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Figure S1. Comparison of MVP 1.0 markers to those in other databases. The distribution of 
MVP 1.0 Array markers by their functional annotation and whether they overlap with existing 
genetic variation databases, the 1000 Genomes Project and the ExAC database. 



 
Figure S2. MVP 1.0 Array marker overlap with databases of functional and disease-related 
variants. Distribution of markers overlapping with (A) the NHGRI-EBI GWAS catalog; (B) the 
ClinVar database (2017 December release); and (C) the ExAC database by MAF bins and 
ancestral population groups. MAFs and ancestral population definitions were extracted for (A) 
and (B) from the 1000 Genomes Project and for (C) from the ExAC database. Common variants 
are markers with MAF ≥ 5%; low-frequency variants are markers with 1% ≤ MAF < 5%; rare 
variants are markers with MAF < 1%; and monomorphic variants are markers with MAF = 0%. 
(EUR: European, NFE: Non-Finnish European, AFR: African, EAS: East Asian, SAS: South Asian, 
AMR: Admixed American) 



 

 

Figure S3. The overall genotyping quality control and MVP data analysis procedure. 
Overview of the steps of the genotype calling, quality control, data exploration, and final validation 
processes for the MVP dataset.  



 



Figure S4. Batch variation correction. (A) Example of a mis-clustered probeset in a batch 
detected using Fisher’s Exact Test. (B) The GWAS experimental design used to detect batch 
effects across releases. Release A samples were designated “Controls,” and Release B samples 
were designated “Cases.” (C) Filters introduced in addition to Fisher’s Exact Test, and the number 
of batch-SNP combinations removed and significant GWAS associations remaining after each 
step. (D) Manhattan plot showing 204 significant associations before batch correction. (E) 
Manhattan plot showing 48 remaining significant associations after application of batch correction 
procedure. 



 

 

Figure S5. Axiom® genotyping DQC, sample QC call rate and sample call rate metrics. 
Metrics were reported directly from vendors, and distributions for each metric are for all samples 
genotyped before sample QC filtering. (A) Density curves of the distributions of the dish QC (DQC) 
metric by genotyping vendor. (B) Density curves of the distribution of sample QC call rate by 
genotyping vendor. Sample QC call rate is referred to as Step 1 call rate in the Axiom® 
Genotyping Solution Data Analysis Guide. (C) Density curves of the distribution of the sample call 
rate over all MVP 1.0 array probesets by genotyping vendor after re-batching and recalling 
genotypes at the VA. Sample call rate is referred to as Step 2 call rate in the Axiom® Genotyping 
Solution Data Analysis Guide. (D) Density plot of sample QC call rate against the DQC metric 
before sample quality control filtering. Color density is scaled by the log of the number of samples, 
with red indicating higher density and blue indicating lower density. 



 



Figure S6. Assessments of sample and marker missingness. (A) Sample non-missingness 
(i.e. 1 – missingness) for each batch. The X-axis conains identifiers for genotyping batches in 
sequential time order. (B) Percent marker missingness startified by MAF bin. (C) Minor allele 
discordance by MAF bin. 

 

 



 

Figure S7. Sample and marker concordance. (A) Sample concordance over the marker set 
after the advanced marker QC procedure for pairs of positive controls and pairs of intentional 
duplicates genotyped both within and between vendors. Positive controls are only from Vendor 2, 
since Vendor 1 did not include positive controls on genotyped plates. Distributions are shown for 
a randomly selected 5,000 pairs for each category. (B-D) Marker concordance for (B) all markers, 
(C) common (MAF ≥ 5%) markers, and D) low-frequency (MAF < 5%) markers between positive 
control samples and the consensus positive control genotyping sequence, grouped by batch. 
Batches are ordered by time. 

 



 

Figure S8. Genetic ancestry analysis of the MVP cohort using ADMIXTURE. (A) Distribution 
of British in England and Scotland (GBR) proportion in all MVP individuals. Individuals with more 
than 0.9 GBR proportion were defined as European American. (B) Kernel density estimates of 
Yoruba in Ibadan, Nigeria (YRI) and GBR proportion within individuals with less than 0.9 GBR 
proportion (i.e. non-European individuals). Individuals with more than 0.6 YRI and less than 0.4 
GBR proportion were defined as African American. (C) Distribution of ADMIXTURE proportions 
for each of the five 1000 Genomes Project reference populations, sorted by average fraction, 
across all MVP samples. Reference population abbreviations: British in England and Scotland 



(GBR); Yoruba in Ibadan, Nigeria (YRI); Peruvians from Lima, Peru (PEL); Han Chinese in 
Beijing, China (CHB); and Luhya in Webuye, Kenya (LWK). 



 



Figure S9. Ancestry Principal Component Analysis (PCA) of the MVP Cohort. Colors represent 
genetic ancestry subgroups as defined by ADMIXTURE analysis. (A) Principal components (PCs) 1 and 
2 of the MVP cohort mimic patterns seen in PCA of the 1000 Genomes Project population. (B) PC3 splits 
samples aligning with the East Asian reference population (MVP_CHB) from the Native American 
reference population (MVP_PEL). (C) PC 6 reveals a separate cluster of samples with European 
Ancestry (MVP_GBR) that splits out distinctively from the main cluster of samples in this subgroup. (D) 
PC 7 reveals substantial diversity in the MVP_CHB subgroup, whereas PC 8 separates MVP_GBR 
participants from those with admixture from three or more global reference populations (MVP_OTHER). 
PC 8 also reveals substantial diversity within participants admixed between European and American 
ancestries (MVP_GBR_PEL). (E) PC 10 reveals a gradient between MVP_GBR and MVP_PEL samples, 
with MVP_GBR_PEL samples lying between the two clusters.  

 

 

 

 

 

 

  

 



 

Figure S10. Analysis of relatedness in the MVP cohort using KING. (A-B) Number of related individuals per person in (A) round 1 
of KING and (B) round 2. (C) Distribution of cluster size of 3rd degree-related individuals after round 2 of KING analysis. The two large 
clusters of related individuals are denoted as cluster200 and cluster1000. (D) Cluster membership of all individuals with more than 15 
3rd degree relatives. 



 

Figure S11. Race breakdown in the full MVP cohort (A) compared to breakdown in 
Cluster200 (B) and Cluster1000 (C). Pie charts show proportion of self-identified race in 
each group. 



Table S1. Breakdown of MVP 1.0 Array markers by chromosome region. 

 Region Number of markers 

Mitochondrial chromosome 270 

Non-pseudoautosomal Y chromosome 142 

Pseudoautosomal X and Y chromosome 1,139 

Non-pseudoautosomal X chromosome 18,026 

Autosomal 667,105 



 
 

Table S2. Comparison of PLINK-predicted sample gender to EHR-recorded sample 
gender. 
 

Recorded gender / Result Unknown Male Female OK Mismatch 
Unknown 10 1,646 344 0 2,000 

Male 292 440,653 753 440,653 1,045 
Female 608 420 41,130 41,130 1,028 
Total 910 442,719 42,227 481,783 4,073 



 
 

Table S3. The top ten ACMG recommended genes for reporting incidental findings, and 
the number of overlapping MVP 1.0 Array markers. 

Disease Gene Number of markers on the MVP 
1.0 arraya 

Breast-ovarian cancer: familial 2 (MIM 
612555) BRCA2 662 

Breast-ovarian cancer: familial 1 (MIM 
604370) BRCA1 541 

Marfan's syndrome (MIM 154700) FBN1 176 

Dilated cardiomyopathy 1A (MIM 115200) MYBPC3 120 

Familial hypertrophic cardiomyopathy 4 
(MIM 115197) 

MYBPC3 120 

Familial hypertrophic cardiomyopathy 1 
(MIM 192600) MYH7 101 

Brugada syndrome 1 (MIM 601144) SCN5A 77 

Long QT syndrome 3 (MIM 603830) SCN5A 77 

Juvenile polyposis syndrome (MIM 174900) SMAD4 66 

Dilated cardiomyopathy 1A (MIM 115200) LMNA 60 

a We only included markers located in coding or regulatory regions having ClinVar annotation as 
either pathogenic or likely pathogenic. 

 

 

 

 

 

 

  

 



 
 

Table S4. The top 10 disease categories by number of markers shared between the MVP 
1.0 Array and the gene-disease associations reported in DisGeNET. 

 

 
Disease Number of 

markers Example diseases 

Congenital, Hereditary, 
and Neonatal Diseases 

and Abnormalities 
6,048 

Charcot-Marie-Tooth Disease, 
Hemophilia A, Hereditary Breast 
and Ovarian Cancer Syndrome 

Nutritional and Metabolic 
Diseases 4,223 Diabetes Mellitus, 

Hyperlipidemia, Obesity 

Nervous System 
Diseases 3,994 Alzheimer's Disease, Common 

Migraine, Multiple Sclerosis 

Cardiovascular Diseases 3,211 
Abdominal Aortic Aneurysm, 

Coronary Heart Disease, 
Hypertensive Disease 

Neoplasms 3,087 Adenocarcinoma, Leukemia, 
Osteosarcoma 

Skin and Connective 
Tissue Diseases 2,566 Psoriasis, Rheumatoid Arthritis, 

Lupus Erythematosus 

Immune System 
Diseases 2,260 Asthma, Hay Fever, Rheumatoid 

Arthritis 

Pathological Conditions, 
Signs and Symptoms 2,251 Chronic pain, motion sickness, 

seizures 

Digestive System 
Diseases 1,999 Crohn’s Disease, Inflammatory 

Bowel Disease, Esophagitis 

Endocrine System 
Diseases 1,985 Hypothyroidism, Adrenal Cortical 

Adenoma, Dwarfism 



 
 

Table S5. The Distribution of MVP 1.0 Markers by Minor Allele Frequency, Functional 
Annotation, and Ancestral Group as Extracted from the ExAC Database.  
 

ExAC MAF Frameshift Stop 
gain/loss 

Splice 
site Missense Ins/Del 

NFE 

MAF ≥ 5% 28 128 683 15,018 26 
5% > MAF ≥ 1% 24 110 246 9,288 8 
1% > MAF > 0% 1,533 10,805 4,260 138,093 94 
MAF = 0% 2,344 8,314 2,554 39,190 77 

AFR 

MAF ≥ 5% 522 2,670 1,296 33,791 40 
5% > MAF ≥ 1% 37 230 522 19,664 21 
1% > MAF > 0% 718 3,442 2,750 87,686 64 
MAF = 0% 2,619 13,014 3,175 60,445 80 

EAS 

MAF ≥ 5% 27 118 592 14,058 22 
5% > MAF ≥ 1% 24 79 174 6,453 5 
1% > MAF > 0% 915 4,304 1,662 35,304 47 
MAF = 0% 2,929 14,855 5,315 145,766 131 

SAS 

MAF ≥ 5% 32 127 650 14,934 23 
5% > MAF ≥ 1% 13 92 232 7,279 9 
1% > MAF > 0% 605 4,394 2,272 69,268 38 
MAF = 0% 3,243 14,744 4,589 110,103 135 

AMR 

MAF ≥ 5% 29 131 633 14,932 23 
5% > MAF ≥ 1% 22 74 263 8,090 11 
1% > MAF > 0% 401 2,907 2,490 101,308 84 
MAF = 0% 3,443 16,244 4,357 77,243 87 

Not in ExAC 4,513 5,091 680 10,985 168 
 



 
 

Table S6. MVP 1.0 Array markers categorized by PolyPhen and SIFT score categories 
based on predicted protein sequence changes. 

 

 

aPolyPhen and SIFT scores and categories were obtained from the Ensemble Variant Effect 
Predictor. 

 

 

  

¾ 

SIFTa 

deleterious 
deleterious 

Low 
confidence 

tolerated 
tolerated  

low 
confidence 

PolyPhena 

probably_damaging 47,954 3,005 12,447 716 
possibly_damaging 14,107 1,778 14,576 1,160 

benign 13,355 2,043 74,197 7,950 
unknown 752 612 1221 798 



 
 

 

Table S7. MVP 1.0 array imputation accuracy for the five 1000 Genomes Project Phase 3 
continental populations.  

¾ 1% <MAF <5% MAF ≥ 5% 

Population 
Number of 
imputed 
markers 

Accuracy 
(mean.r2) 

Number of 
imputed 
markers 

Accuracy 
(mean.r2) 

EUR 2,902,508 0.777 7,244,340 0.931 
AFR 7,339,754 0.767 10,097,459 0.874 
EAS 2,297,176 0.656 6,693,655 0.890 
SAS 3,190,047 0.710 7,437,310 0.904 
AMR 4,140,903 0.824 7,464,928 0.925 



 
 

Table S8. Breakdown and number of closely related pairs in the MVP Cohort and UK 
Biobank.  

¾ MVP UK Biobank 
Total sample size 459,777  488,410 

Total pairs (billions) 105.70  119.27 
Trios 28 1,066 

Monozygotic twins 49 179 
Parent-child 2,886 6,276 
Full sibling 5,330 22,666 

2nd or 3rd degree 9,055 78,041 

 
  



 
 

Table S9. Thirty of the top ICD diagnostic code names, by prevalence in MVP, available in 
the VA EHR database. Code names are listed in alphabetical order. 

Top ICD diagnostic code names 
Acute kidney failure and chronic kidney disease (CKD) 
Anemias 
Benign neoplasms 
Dermatophytosis 
Diabetes mellitus 
Diseases of esophagus, stomach and duodenum 
Disorders of lipoid metabolism 
Diseases of male genital organs 
Diseases of oral cavity and salivary glands 
Diseases of the ear and mastoid process 
Diseases of the musculoskeletal system and connective tissue 
Diseases of the nervous system 
Diseases of the respiratory system 
Diseases of the skin and subcutaneous tissue 
Disorders of fluid electrolyte and acid-base balance 
Disorders of the eye and adnexa 
Disorders of thyroid gland 
Diverticula of intestine 
Hemorrhoids 
Hypertension and heart disease 
Hypotension 
Malignant neoplasm of prostate 
Mental, behavioral, and neurodevelopmental disorders 
Metabolic disorders 
Organic sleep disorders 
Other dermatoses 
Other diseases of intestines and peritoneum 
Other disorders of urethra and urinary tract 
Overweight, obesity and other hyperalimentation 
Vitamin D deficiency 

 



 
 

Supplemental Materials and Methods 

Axiom Array Terminology  

Here, we first define terms used in standard marker quality control. A marker refers to a 
genetic variation at a specific genomic location in the DNA of a sample. Both single nucleotide 
polymorphisms (SNPs) and insertion/deletions (indels) are markers and are genotyped. A set of 
one or more probe sequences from which array intensities are combined to interrogate a marker 
is referred to as a probeset. Most Axiom® markers are interrogated with one or two probesets 
derived from the forward strand sequence, the reverse strand sequence, or both.  

Thermo Fisher Scientific Axiom® Genotyping Platform 

The MVP 1.0 array is based on the Applied Biosystems Axiom® Biobank core variants. 
The Axiom® Biobank array modules (A-F1) include: 

(1) Genome-wide coverage for common European variants (N= 246,038; Module “High 
coverage imputation grid”): Markers were selected using Affymetrix imputation aware 
marker choice algorithms to provide genome-wide coverage in European populations 
of common (MAF ≥ 5%) markers using the CEU panel from 1000 Genomes Project. 

(2) Loss-of-function (LoF) SNPs and indels (N= 70,396; Module “High confidence LoF 
SNPs and Indels”): Markers with a high-confidence loss of function call, possible 
splice-site impact, or representing known, disease-associated mutations. Markers are 
extracted from an exome sequencing initiative of 26,000 people. This category of 
markers also includes known disease-causing mutations and potential splice variants 
from Human Gene Mutation Database (HGMD). 

(3) Exome SNPs and indels (N= 264,193; Module “Exome Grid”): Non-synonymous 
coding markers in exonic regions of the genome. This content was derived from the 
Exome Chip Design Consortium, the NHLBI Exome Project, the Genetics of Type 2 
Diabetes program (GoT2D), the 1000 Genomes Project, the Cancer Genome Atlas 
Project, the SardiNIA Medical Sequencing Study, the Autism Exome Sequencing 
Study, the UK10K project, and others. 

(4) Expression quantitative trait locus (N= 5,884; Module “Expression quantitative loci 
from GTEx”): Markers with known associations to RNA expression traits taken from 
NCBI Genotype-Tissue Expression (GTEx) database.  

(5) Pharmacogenomic/ADME (N= 2,031; Module “Pharmacogenetics”): Markers 
associated with phases of drug absorption, distribution, metabolism, and excretion 
(ADME). This content was derived from the PharmaADME and PharmGKB databases. 
The content is enriched for markers in Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guidelines and those used in calling “star alleles” variants of genes 
that affect drug metabolism. 

(6)  ApoE (N=2, not shown) The two SNPs, rs429358 and rs7412, which define the ApoE 
isoforms known to be associated with risk of Alzheimer’s disease and lipoprotein-
associated conditions.  

 
MVP-Specific Modules 

(1) SNPs and indels based on known associations with diseases or traits of interest 
(N=21,627; module “Other diseases associated and exome markers”). Over 800 
potential clinical conditions and 3,400 gene regions are covered by this module with 



 
 

an emphasis on conditions of high prevalence in US Veterans such as substance 
abuse1, amyotrophic lateral sclerosis (ALS [MIM: 105400]) 2, chronic obstructive 
pulmonary disease (COPD [MIM: 606963])3, and diabetes4. Additionally, we included 
the 59 genes currently recommended for reporting of incidental findings by the 
American College of Medical Genetics and Genomics (ACMG)5,6 in anticipation of 
future clinical applications. 

(2) Human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptor (KIR) 
region markers for fine mapping and imputation (N=8,058; module “Markers within 
genomic regions of interest”). Genes in the HLA region are critical players in immune 
function, and some have known roles in histocompatibility7,8. We also included 
additional KIR markers that have an important role in infectious disease, autoimmune 
disorders, cancer, and reproduction by virtue of the region’s interaction with the HLA 
region. Furthermore, to optimize coverage and improve imputation quality in non-
European ancestry populations, we also included additional HLA and KIR markers in 
multiple ethnicities, including African ancestry (N= 1,043; Module “HLA imputation 
booster for non-Caucasian cohorts”). 

(3) Psychiatric condition-associated markers (N=26,928, module “Psychiatric relevant 
markers”). 11-20% of US military personnel who served in Operations Iraqi Freedom 
and Enduring Freedom are estimated to have diagnosed or undiagnosed post-
traumatic stress disorder (PTSD)9. The lifetime prevalence of PTSD among Vietnam 
Veterans, who form the largest subset of the MVP cohort, is 15-20%10. To study 
genetic factors that affect the development of mental illness and the functional 
disability and cognitive impairment that accompany these conditions, we included 
additional markers extracted from the Psychiatric Genomics Consortium11 (personal 
communications with PGC group leaders) that have been linked with common 
psychiatric disorders such as schizophrenia (MIM: 181500), bipolar disorder (MIM: 
125480), autism spectrum disorders (MIM: 209850), attention deficit hyperactivity 
disorder (MIM: 143465), major depressive disorder (MIM: 608516), obsessive 
compulsive disorder (MIM: 164230), anorexia (MIM: 606788), and Tourette syndrome 
(MIM: 137580). Many of these variants are rare for some ethnicities and have minor 
allele frequency (MAF) < 1%. 

(4) Candidate genes associated with rheumatoid arthritis (MIM: 180300) (N=11,144; 
module “Rheumatoid Arthritis relevant markers”). Markers include a) rheumatoid 
arthritis-associated SNPs outside of the MHC region12,13,14 (personal communications); 
b) SNPs with minor allele count (MAC) > 2 found in genes in rheumatoid arthritis risk 
loci in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing 
Project (ESP) data (European ancestry cohort); and c) SNPs in the 1000 Genomes 
Project European population that overlap with the rheumatoid arthritis risk loci having 
MAF > 1% after linkage disequilibrium pruning to remove SNPs with r2 >0.8. 

(5) Genome-wide imputation booster for African ancestry population (N=50,000; module 
“Imputation booster”). The MVP population contains multi-ethnic groups, and African 
Americans comprise the second largest self-reported ethnic group in the MVP. To 
optimize the coverage of African genetic ancestry, an additional set of markers were 
tiled on the MVP array to boost corresponding imputation coverage. Markers were 
selected using Axiom® imputation aware marker choice algorithms15 and the YRI 
panel from the 1000 Genomes Project to provide genome-wide coverage in African 
populations of common (MAF ≥ 5%) markers.  

 

 



 
 

Overlap with databases of functional and disease-related variants 

The MVP 1.0 array was designed to increase coverage of known functional and disease- 
or trait-associated variants across the genomes of diverse populations. To evaluate this coverage, 
we aimed to check the coverage of MVP 1.0 markers with markers from various data sources 
cataloging potential functional variants in multiple populations that were not considered during the 
design of the chip: the NHGRI-EBI GWAS catalog16,17, ClinVar 18; the Exome Aggregation 
Consortium (ExAC)19,20; and DisGeNET, which also contains the genes in the ACMG guideline 
recommendations for reporting incidental findings and gene-disease associations5,6. Markers in 
the MVP 1.0 chip overlapped with 7,199 variants in the GWAS catalog v1.016, 31,067 in ClinVar18, 
and 294,092 in ExAC r.0.3.120. As expected by the number of GWAS hits in the GWAS catalog, 
the top five diseases associated with variants shared between MVP 1.0 and the GWAS catalog 
are schizophrenia, rheumatoid arthritis, Crohn disease, type 2 diabetes, and systemic lupus 
erythematosus, and the top five biological traits are height, BMI, HDL, cholesterol, LDL 
cholesterol, and triglycerides. Furthermore, around half of the variants shared between MVP 1.0 
and ClinVar (17,124 of 31,067) are classified by ClinVar as pathogenic or likely pathogenic and 
have low allele frequency in all ancestral groups.  

Additionally, MVP 1.0 contains markers overlapping with pathogenic variants residing in 
all 59 ACMG genes5,6. The top ten ACMG genes and the corresponding number of MVP 1.0 
markers are listed in Table S3. DisGeNET also contains one of the largest publicly available 
collections of genes and variants associated with human diseases21, and the MVP 1.0 array 
contains 6,048 DisGeNET markers associated with congenital, hereditary, and neonatal diseases 
and abnormalities, which represents the largest overlapping disease category. The top ten 
DisGeNET categories and the corresponding number of MVP 1.0 markers are listed in Table S4. 

Variants in the ExAC database predicted to have severe consequences (e.g. missense, 
frameshift, stop-gain, start-loss variants) were highly enriched in the rare and low frequency MAF 
ranges (Table S5). Furthermore, in addition to containing markers for variants observed in the 
1000 Genomes Project and ExAC database, the Axiom Biobank Genotyping Array backbone has 
many variants not found in these databases. For example, more than half of the frame shift 
variants and one-third of the insertion or deletion variants were absent from these databases 
(Figure S1). We also examined MVP 1.0 nonsynonymous single nucleotide variants (nsSNVs) in 
detail by implementing functional annotation using the Ensembl Variant Effect Predictor (VEP), 
release 8622. 66,790 coding variants were predicted as deleterious by both PolyPhen23 and Sift24 
(Table S6), and 16,598 non-coding variants were annotated as regulatory variants. 

Finally, we examined the allele frequency distribution of variants on the MVP 1.0 chip to 
assess its coverage across ancestral population groups. Allele frequencies of variants in the 
GWAS catalog and ClinVar were assessed using 1000 Genomes, whereas ExAC variant 
frequencies were used directly. Four MAF categories were defined as: common variants (MAF ≥ 
5%), low-frequency variants (MAF 1-5%), rare variants (MAF < 1%), and monomorphic variants 
(MAF = 0%). In general, markers in the MVP 1.0 chip showed similar distribution of MAFs across 
all ancestral groups in all subsets (Figure S2). As expected, most markers in the MVP 1.0 chip 
that overlaps NHGRI-EBI GWAS catalog variants were common (MAF ≥ 5%, Figure S2A), 
whereas markers that overlap ClinVar variants were mostly uncommon (MAF < 5%, Figure S2B). 
On the other hand, although the proportion of common variants in ExAC was fairly consistent 
across ancestral groups, the proportion of less common ones showed greater variability (Figure 
S2C).  

 



 
 

Assessing imputation accuracy of the MVP v1 chip   

Imputation was executed using IMPUTE29 and the 1000 Genomes Phase 3 reference 
panel10. To assess imputation accuracy, we performed ten-fold cross-validation, which 
corresponds to a sub-sample of the participants in each of the five populations. The 1000 
Genomes Phase 3 genotypes of the held-out samples for the markers on the MVP 1.0 array were 
used to impute the genotypes of the markers in the modified reference panel. The accuracy of 
imputed variants was calculated as the squared Pearson correlation coefficient (r2) between 
imputed genotype dosages (0–2) and the genotypes from the 1000 Genomes Phase 3 release 
(0,1,2). The results were stratified into two non-overlapping minor allele frequency (MAF) bins 
MAF ≥ 5% and 1% < MAF < 5%, and accuracy was summarized as the mean r2 over the marker 
count in the MAF bin. 

In addition to the aim of increasing coverage of functional variants, the MVP 1.0 array was 
designed to maximize imputation performance for GWAS studies. We analyzed imputation 
performance of the array on 1000 Genomes Project data by performing cross-validation with 10% 
of the samples at a time. We report the accuracy of imputed variants across two MAF bins in 
terms of the squared Pearson correlation coefficient (r2) between imputed genotype dosages (0-
2) and the genotypes from the 1000 Genomes Project Phase III release (0, 1, 2) (discussed in 
Materials and Methods.) (Table S7). For example, the mean r2 for the EUR group is 0.931 in 
common variants and 0.777 in low frequency variants. Among the five ancestry groups, imputation 
of common variants was most accurate for the EUR population, while imputation of less common 
variants was most accurate for the AMR population. The high accuracy of imputation of less 
common variants in the AMR population reflects the admixture from European, African, and 
Native American ancestries, two of which were already included in the 1000 Genomes Project. 

Vendor quality control (QC) 

Two vendors, referred to as Vendor 1 and Vendor 2, performed initial genotyping of MVP 
samples for internal QC purposes. The vendors genotyped all MVP samples on the custom MVP 
1.0 array. To batch samples in preparation for genotype calling, the vendors grouped 
approximately 5,000 samples into each batch and used either the Axiom® Analysis Suite 
(Windows graphical user interface) or Affymetrix® Power Tools (APT, command line software) to 
execute the AxiomGT1 genotyping algorithm. Vendor 1 called genotypes with the Axiom® 
Analysis Suite versions 1.15, 1.16, 2.3, and 2.4. Vendor 2 called genotypes with the APT software 
and used versions 1.15.1 and 1.16.1. Both the Axiom® Analysis Suite and the APT software call 
genotypes in each batch independently of other batches. 

The vendors followed the Axiom® Best Practices to filter the data for QC purposes25 and 
so reprocessed samples with dish QC (DQC) values less than 0.82 or sample QC call rate less 
than 97%. Whereas Vendor 2 used a threshold of 97% to filter samples in all batches for re-
genotyping, Vendor 1 began with a threshold of 97% but switched to a 98% threshold after 
genotyping several batches to increase genotyping quality. This is the reason why Vendor 1’s QC 
call rate is consistently higher than that of Vendor 2 even after re-batching and re-genotyping on 
the full cohort (Figure S5 A-C). Only samples that pass internal vendor QC were sent to the VA. 

The vendors also investigated plates with the plate QC metric (average QC call rate of 
passing samples over the plate) lower than 98.5% to identify any systematic row or column failure 
and removed these plates if found. Since both vendors re-processed failed samples immediately 
after performing the Best Practices analyses and did not always return the failed samples in the 



 
 

delivered data, we relied on the vendors' reports for the plate QC, sample DQC, and QC call rate 
values.  

Genotype calling on the MVP cohort 

All samples that passed vendor QC were then re-batched and recalled internally at the VA 
under a unified workflow. After comparing vendor and multiple additional batching strategies, we 
separated MVP samples by vendor and then batched samples in groups of 4,000 to 5,000 
samples by each sample’s plate scan date. We incorporated samples into each batch at the unit 
of a plate so that all samples on one plate would be within the same batch. Since experimental 
metadata captured in CEL files (Axiom® files that report the array intensity data) is considered 
the most reliable, we extracted the plate scan date from the CEL file header by using an APT 
program called calvin-extract. After batching samples, we had 112 batches with a median of 4,500 
samples. Then, we called genotypes in each batch with the APT software, version 1.18, following 
the Axiom® Best Practices Genotyping workflow25.  

Initial QC 

To provide an initial assessment of MVP sample genotyping quality, we analyzed several 
QC metrics in detail:  

1) The DQC metric is an approximate measure of contrast between genotyping channels 
at non-polymorphic genomic locations25. Because the DQC metric is calculated only 
on non-polymorphic probesets, this metric assesses the signal to background noise 
ratio for each channel and should be close to 1 for high-quality samples.  

2) We also analyzed QC call rates (call rates computed over a set of 20K QC probesets, 
also referred to as step 1 call rate) and sample call rates over all probesets (also 
referred to as step 2 call rate) by batch for all samples. The sample call rate is similar 
except it is calculated on genotype calls over all probesets in a second round of calling 
after samples that failed the QC call rate threshold were removed.  

3) The final metric, sample missingness, is the fraction of genotype calls which are 
missing per individual after the advanced marker QC procedure over the number of 
markers that are called in at least one individual in the sample. The sample 
missingness is an indicator of sample genotype call completeness after the conclusion 
of all QC procedures. 

Standard marker quality control 

Standard marker quality control is executed by the Axiom® Best Practices Genotyping 
workflow. This workflow executes rules to select a best probeset for markers that are interrogated 
with more than one probeset, which is followed by the sorting of probesets into four recommended 
and three not-recommended SNP QC classes. Three recommended classes require probesets 
to produce well-resolved genotype clusters for probesets with three (the PolyHighResolution 
class), two (the No Minor Homozygous class), or one (the Mono High Resolution class) genotype 
clusters in the given batch (see the Axiom® Genotyping Solution Data Analysis Guide). The fourth 
recommended class is “Hemizygous” for Y chromosome and mitochondrial markers. The best 
practices guideline is to only use genotype calls from a given batch for marker probesets that are 
both best and recommended.   



 
 

Advanced Marker Quality Control Procedure for the MVP 1.0 array 

Approach 1: Exclude probesets that fail Advanced QC tests 
The goal of the Advanced QC tests is to identify probesets that systematically 

underperform in most batches or that are interrogating multi-allelic markers. Such probesets were 
identified in five ways: (1) probesets for multi-allelic markers; (2) probesets with higher than 
expected variance in allele frequency between batches; (3) probesets that failed to cluster into 
recommended classes in a large fraction of batches; (4) probesets with large differences in allele 
frequency when compared to reference datasets; and (5) mitochondrial or Y chromosome 
probesets that fail visual inspection of their cluster plots. 

Approach 1.1: Probesets for multi-allelic markers 
Because the current AxiomGT1 genotyping algorithm only calls the three genotypes for 

bi-allelic markers, probesets for multi-allelic markers, which have a minimum of six genotypes, 
are excluded. Only 0.22% of probesets interrogate multi-allelic markers. 

Approach 1.2: Probesets with inconsistent allele frequencies across batches  
Probesets exhibiting larger than expected variance in allele frequency across genotyping 

batches could indicate genotype calling issues. We used a statistic called the ratio A allele 
frequency (RatioAAF) to measure the stability of a probeset’s allele frequency across batches26. 
The RatioAAF is defined as the expected allele frequency variance over the observed allele 
frequency variance: 

 

where P is a vector consisting of the marker allele frequencies across all recommended batches 
and p’ is the average allele frequency across all recommended batches. A larger RatioAAF 
indicates a more stable allele frequency. Overall, 3.41% probesets have RatioAAF less than 1,000 
when computed over recommended batches. These probesets are often recommended in 
individual batches but produce inconsistent allele frequencies when measured over multiple 
batches. Visual inspection of a sampling of cluster plots of low RatioAAF probesets confirms that 
such probesets produce poor genotype clusters. 

Approach 1.3: Probesets that are recommended in few batches 
Probesets that are not often classified into one of the four recommended categories 

(discussed above) over most batches are typically genotyping poorly. Visual inspection of cluster 
plots for probesets recommended in less than 20 batches out of 112 confirms that such probesets 
produce poor genotype clusters and suggests that probesets recommended in only a few batches 
are fundamentally not working. 2.68% of probesets were eliminated by this filter. 

Approach 1.4: Probesets with allele frequencies diverging from those in reference datasets 
A small fraction of probesets demonstrate large discrepancies in reference allele 

frequency between the MVP dataset and the 1000 Genomes Project, phase 1 CEU reference 
population. Such probesets were identified with the following thresholds on the reference allele 
frequencies: (MVP < 0.02 AND CEU ≥ 0.5) OR (MVP > 0.98 AND CEU ≤ 0.5). Allele frequency 
thresholds were set more stringently for the MVP samples because of the larger sample size. 
Only 0.82% of probesets were excluded by these criteria. 
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Approach 1.5: Probesets on the mitochondrial or Y chromosome that fail visual inspection 
We conducted a manual review of cluster plots for probesets on the mitochondrial and Y 

chromosomes as recommended by the Best Practices for these hemizygous markers. Only a 
small fraction of probesets (0.01%) were excluded by this filter. 

Approach 2: Exclude calls from a mis-clustering event by batch 
After removing probesets that were fundamentally not working over all genotyping 

batches, we then turned to a batch level metric of performance. If a probeset was generally 
working but not one of the four recommended classes in a particular batch, the calls for that 
probeset in that batch were set to missing. In this way, we retained working probesets while 
removing calls in sporadic problematic batches. 

Approach 3: Select one probeset per marker over all batches 
There are 36,601 markers that are interrogated by more than one probeset on the MVP 

array. For markers that are interrogated by more than one probeset, the Axiom® Best Practices 
Workflow designates only one probeset as the best probeset per batch based on twelve 
performance metrics calculated as a part of the genotype calling procedure. However, the 
probeset that is designated as the best probeset can be different in different batches. We used 
five metrics to determine the best probeset per marker over all batches. These five metrics 
included the number of batches in which the probeset succeeded, the number of batches in which 
the probeset was marked best, the number of batches in which the probeset was classified as 
Poly High Resolution, the average probeset call rate over all batches, and the average Fisher 
Linear Discriminate (FLD) over all batches. We compared each probeset’s value for each of these 
metrics sequentially and selected the first probeset that had a higher value for one of the metrics. 
If all probesets for a marker were equivalent for all five metrics, we selected the first probeset in 
alphanumeric order. 

Correction of batch variation 

Individuals in subsequent tranches (Release A and Release B) were randomly sampled 
from the same population and similarly processed. Therefore, we hypothesized no common 
genetic variants were significantly associated with assignment to release. We tested this 
hypothesis by conducting a preliminary GWAS. We restricted the GWAS to samples with 
European ancestry (GBR >= 0.9 in ADMIXTURE). We used genotypes called from both tranches 
combined and assigned samples to pseudo-control and case groups according to their Release 
tranches. Specifically, we assigned Release A samples to the control group (n=238,229) and 
Release B samples to the case group (n=73,153) as shown in Figure S4B. We ran the association 
using only common markers (MAF > .05) and used the first 10 principal components (projected 
to 1000 Genomes Project principal components) as covariates and a linear-mixed model 
association in BOLT-LMM, which adjusts for cryptic relatedness. 

We found 204 significant (p ≤ 5 x 10-8) genome-wide independent signals (Figure S4D). 
The signals were single variant associations without local LD structure based on manual 
inspection of locuszoom plots27, suggesting batch effects. We subsequently ran an association 
adjusting for batch membership as a categorical variable (n = 112) and found only one genome-
wide significant hit (in the HLA region). We also ran an association randomly assigning each 
individual to case or control and observed no significant associations. 

For each variant that was genotyped, we then used Fisher’s Exact Test to identify batches 
in which allele distributions significantly differed from that of all other batches. This tests the null 
hypothesis that a given batch has the same genotype frequencies as all other batches combined. 



 
 

We compared distribution of allele frequencies across batch-SNP combinations (~60 million) with 
significant deviance defined as p < 6.7 x 10-10 (i.e., 0.05/batch-SNP combinations). 173 of the 204 
genome-wide significant SNPs from the Bolt-LMM GWAS failed the Fisher’s Exact Test. An 
example of a SNP-batch combination that was detected by the Fisher’s Exact Test is shown in 
Figure S4A. We then set all failing SNP-batch combinations to ‘no-call’ (approximately ~50,000 
of ~60,000,000 batch-SNP combinations) and re-ran the Bolt-LMM GWAS as above, this time 
finding 73 significant independent signals. 

We then investigated the remaining 73 significant hits by examination of genotype cluster 
plots. We identified certain patterns for which Fisher’s Test would fail and came up with a series 
of additional batch correction rules. For probes that fail Fisher’s Test in at least one batch:  

1) If the RatioAAF is less than 1,000, then exclude all batches for the probeset.  
2) If the batches with passing probesets all have fewer clusters than the batches with 

failing probesets, then switch the pass/fail assignment.  
3) If the batch has a call rate less than 98% and FLD less than 5, then fail the batch.  
4) If a batch is classified as No Minor Homozygous and has an HWE p-value < 1x10-4, 

then fail it.  

An overview of these steps and number of SNPs identified is summarized in Figure S4C. 

After applying these additional batch correction rules, we re-ran the Bolt-LMM GWAS and 
found an overall reduction in the number of significant associations from 204 to 47 (Figure S4 D-
E). These remaining associations were unlikely to be meaningful signals based on manual visual 
inspection of locuszoom plots and were set to no-call. 

Relatedness analysis 

Even after excluding 35 individuals with more than 200 relatives, we observed two clusters 
(denoted as cluster200 and cluster1000) with more than 100 family members in our KING analysis 
(Figure S10 C-D). Interestingly, all individuals with greater than 15 3rd degree relatives are in one 
of the two clusters. Members of each cluster are tightly interconnected with each other rather than 
there being a few individuals promiscuously interacting with other members of the cluster. It is 
unlikely that these two clusters are real families, and further investigations are warranted. We also 
observe an underrepresentation of individuals self-identifying as “white” in these two clusters 
(Figure S11), suggesting the low weight SNP strategy may not have fully removed the 
overestimation of relatedness in admixed individuals. We flagged all individuals in cluster200 and 
cluster1000 and redefined a new set of unrelated individuals using the 
largest_independent_vertext_sets() function to identify the largest set of unrelated individuals to 
use in our analyses.  



 
 

 

Web Resources 
Axiom Genotyping Solution Data Analysis Guide, https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf 

Locuszoom, http://locuszoom.org/ 
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