551 | -1.309 | Dowii | 0.000400 |

Abbreviation used: RPKM: fragments per kilobase million; FDR: false discovery rate; FC: fold change; Up/Down: up-/down-regulated. W1, W2, and W3 were three samples of the WT strain during microsclerotium development. S1, S2, and S3 were three samples of the  $\Delta MrStuA$  mutants during microsclerotium development.

| Annotation from NCBI Nr protein | Gene Name | W1 FDKM      | W? FDKM      | W3 FDKM      | N1 FDKM |         | N3 FDVM              |         | Up/Down | FDR      |
|---------------------------------|-----------|--------------|--------------|--------------|---------|---------|----------------------|---------|---------|----------|
| database                        |           | VV 1_FF KIVI | VV 2_FF KIVI | VV 3_FF KIVI |         | N2_FPKM | N <b>3_F F K</b> IVI | log2FC  |         |          |
| Heat shock protein 101          | H101      | 274.482      | 113.266      | 355.170      | 537.836 | 575.774 | 318.860              | 0.752   | Normal  | 0.314    |
| Ubiquitin-conjugating enzyme    | Uce       | 16.518       | 12.835       | 15.171       | 0.741   | 0.399   | 0.553                | -3.288  | Down    | 0.00616  |
| Heat shock protein 90           | H90       | 841.821      | 1072.921     | 982.204      | 975.138 | 915.535 | 3571.412             | -0.209  | Normal  | 0.766    |
| Cytochrome c peroxidase         | Сср       | 158.170      | 109.121      | 132.960      | 302.973 | 255.471 | 282.015              | 0.324   | Normal  | 0.548    |
| Sodium/calcium exchanger        | Sem       | 0 604        | 10 275       | 11 427       | 44.079  | 55 074  | 51 010               | 2.069   | L       | 2 ACE 11 |
| membrane region                 |           | 9.094        | 10.275       | 11.437       | 44.978  | 55.074  | 51.212               | 2.008   | Up      | 3.40E-11 |
| DNA-repair protein rad2         | Rad2      | 8.583        | 3.697        | 2.232        | 30.8019 | 30.950  | 30.974               | 2.486   | Up      | 2.07E-14 |
| Carbohydrate-binding Wsc        | Wsc       | 25.114       | 18.687       | 23.168       | 61.716  | 67.843  | 61.721               | 1.541   | Up      | 2.12E-06 |
| Mob1/phocein                    | Mob       | 268.787      | 282.770      | 252.793      | 99.832  | 89.361  | 93.163               | -1.693  | Down    | 0.000143 |
| ATPase assembly factor ATP10    | Atp10     | 81.779       | 135.227      | 81.833       | 50.840  | 50.797  | 51.808               | -1.1207 | Down    | 0.00164  |
| ChaC-like protein               | Clp       | 23.791       | 44.159       | 46.555       | 12.551  | 9.961   | 10.557               | -1.855  | Down    | 0.00005  |
| MAP kinase kinase EMK1          | Emk1      | 39.892       | 50.094       | 55.162       | 56.886  | 49.716  | 44.039               | -0.1085 | Normal  | 0.7758   |
| Cell surface protein (Mas1)     | Mas1      | 1.649        | 1.525        | 3.355        | 4.483   | 3.519   | 39.557               | 0.9753  | Normal  | 0.3424   |
| GATA transcription factor       | NsdD      | 13.459       | 7.622        | 9.299        | 16.172  | 8.558   | 10.645               | 0.5103  | Normal  | 0.3257   |

**Table S4** Gene expression in  $\triangle MrXbp$  mutants relative to WT during microsclerotium development

| Membrane protein Tapt1 | Tapt1 | 12.067 | 15.719 | 11.571 | 5.147 | 6.397 | 5.439 | -1.249 Down | 0.00303 |
|------------------------|-------|--------|--------|--------|-------|-------|-------|-------------|---------|
|------------------------|-------|--------|--------|--------|-------|-------|-------|-------------|---------|

Abbreviation used: RPKM: fragments per kilobase million; FDR: false discovery rate; FC: fold change; Up/Down: up-/down-regulated. W1, W2, and W3 were three samples of the WT strain during microsclerotium development. X1, X2, and X3 were three samples of the  $\Delta MrXbp$  mutant during microsclerotium development.



Fig. S1 Structural and phylogenetic analysis of MrStuA and MrXbp proteins

(http://www.ebi.ac.uk/Tools/pfa/iprscan). (B) Phylogenetic analysis of MrStuA protein. The numbers at the nodes represent the results of bootstrap analyses (1000 replicates) carried out using the neighbor-joining method. The aligned sequences of StuA protein are from Metarhizium anisopliae (KFG88133.1); Metarhizium guizhouense ARSEF 977 (KID87765.1); Metarhizium majus ARSEF 297 (KID98874.1); Metarhizium brunneum ARSEF (XP 014545496.1); 3297 Metarhizium album ARSEF 1941 (KHN97002.1); Metarhizium robertsii ARSEF 23 (XP\_007819177.1); Pochonia chlamydosporia 170 (XP\_018139603.1); Metarhizium acridum CQMa 102 (XP\_007810169.1); Ustilaginoidea virens (KDB12946.1); Hypocrella siamensis (ANH22586.1); Fusarium sp. AF-12 (RMJ13252.1); Cordyceps sp. RAO-2017 (PHH78192.1); Purpureocillium lilacinum (PWI75332.1); Hirsutella minnesotensis 3608 (KJZ71075.1); Stachybotrys chlorohalonata IBT 40285 (KFA66336.1); Neonectria ditissima (KPM35181.1). (C) Phylogenetic analysis of MrXbp protein. The numbers at the nodes represent the results of bootstrap analyses (1000 replicates) carried out using the neighbor-joining method. The aligned sequences of MrXbp protein are from *Metarhizium majus* ARSEF 297 (KID96819.1); Metarhizium robertsii ARSEF 23 (XP\_007821239.2); Metarhizium guizhouense ARSEF 977 (KID92324.1); Metarhizium robertsii (EXV05007.1); Metarhizium acridum CQMa 102 (XP\_007812764.1); Tolypocladium paradoxum (POR39629.1); Cordyceps fumosorosea ARSEF 2679 (XP\_018703649.1); Beauveria bassiana ARSEF 2860 (XP\_008593781.1); Ustilaginoidea virens (KDB17052.1); Trichoderma (OTA01006.1); Trichoderma citrinoviride (XP\_024754116.1); parareesei

Trichoderma longibrachiatum ATCC 18648 (PTB80558.1); Beauveria brongniartii RCEF 3172 (OAA45796.1); Trichoderma reesei RUT C-30 (ETS05362.1); Ophiocordyceps sinensis CO18 (EQL01683.1); Claviceps purpurea 20.1 (CCE33631.1).





(A) Construction of knockout and complementation (CP) vectors. (B) PCR characterization of (B-1)  $\Delta MrStuA$  mutants and (B-2)  $\Delta MrXbp$  mutants, wild-type (WT), and CP strains. Open reading frame was PCR (Lanes 1-2 in B-1: 1-*MrStuA* of WT, 2- $\Delta MrStuA$ -1; Lanes 1-3 in B-2: 1-*MrXbp* of WT, 2- $\Delta MrXbp$ -1, 3- $\Delta MrXbp$ -2); The *hph* was screened (Lanes 3-4 in B-1: 3-*hph* of WT, 4- $\Delta MrStuA$ -1; Lanes 4-6 in B-2: 4-*hph* of WT, 5- $\Delta MrXbp$ -1, 6- $\Delta MrXbp$ -2). The *hph* and genomic sequence outside the flank regions was PCR (Lanes 5-8 in B-1: 5-Left Frame (LF)-WT, 6-Right Frame (RF)-WT, 7-LF- $\Delta MrStuA$ -1, 8-RF- $\Delta MrStuA$ -1; Lanes 7-12 in B-2: 7-LF-WT, 8-RF-WT, 9-LF- $\Delta MrXbp$ -1, 10-RF- $\Delta MrXbp$ -1, 11-LF- $\Delta MrXbp$ -2, 12-RF- $\Delta MrXbp$ -2). M, DNA molecular size markers (DL 5000, Takara, Beijing). The  $\Delta MrStuA$ -1 mutants and  $\Delta MrXbp$ -1 mutants were subjected to further

experiments. (C) qPCR analysis of *MrMid2* in the different strains. Error bars represent standard error. \* P < 0.05, \*\* P < 0.01, denote significant differences compared with WT in AM cultures.

**Fig. S3** Gene ontology (GO) annotation of differentially expressed genes (DEGs) and all genes in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants during dimorphic transition



# Fig. S4 Clusters of orthologous groups (COG) classifications in the (A) $\Delta MrStuA$



#### and (B) $\Delta MrXbp$ mutants during dimorphic transition





- B: Chromatin structure and dynamics C: Energy production and conversion
- D: Cell cycle control, cell division, chromosome partitioning
- E: Amino acid transport and metabolism F: Nucleotide transport and metabolism
- G: Carbohydrate transport and metabolism
- H: Coenzyme transport and metabolism
- I: Lipid transport and metabolism
- J: Translation, ribosomal structure and biogenesis
- K: Transcription
- L: Replication, recombination and repair
- M: Cell wall/membrane/envelope biogenesis
- N: Cell motility
- O: Posttranslational modification, protein turnover, chaperones
- P: Inorganic ion transport and metabolism
- Q: Secondary metabolites biosynthesis, transport and catabolism R: General function prediction only
- S: Function unknown
- T: Signal transduction mechanisms
- U: Intracellular trafficking, secretion, and vesicular transport
- V: Defense mechanisms
- W: Extracellular structures
- X: Mobilome: prophages, transposons
- Y: Nuclear structure
- Z: Cytoskeleton





**Fig. S6** GO annotation of DEGs and all genes in the (A)  $\triangle MrStuA$  and (B)  $\triangle MrXbp$  mutants during microsclerotium development



# Fig. S7 COG classifications in the (A) $\triangle MrStuA$ and (B) $\triangle MrXbp$ mutants during









- X: Mobilome: prophages, transposons
- Y: Nuclear structure
- Z: Cytoskeleton



**Fig. S8** KEGG enrichment pathways of DEGs in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$ 

mutants during microsclerotium development



# Fig. S9 RT-qPCR of WT, $\triangle MrStuA$ and $\triangle MrXbp$ mutants during (A) dimorphic

transition and (B) microsclerotium development





**Fig. S10** GO annotation of DGEs and all genes in the two morphogenesis in the (A)  $\Delta MrStuA$  and (B)  $\Delta MrXbp$  mutants



# Fig. S11 COG classifications of consensus sequence in the two morphogenesis in the

## (A) $\triangle MrStuA$ and (B) $\triangle MrXbp$ mutants



**Fig. S12** KEGG enrichment pathways of DGEs in the two morphogenesis in the (A)  $\triangle MrStuA$  and (B)  $\triangle MrXbp$  mutants



## Fig. S13 Venn diagram showing the number of shared differentially expressed genes



in the three fungal transcription factors

The distribution of shared upregulated and downregulated genes in wild-type (WT),  $\Delta MrXbp$ ,  $\Delta MrStuA$ , and  $\Delta MrAp1$  mutants during microsclerotium development. CK1, CK2, and CK3 were three replicates of the WT strain. *MrXbp 1*, *MrXbp2*, and *MrXbp3* were three replicates of the  $\Delta MrXbp$  mutants. *MrStuA*, *MrStuA2*, and *MrStuA3* were three replicates of the  $\Delta MrStuA$  mutants. *MrAp1-1*, *MrAp1-2*, and *MrAp1-3* were three replicates of the  $\Delta MrAp1$  mutants.