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The Million Veteran Program (MVP), initiated by the Department of Veterans Affairs (VA), aims to collect biosamples with consent from

at least one million veterans. Presently, blood samples have been collected from over 800,000 enrolled participants. The size and diver-

sity of the MVP cohort, as well as the availability of extensive VA electronic health records, make it a promising resource for precision

medicine. MVP is conducting array-based genotyping to provide a genome-wide scan of the entire cohort, in parallel with whole-

genome sequencing, methylation, and other ‘omics assays. Here, we present the design and performance of the MVP 1.0 custom Axiom

array, which was designed and developed as a single assay to be used across the multi-ethnic MVP cohort. A unified genetic quality-con-

trol analysis was developed and conducted on an initial tranche of 485,856 individuals, leading to a high-quality dataset of 459,777

unique individuals. 668,418 genetic markers passed quality control and showed high-quality genotypes not only on common variants

but also on rare variants. We confirmed that, with non-European individuals making up nearly 30%, MVP’s substantial ancestral diver-

sity surpasses that of other large biobanks. We also demonstrated the quality of the MVP dataset by replicating established genetic as-

sociations with height in European Americans and African Americans ancestries. This current dataset has been made available to

approved MVP researchers for genome-wide association studies and other downstream analyses. Further data releases will be available

for analysis as recruitment at the VA continues and the cohort expands both in size and diversity.
Introduction

The United States Department of Veterans Affairs (VA)

initiated the Million Veteran Program (MVP) in 2011 to

create a mega-biobank of at least one million samples

with genetic data linked to nationally consolidated longi-

tudinal clinical records.1 The initial and continuing goal

of MVP is to create a national resource for research to

improve the health of United States veterans and, more

generally, to contribute to our understanding of human

health. MVP has currently collected samples from over

800,000 Veteran participants and expects to exceed a total

of 1 million participants in the next 2 to 3 years.

Although MVP is similar in some respects to other large

biobank projects, such as the UK Biobank; the Kaiser Per-

manente Research Program on Genes, Environment, and

Health (RPGEH); the China Kadoorie Biobank (CKB);
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The Ame
and the DiscovEHR initiative,2–4 it is unique in several

ways. As one of the largest single biobanking efforts to

date, MVP satisfies the need for larger genetic datasets

while also benefiting from a very rich, nationally inte-

grated longitudinal clinical database housed in the largest

consolidated healthcare network in the United States.

This feature allows for enhanced clinical phenotyping ca-

pabilities. The availability of additional self-reported

health and lifestyle survey information augments clinical

data from the Veterans Information Systems and Technol-

ogy Architecture (VistA)—the VA’s electronic health re-

cord (EHR).

Furthermore, with over 29% of participants self-report-

ing non-white ethnicity, MVP has substantial diversity in

genetic ancestry and thus meets a pressing need for

greater diversity in genome-wide association analyses

so that researchers can discover novel associations,
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reduce false positives, and increase research equity.5–8 As

such, the MVP cohort provides an unprecedented

opportunity for increasing the power of genome-wide as-

sociation studies (GWASs) and will enable association

discoveries regarding clinically important low-frequency

and rare variants; such discoveries would only be

possible in larger sample sizes. Reliable typing of these

variants could provide explanations of missing heritabil-

ity in complex or non-Mendelian diseases. However, the

genetic diversity of MVP also poses challenges in geno-

type quality control.

In this report, we introduce the first installment of MVP

genotype data consisting of 459,777 samples surveyed at

668,418 markers. In brief, we (1) describe the design of a

research genotyping array with emphasis on clinically use-

ful and/or rare variants applicable to multi-ethnic back-

grounds; (2) describe the generation and quality control

of genotyping data; (3) highlight some of the current

MVP dataset’s unique features, including exploratory ana-

lyses of genetic ancestry; and (4) replicate effect sizes of

previously reported variants associated with height in Eu-

ropean Americans and African Americans. Overall, we

find that the MVP genetic dataset, linked to deep pheno-

typic data, is a high-quality and diverse resource for per-

forming genetic analyses.
Material and Methods

Human Subjects and Data and Sample Collection
The VA Central IRB, as well as the local IRBs at the VA Boston

Healthcare System and the VA Connecticut Healthcare System,

approved this project. An overview of the recruitment strategies

and protocols is given in a previous publication.1 In brief, partici-

pants were recruited from approximately 60 VA healthcare facil-

ities across the United States on a rolling basis. Informed consent

was obtained from all participants. Participants consented to a

blood draw and to have their DNA analyzed, as well as to linking

their genetic information with their full clinical, survey, and other

health data. Participants were also invited to answer two separate

surveys about basic demographic information and lifestyle

characteristics.

Blood drawn from consenting participants was shipped to the

central biorepository in Boston, Massachusetts, where DNA was

extracted and later shipped to two external vendors for genotyp-

ing on a custom Axiom array designed specifically for MVP

(MVP 1.0). A description of the MVP 1.0 array design features is

detailed in the Supplemental Information.
Thermo Fisher Scientific (formally Affymetrix) Axiom

Genotyping Platform
TheMVP 1.0 custom Axiom array is based on the AxiomGenotyp-

ing Platform. The Axiom genotyping platform utilizes a two-color,

ligation-based assay using 30-mer oligonucleotide probes synthe-

sized in situ onto a microarray substrate. Each single-nucleotide

polymorphism (SNP) feature contains a unique oligomeric

sequence complementary to the genomic sequence flanking the

polymorphic site on either the forward or the reverse strand. Solu-

tion probes bearing attachment sites for one of two dyes, depend-
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ing on the 30 (SNP-site) base (A or T, versus C or G), are hybridized

to the target complex, followed by ligation for specificity. Oligonu-

cleotide sequences complementary to the forward or reverse

strands are referred to as probesets. A marker (SNP or indel) can

be interrogated by the probeset for the forward and/or reverse

strand.

For additional details of the Axiom Genotyping Platform, see

the Supplemental Materials and Methods.
Genotype Calling
We received unprocessed Axiom genotype data for 485,856

unique samples assayed by two vendors, referred to as vendor 1

and vendor 2, and performed genotype calling in batches grouped

by vendor and sample processing date. By using data provided by

the vendors and generated from our internal genotype calling pro-

cess (see Supplemental Materials and Methods for details), we first

analyzed the standard Axiom genotype quality metrics and

compared these metrics between the two vendors.

After calling genotypes, we applied an advanced normalization

procedure for mitigating plate-to-plate variation developed in

collaboration with Thermo Fisher Scientific. The procedure was

applied selectively on a per-batch basis to probesets exhibiting

high plate-to-plate variance. After plate normalization, we

applied standard marker quality-control procedures to clean

and harmonize genotype calls across all the batches (Supple-

mental Materials and Methods), followed by advanced sample

quality control (QC).
Advanced Sample QC
Sample Contamination

To detect and mitigate sample contamination, we assessed het-

erozygosity with PLINK, version 1.9, by calculating the F coeffi-

cient and quarantining samples with an F coefficient of less

than �0.1. We assessed excess relatedness by using the related-

ness inference software KING, version 2.0, and quarantined

samples having a kinship coefficient of at least 0.1 with seven

or more other samples within MVP. These samples had high

dish QC (DQC) and low call rates and were outliers in compar-

ison to the majority of samples in the MVP dataset (Figure S5D).

Because a call rate below 98.5% correlated with excess sample

heterozygosity or relatedness, we removed samples (15,436, or

3.00%) with call rates below this threshold.9 All samples that

were removed or quarantined from the current release of MVP

data will be re-genotyped and included in the future data

releases.

Sample Mislabeling

We identified samples and plates demonstrating potential mislab-

eling issues by analyzing genotype concordance between inten-

tional duplicate samples that were sent blinded to the vendors

as new samples for genotyping. Of the 25,867 intentional dupli-

cate pairs, only 211 (0.82%) pairs were highly discordant (greater

than 1% discordance). Samples on plates with discordant inten-

tional duplicate pairs were quarantined for further analysis and

re-genotyping. We also removed both samples and plates if the

duplicate pair had a relatedness coefficient of less than 0.45. These

precautions were taken out of concern about potential plate swaps

and led to 9,975 samples’ being quarantined.

Sample Misidentification

To discriminate between misidentified intentional dupli-

cates (same samples intentionally genotyped twice), technical

duplicates (controls repeatedly genotyped by vendors), and
2020



monozygotic twins, we calculated sample relatedness with the

KING software, version 2.1.10 Monozygotic twins were confirmed

by cross-referencing EHR data. Pairs with birth dates differing by

no more than one day and having unique participant identifiers

and first names were considered verified monozygotic twin pairs.

Unverified samples were quarantined as potentially mislabeled

and will be re-genotyped.

Sex Check

To confirm sample gender, we extractedmarkers genotyped on the

X chromosome while excluding the pseudoautosomal region,

used the sex-check command from PLINK, and compared the ex-

pected F coefficient on the X chromosome to the gender recorded

in the sample’s EHR for all samples.11 Participants whose reported

gender differed from that inferred by PLINK were quarantined

from subsequent analysis. We also removed remaining samples

on plates with four or more gender mismatches to account for po-

tential plate swaps. The threshold is relatively low because of the

low percentage of females in our dataset.
Advanced Marker QC
Advanced Marker QC Pipeline

We implemented three main approaches to create the advanced

marker QC pipeline: (1) exclude probeset calls from all batches

for probesets that failed advanced QC tests; (2) exclude probeset

calls in a given batch for which the probeset is not recommended;

and (3) choose the best probeset per marker for markers interro-

gated by multiple probesets and exclude probeset calls from all

batches for the ‘‘not-best’’ probesets. Details of each steps of the

advanced marker QC are available in Supplemental Materials

and Methods and in Figures S4, S6A, and S7A.

The advanced marker QC pipeline produced an inclusion list of

probesets that met quality standards across the entire MVP data-

set. For each batch, we included a probeset in the dataset if it

met all three of the following criteria: (1) it was included in the in-

clusion list; (2) it was recommended in that batch; and (3) it was

the best probeset for a marker interrogated by multiple probesets.

We then generated a list of probesets per batch, created PLINK

marker list binary files for each batch, and merged all batches

together by using the PLINK merge command.

Reproducibility of Genotype Calling

To assess the consistency of genotype calls across time and ven-

dors, we analyzed the discordance between 25,867 intentional

duplicate samples that were sent blinded to the vendors. After con-

firming that these sample pairs were genetically identical through

KING relatedness inference, we determined the number of minor-

allele pairs (MAPs) for eachmarker. AMAP is any pair of genotypes

for a marker where both genotypes are called in the sample pair

and where the pair contains at least one minor allele. We then

calculated the number of discordant genotyping pairs per MAP

for each marker. Normalizing by the number of MAPs renders

different minor-allele frequency (MAF) bins comparable in the

discordance calculation. Otherwise, rare markers will always

have extremely low discordance rates because most samples carry

the homozygous major genotype.

Additionally, within the 485,856 samples genotyped in the

MVP cohort, we included 2,064 positive control samples. We

called the genotypes of the positive controls along with other

MVP samples across 112 batches organized by genotyping scan

date for 668,418 markers passing advanced marker quality con-

trol. These genotypes were compared to the consensus positive-

control genotype.
The Ame
To construct the consensus genotype sequence, we calculated

the frequency of each marker across the panel of 2,064 positive-

control samples. Markers with MAF of less than 1%were set to ho-

mozygous in the consensus sequence, and markers with a MAF of

greater than 49% were set to heterozygous in the consensus

sequence. For markers with a MAF greater than or equal to 1%

and less than or equal to 49% (536, or 0.082% of markers) or

that had no observed calls (18,158, or 2.76%), we set the

consensus genotype to missing.

We calculated concordance across all common (MAF R 5%)

and low-frequency (MAF < 5%) markers by assessing MAFs

over the entire MVP sample. We then calculated concordance

between the consensus sequence and each positive control.

Concordance was defined as the number of matching called ge-

notypes over the total number of called genotypes. Uncalled

markers in either the positive control or the consensus

sequence were not included in either the numerator or the de-

nominator of the concordance calculation. We then plotted

the concordance distribution for each batch’s positive controls

across time.
Comparing MVP Allele Frequencies to Those from

gnomAD and the UK Biobank
Genome Aggregation Database (gnomAD) version 2.1 data were

downloaded online (see Web Resources). Markers in both

gnomAD and MVP were matched on chromosome, start position,

end position, reference allele, and alternative allele. For any

mismatch, we checked strands and indel notations. Reference

and alternative alleles were corrected, and their frequencies were

recomputed when strands were flipped. Indels had their genomic

coordinates and alleles recoded and harmonized.

UK Biobank summary data were downloaded online (see Web

Resources). Markers shared between the UK Biobank and MVP

were matched through the use of SNP rsIDs. Because information

on marker chromosome, genomic positions, reference alleles, and

alternate alleles were not provided in the summary statistics, we

were unable to explicitly check for strand flips. However, as we ex-

pected, variant annotation in MVP and the UK Biobank tended to

be well harmonized because both were genotyped on Axiom ar-

rays and followed the same standard Axiommarker QC workflow;

thus, we compared allele frequencies as is without excluding any

variants.

For this analysis, European Americans (EAs) were defined as

samples with a GBR (British in England and Scotland) proportion

greater than 0.9 on the basis of ADMIXTURE results (described

below), resulting in a sample size of 311,365. We used PLINK to

compute allele frequencies by genetic ancestry subgroup via

the ‘‘–freq’’ command with default filters and quality control

parameters.
Genetic Relatedness
We performed additional preprocessing of the MVP dataset before

analyzing genetic relatedness. We applied standard PLINK 1.9 fil-

ters for genotype missingness (> 5% removed), MAF (< 1%

removed), and sample missingness (> 5% removed).11 We then

conducted pairwise relatedness inference by using KING 2.1 to

identify related pairs.10 KING explicitly accounts for population

structure and is therefore an appropriate algorithm for our sample,

which contains diverse genetic ancestry. However, KING is also

known to overestimate relatedness in the presence of recent

admixture. Therefore, we selected SNPs with a low load in
rican Journal of Human Genetics 106, 535–548, April 2, 2020 537



principal components (PCs) 1–3 for a second round of KING, as

was done in the UK Biobank.12

We ran the first round of KINGwith the command ‘‘–related–de-

gree 3’’ to identify all potential pairs of individuals with closer

than third-degree relatedness. From this result, we excluded all in-

dividuals with more than 200 third-degree relatives and also fam-

ilies withmore than 100members because we suspected they were

artifacts of sample-processing errors such as low-level sample

contamination. Then, a set of unrelated individuals was defined

via the largest_independent_vertext_sets() function in the Python

version of the igraph tool. Principal-component analysis (PCA)

was then conducted with the unrelated samples. Only SNPs with

a MAF greater than 0.01 and missingness less than 0.015 were

considered for this PCA. 23 regions defined as having high linkage

disequilibrium (LD) in the UK Biobank13 were also excluded, and

then SNPs were pruned according to an r2 threshold of 0.1, a win-

dow of 1000markers, and a step size of 80. In the end, 90,288 SNPs

were selected for PCA, which was conducted with PLINK

v2.00a2LM and the command ‘‘–pca var-wts approx’’ so that

variant weights and fast PCA approximation could be obtained.

We selected low-weight SNPs in PC1, PC2, and PC3 by adjusting

the absolute weight threshold to keep at least two-thirds of the

input SNPs, which led to 60,118 SNPs’ being put forward for the

next round of KING.

The second round of KING was again conducted with the com-

mand ‘‘–related–degree 3.’’ The effect of using SNPs with low

weights in PCs 1–3 on the distribution of the number of relatives

per individual is shown in Figures S10A and S10B. We flagged 35

individuals withmore than 200 third-degree relatives (UK Biobank

reported nine individuals with more than 200 third-degree rela-

tives), as well as all members of two clusters that were tightly inter-

connected with each other (Supplemental Materials and Methods

and Figures S10C, S10D, and S11).

We defined genetically identical pairs as those having a kinship

coefficient of 0.45 or greater (the maximum kinship coefficient

output by KING is 0.5). However, given the large number of

intentional duplicates samples in our dataset, we only considered

genetically identical pairs as monozygotic twin pairs after cross-

referencing EHR data as above. Parent-child pairs were defined as

those having a kinship coefficient of greater than or equal to

0.19 and less than 0.45 and having less than 0.0025 percent of

the genome held with zero alleles identical-by-state (IBS0). Sample

pairs with a kinship coefficient greater than or equal to 0.19 and

less than 0.45 and IBS0 greater than or equal to 0.0025 were desig-

nated as full siblings. Any pairs of participants with a kinship

coefficient between 0.0884 and 0.19 were inferred to be second-

degree or third-degree relatives. To identify potential trios in our

sample, we extracted parent-child pairs in which a sample ap-

peared twice. We then assessed the kinship coefficient between

the other two participants. If the other two participants were not

a related pair and consisted of one male and one female, we iden-

tified these three samples as a trio.
Genetic Ancestry
For genetic-ancestry analysis, we used the same set of markers used

for relatedness analysis and applied LD pruning with PLINK (–in-

dep-pairwise 1000 50 0.05), which left us with 50,000 markers.

Principal-Component Analysis

For the 1000 Genomes Project projection PCA, we merged the

MVP dataset with the 1000 Genomes Project Phase 3 reference

panel.14 We first filtered the 1000 Genomes Project dataset to
538 The American Journal of Human Genetics 106, 535–548, April 2,
ensure scalable merging with the MVP dataset. Markers with

MAF less than 1% and any samples constituting related pairs

were removed prior to LD pruning via PLINK according to the

same parameters as above. We then calculated PCs by using the

1000 Genomes Project dataset and projected the MVP samples

onto them with EIGENSOFT, version 6.0.1.15

We also calculated the PCs on the filtered MVP dataset alone by

using the FastPCA method from the EIGENSOFT package for

within-cohort PCA. For this PCA, we excluded all related individ-

uals, whereas we kept all related individuals in the 1000 Genomes

project PCA.
ADMIXTURE Analysis
In order to quantify ancestry proportions in MVP, we ran the pro-

gramADMIXTURE, version 1.3, on theMVP samples in supervised

mode with five reference populations from the 1000 Genomes

Project dataset as training data.16 We chose the five reference pop-

ulations on the basis of their global geographic location to ensure

global representativeness. The Yoruba in Ibadan, Nigeria (YRI)

samples serve as a proxy for West African ancestry, the Luhya in

Webuye, Kenya (LWK) for East African ancestry, the British in En-

gland and Scotland (GBR) for European ancestry, the Han Chinese

in Beijing, China (CHB) for East Asian ancestry, and the Peruvians

from Lima, Peru (PEL) for Native American ancestry (Figure S8C).

Participants with more than 80% of their genetic ancestry attrib-

uted to one reference population were assigned to that reference.

Remaining participants who had greater than 90% of their genetic

ancestry derived from two reference populations were assigned to

that pair of populations. Any participants not meeting the above

two criteria were assigned to a separate subgroup (MVP_OTHER)

and were assumed to contain admixture from three or more refer-

ence populations.
UMAP Analysis
We used Uniform Manifold Approximation Projection (UMAP), a

dimensionality-reduction method that is useful for visualizing

both global and local structure in data, to further visualize the ge-

netic ancestry of the MVP cohort. A UMAP embedding was calcu-

lated on the basis of the first 10 principal components of unrelated

samples with hyperparameters n_neighbors of 15 and min_di-

stance of 0.1, whichwere suggested by a previous study onUK Bio-

bank data.17 We then visualized the population structure by pro-

jecting subpopulations identified by our ADMIXTURE analysis

onto the UMAP embedding.
GWAS of Height
Height measurements, dates of measurement, and dates of birth

for each participant were extracted from the VA healthcare sys-

tem’s EHR. Any height measurement outside the range of 48 to

84 inches was excluded,18 and inches were converted to meters.

Age at measurement was calculated by subtracting the date of

birth from the date of height measurement. Individuals younger

than 18 or older than 120 years old were excluded. Sex was genet-

ically determined by PLINK.

Markers whose genotype missingness was greater than 1%, as

well as non-autosomal markers, were removed. Samples whose

missingness was over 5% were also excluded. By using the results

of the relatedness analysis described below, we also removed all

closely related pairs.

After marker and sample filtering, we ran association tests by us-

ing BOLT-LMM13 with sex, age, age-squared, and the first 10 PCs as
2020



Figure 1. Key MVP 1.0 Genotyping Array
Modules
The modules are divided into those shared
with the Axiom BiobankGenotyping Array
and those unique to the MVP 1.0 array,
along with descriptions and counts of
unique markers in each module. Counts
represent the number of markers in the
module, and markers can be in more than
one module.
covariates. LD scores were calculated from the 1000Genomes Proj-

ect population subsets with ldsc 1.0.19 We generated model SNPs

with PLINK 2.0 by pruning unrelated samples with an R-squared

threshold of 0.2 (–pairwise-indep 1000 50 0.2). We also generated

PCs by using PLINK 2.0 (–pca approx) on the cohorts that had

model SNPs extracted.

We extracted the effect size, direction of effect, and allele for

each previously associated marker from the GWAS catalog on

March 21, 2019 and then extracted the effects for the markers pre-

sent in the MVP association analysis. We then scaled the effect

values within each study to between 0 and 1 to account for

different height units and plotted the previously derived effects

against those inferred in MVP.
Results

The MVP 1.0 Array

Array Design and Content

The MVP 1.0 array was based on the Applied Biosystems

Axiom Biobank Genotyping Array with additional custom

content developed for MVP (Figure 1). The Axiom Bio-

bank Genotyping Array incorporates multiple content

categories that are important for translational medicine

research and discovery; such categories include modules

for genome-wide coverage of common European variants,

rare coding SNPs and indels, pharmacogenomics markers,

expression quantitative trait loci (eQTLs), and loss-of-

function markers (further described in Supplemental Ma-

terials and Methods). The MVP-1.0-specific modules were

mainly SNPs and indels known to be associated with dis-

eases and traits of interest to MVP (especially psychiatric

disorders and rheumatoid arthritis), as well as a set of

SNPs selected to improve African American imputation

performance (Supplemental Materials). In total, 723,305
The American Journal of Human
probesets interrogating 686,682

unique bi-allelic markers (SNPs and

indels) based on the GRCh37

genome build were tiled onto the

MVP 1.0 array. Among these, 270

are mitochondrial markers, 142 are

in the non-pseudoautosomal regions

of the Y chromosome, 1,139 are in

the pseudoautosomal regions (PAR1

and PAR2) of the X and Y

chromosomes, 18,026 are in the

non-pseudoautosomal regions of the
X chromosome, and the remaining 667,105 markers are

autosomal markers (Table S1).

MVP 1.0 Genotyping Quality Control and Assessment

Assessment of Overall Genotyping Performance

Figure S3 is an overview of the steps taken to ensure high-

quality genotype data for theMVP cohort. Advanced geno-

type and sample QC were conducted in addition to the

standard Affymetrix good-practice guidelines and are

described in the Materials and Methods and Supplemental

Materials and Methods. In addition, we further devised a

batch variation correction step to apply to markers that

showed significant allele frequency differences between re-

leases (Supplemental Methods and Figures S4 and S6A).

We investigated multiple quality-control metrics for

across and within the two assay vendors. Median Axiom

DQC values for all genotyping batches were greater than

95 for both vendors (Figure S5A). Median QC call rate

was also high, exceeding 99% for each genotyping batch

(Figures S5B and S5C). Overall, sample call rates and other

genotype quality-control metrics demonstrated high-qual-

ity genotype calls for MVP regardless of genotyping vendor

(more detail is available in the Supplemental Materials and

Methods).

Marker and Sample QC and Selection

The MVP 1.0 array contains a large amount of novel,

custom marker content that has not been validated on

other arrays. These markers were assayed with more than

one probeset, so determining which probesets for a given

marker performed best across all genotyped batches and

removing systematically poor-quality probesets required

advanced marker QC. Ultimately, we retained 668,418

markers representing 97.34% of the original markers and

included 459,777 samples from a total of 485,856 unique
Genetics 106, 535–548, April 2, 2020 539



Table 1. Quarantine and Exclusion Criteria for MVP Samples and Sample Count per Category

Category Number of Samples Percentage of Samples

Starting MVP sample set for analysis 514,383 �

Intentionally duplicated samples 25,291 �

Uniquely genotyped individuals 485,856 100.00%

Samples with call rates below 98.5% 15,436 3.18%

Positive-control samples 3,236 0.66%

Samples with sex misclassification 1,450 0.29%

Samples on plates containing 4 or more sex
misclassifications

2,619 0.53%

Unintentionally duplicated samples 1,149 0.23%

Samples on plates containing an intentional
duplicate with high discordance

9,975 2.05%

Samples with high heterozygosity 248 0.05%

Samples with no or multiple unique
participant identifiers

71 0.01%

Intentionally duplicated samples with high
discordance

413 0.08%

Samples with 7 or more ‘‘relatives’’ 466 0.09%

Samples excluded from the dataset 28,527 5.87%

Samples quarantined from the dataset 31,836 6.55%

Sample set in current data release 459,777 �

Percentages are calculated from the total number of uniquely genotyped individuals (485,856). Categories are not mutually exclusive (i.e., a sample can be
removed as a result of more than one category and is counted in each applicable category in the table).
genotyped samples in this data release. As expected, almost

98% of the markers that were previously tested on the

Axiom biobank array were associated with a probeset

that passed quality control, whereas 77% of the markers

in the MVP 1.0 custom modules were associated with a

probeset that remained after quality control. Additionally,

although sample missingness (the fraction of missing ge-

notype calls per individual; see Supplemental Materials

and Methods) was slightly higher for vendor 1 than for

vendor 2, almost all genotyped samples from both vendors

exhibit missingness of less than 5% (Figure S6A).

We also either excluded or quarantined samples that did

not meet sample QC criteria. Excluded samples include

those expected to be removed by design or for known

logistical or data errors. These samples include positive

controls, samples with no or multiple unique participant

identifiers, and samples in intentional duplicate pairs

with the lower call rate. Quarantined samples are those

that are temporarily removed from the dataset as a result

of quality concerns. For instance, we investigated 1,149

pairs of samples with high relatedness to discriminate be-

tween misidentified intentional duplicates, technical du-

plicates (controls repeatedly genotyped by vendors), and

monozygotic twins. Although we confirmed 49 monozy-

gotic twins by cross-referencing with EHR data, the re-

maining 1,100 unintentional duplicate pairs could not be

verified through independent means and were quaran-

tined from data release as potentially mislabeled and will
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be re-genotyped. We also cross-checked genetically deter-

mined sample sex with EHR-reported gender information.

Among the 485,856 unique genotyped samples, 2,000

(0.41%) did not have any reported gender information

from either the EHR or self-reporting, and 2,073 (0.43%)

of the remaining samples had a genetic sex that was oppo-

site of the reported gender. We quarantined these samples

for further analysis and potential re-genotyping (Table S2).

The total number of samples that were excluded or quaran-

tined from the current release of MVP genotype data and

the reasons for exclusion are summarized in Table 1. All

quarantined samples removed from the current data

release will undergo further quality-control validation, be

sent back to the vendors for re-genotyping, or will be

otherwise verified before being included in subsequent

data releases.

Marker Missingness and Discordance by MAF

We assessed marker missingness in correlation with MAF.

Overall, the MAF distribution of MVP 1.0 is highly skewed

toward rare variants; 42.89% of markers have a MAF below

1%, and 33.89% have a MAF below 0.1% (Figure 2A). This

result is by design: the content of theMVP array focuses on

markers associated with potential disease phenotypes. We

find that MAF is correlated with marker missingness, as

shown in Figures 2C and S6B, and lower frequency variants

are missing in a larger fraction of samples. Despite this

trend, genotyping call rate among low-frequency markers

is still relatively high. For example, 87.29% of rare markers
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Figure 2. Quality-Control Assessments on the MVP Dataset after Performance of the Advanced Marker Quality Control Procedures
(A) MAF distribution after sample QC filtering. The inset diagram shows the distribution for markers with a MAF below 1%.
(B) Minor-allele discordance rates per MAF bin, based on intentionally duplicated samples.
(C) Marker missingness rates per MAF bin, after sample QC filtering.
(D) Comparison of MAFs between the EA subset of MVP (MVP-EUR) and the UK Biobank European subset (UKB-EUR).
(E) Comparison of MAFs between MVP-EUR and the non-Finnish European subset of gnomAD (gnomAD-NFE).
(MAF < 0.1%) have a genotyping call rate of greater

than 95%.

Additionally, we examined marker genotype discor-

dance rates across intentional duplicate sample pairs with

respect to MAF. Discordance is calculated per MAP for

each marker, and markers are binned by MAF. We found

a correlation between MAF and discordance rate, such

that lower-frequency variants had a higher rate of minor-

allele discordance (Figures 2B and S6C).

Duplicate and Positive Control Samples for Continuous Qual-

ity Assessment

Importantly, becauseweemployed two separate vendors for

genotyping, we intentionally included 25,291 duplicate

samples that were blinded to the vendors for independent

assessment of genotype quality. This amounts to a target

of 5%of all genotyped samples and is an effort to accurately

assess genotyping quality on a continuous basis. Sample

concordance among intentional duplicates or positive con-

trols was very high; the median concordance rate was

greater than 99.8% across all comparisons (Figure S7A).

Assessing concordance in positive-control samples also

provides valuable information about the consistency and

reproducibility of the MVP 1.0 array’s genotypes over
The Ame
time. Along with the MVP samples, 2,064 positive-control

samples were genotyped on the MVP 1.0 array. As dis-

cussed in the Materials and Methods section, we con-

structed a consensus genotype sequence across 657,459

markers by using this panel of positive controls. For

markers in the consensus sequence, 543,691 (82.70%)

were homozygous, 95,079 (14.46%) were heterozygous,

and 18,689 (2.84%) were uncalled. Concordance for each

of the 2,064 positive-control samples is defined as the

number of markers that agree with the consensus sequence

divided by the number of called markers in the consensus

sequence.

Overall positive-control concordance is shown in

Figure S7A, and the distributions by batch of concordance

values across all positive controls are shown in Figures

S7B–S7D. The median concordance rate between each pos-

itive-control sample and the consensus sequence was

99.93% for all markers, 99.89% for common (MAF R

5%) markers, and 100.00% for low-frequency (MAF <

5%)markers. Theminimumobserved concordance rate be-

tween a positive control and the consensus occurs during

analysis of common markers, but this concordance rate is

still high at 99.05%.
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Table 2. Concordance Rates across 96 HapMap Samples Genotyped on the MVP 1.0 Array

� � Metrics over Recommendeda Markers Metrics over All Markers

Population Number of
Samples

Average Sample
Concordance (%)

Average Sample
Call Rate (%)

Average Sample
Concordance (%)

Average Sample
Call Rate (%)

ALL 96 99.70 99.85 99.35 99.49

CEU 28 99.70 99.85 99.34 99.47

CHB 20 99.70 99.86 99.37 99.51

JPT 20 99.68 99.84 99.35 99.51

YRI 28 99.71 99.86 99.34 99.49

aRecommendedmarkers are those that were classified into one of the recommended SNP classes after execution of the Axiom Best Practices Genotyping workflow
for the 96 co-clustered samples.
Concordance with HapMap Samples

To further test concordance and genotyping quality, we

genotyped 96 HapMap samples (from Coriell cell lines)

on the MVP 1.0 array. 210,630 markers are present in

both the MVP 1.0 array and HapMap release 27, and

among these markers, 205,647 (97.20%) are classified as

recommended (see Supplemental Materials and Methods,

Standard Marker Quality Control). When these 205,647

markers were analyzed over the 96 HapMap samples, and

when HapMap and Axiom uncalled genotypes were

removed from the numerator and denominator, the sam-

ple concordance across all population groups is 99.70%

(Table 2). The Axiom sample call rate for recommended

markers is 99.85%.

Assessing Rare-Allele Genotyping Quality

Given the importance of rare markers in clinically related

studies, we evaluated the analytical validity of MVP 1.0

rare markers by observing the concordance of MAFs for

rare markers with overlap between MVP 1.0 and either

the gnomAD or the UK Biobank (Figures 2D and 2E). These

databases are large enough for detection of very low MAFs,

and agreement of MVP 1.0 marker MAFs with MAFs from

these databases provides evidence for the accuracy of

MVP 1.0 calls. MAFs were considered to agree when the

lower bound of the regression slope’s 95% confidence in-

terval was R0.9. This value leaves some margin of error

for expected differences between the databases in popula-

tion structure (non-Finnish Europeans versus European

Americans [EA]), technology (genotype arrays versus

exome sequencing), technical processes (batch, user,

etc.), and sample size. We used the MVP EA subgroup to

benchmark performance because it has a larger sample

size, which provides better confidence in assessing fre-

quency of rare markers, and it has large complementary

subgroups in gnomAD and the UK Biobank. We classified

markers into three subgroups by MAF: rare variants

(< 1%), low-frequency variants (1%–5%), and common

variants (> 5%). The EA subgroup yielded 321,290

(48.1%) rare markers, 46,626 (6.97%) low-frequency

markers, and 300,375 (44.9%) common markers.

From the gnomAD, we compared the allele fre-

quencies derived from the non-Finnish European sub-

group (n ¼ 55,860) of the exome call set. This subgroup
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provided the largest cohort that was comparable in popu-

lation structure. 69% (221,374 of 321,290 markers) of the

rare variants in MVP were also found in gnomAD. Addi-

tionally, both MVP and gnomAD showed similar MAFs

for these concordant rare variants (slope 0.9290, 95% CI:

0.9002, 0.9578).

From the UK Biobank, we compared allele frequencies

derived from the self-reported white British ancestry group

(N > 330,000). We found MAF agreement, as supported by

the strong coefficient of determination (R2) of 0.9864 and a

slope of 0.9536 (95% CI: 0.9841, 0.9887) between 46,872

overlapping markers.

Although comparison against both sources met

the R0.9 agreement threshold, we observed a small set

of about 6,000 extremely discrepant markers (defined as

having MAF > 0.001 in one database but MAF < 0.001 in

the other) betweenMVP and gnomAD. About 53% of these

markers were also present in the UK Biobank. For these

discrepant markers, MAFs in the UK Biobank were much

closer to MVP MAFs than those in gnomAD, and only

one-quarter of the overlapping UK Biobank markers re-

tained the ‘‘extremely discrepant’’ label. This is expected

and consistent with previous observations that MAFs of

MVP and the UK Biobank are in close agreement. The

extremely discrepant markers between MVP and gnomAD

might be attributed to smaller sample size of the gnomAD-

exome database in comparison to the UK Biobank. The

lowest MAF limit for MVP’s EA subgroup is 1.6 3 10�6

(1 of 622,730 total alleles), 8.9 3 10�6 (1 of 111,720) for

gnomAD’s non-Finnish subgroup, and 1.4 3 10�6 (1 of

674,398) for UK Biobank. At very low frequencies, the ab-

solute difference between rare variants, but not necessarily

the relative difference, will be small. A given marker with a

MAF of 0.001 inMVP and 0.01 in gnomADwill have an ab-

solute difference of 0.009, but a relative difference of 10-

fold. This is a common situation in our pairwise marker

comparisons because overlappingmarker MAFs are heavily

clustered near zero (Figures 2D and 2E). This could also

explain the relatively higher variance observed in the

lower extremes when MVP is compared to gnomAD versus

the UK Biobank. Overall, our results nonetheless show that

our rare variant calls are highly consistent and within a

reasonable range of agreement with overlapping markers
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Figure 3. Analysis of Genetic Ancestry in
the MVP Dataset
(A) Density plots of the total length of runs
of homozygosity (ROH) per individual in
each genetic-ancestry subgroup. Only the
top five most common subgroups are
shown.
(B) Principal-component analysis of the
1000 Genomes Project phase 3 dataset
with MVP samples projected onto prin-
cipal components 1 and 2.
(C) The number of MVP samples in each
genetic-ancestry subgroup as inferred by
ADMIXTURE percentages and our thresh-
olds. For a single ancestry subgroup, such
as MVP_GBR, the threshold is at least
80% inferred for that ancestry (e.g.,
MVP_GBR is GBR > 80%). For a pair of
identified subgroups, the two ancestries
must be at least 90% combined (e.g.,
MBP_GBR_YRI is GBR þ YRI > 90%).
MVP_OTHER includes all samples that
had less than 80% ancestry aligned to
any reference population and less than
90% combining any two populations.
(D) Visualization of ancestry subgroups
via Uniform Manifold Approximation Pro-
jection (UMAP).
in gnomAD and the UK Biobank. However, it is important

to note that the precision of calling very rare variants as-

sayed with SNP chips has been reported to show variable

quality.20 Thus, visual inspection of calls underlying initial

association results are always required.

Population Analysis of MVP Samples and a Test GWAS

on Height

The MVP Cohort

In addition to quality assessment of MVP 1.0 genotyping

results, we also performed exploratory analysis of the cur-

rent population represented in the MVP samples. On the

basis of data from the VistA EHR, the genotyped partici-

pants in the MVP cohort had a median age of 65 years at

time of enrollment, and 8.33% are female. Although the

percentage of female participants is low, reflecting the de-

mographics of the Veteran population, this percentage cor-

responds to 46,924 female participants in the current

release.

In light of the samples that have already been geno-

typed, theMVP cohort is relativelymore diverse than other

large biobanks on which data are available. For example,

more than 94% of UK Biobank participants self-report as

British, Irish, or ‘‘any other white background’’4,12, and

81% of individuals whose data are included in the Kaiser

RPGEH biobank report as ‘‘white, non-Hispanic.’’ On the

other hand, 70.9% of MVP participants self-report as

‘‘white’’ and ‘‘non-Hispanic or Latino,’’ in agreement

with United States 2010 census information indicating
The Ame
that 63.7% of respondents self-report as ‘‘white alone’’

and ‘‘not Hispanic or Latino’’21.

Analysis of Relatedness

We examined the degree to which samples in the MVP

population are related. Of the approximately 105.70

billion possible MVP sample pairings, 15,384 pairs ap-

peared to be third-degree relatives or closer. The number

of pairs for each type of relative pair, including trios, is

shown in Table S8. Compared with the UK Biobank, this

installment of MVP samples has a reduced fraction of

related pairs.

Analysis of Genetic Ancestry

Assessing genetic ancestry for genotyped samples is an

important tool for many applications, such as correcting

for biases caused by population structure, constructing

tests for natural selection, and determining disease risk

by genetic ancestry, among other tasks.22 To assess genetic

ancestry in our sample, we visualized and then quantita-

tively assessed the genetic ancestry of MVP samples rela-

tive to external reference populations.

Runs of homozygosity (ROH) were measured via PLINK

with a minimum ROH length of 1,000 Kb. The median to-

tal length of ROH is approximately 15.65 Mb, and the me-

dian number of blocks per sample is 10. In Figure 3A, we

plotted the total length of ROH per individual by genetic

ancestry subgroup for the five most common subgroups

as defined in the Materials and Methods. MVP_GBR_PEL

samples have a wide distribution of total ROH length but

also some of the longest total lengths of all samples.
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Samples that had African ancestry or that were ad-

mixed between three or more reference populations

(MVP_OTHER) have the shortest total length of ROH per

sample. Samples of mainly European ancestry have inter-

mediate total ROH length. The total length of ROH per

sample varies depending on the genetic-ancestry

subgroup.

We also compared MVP samples to those in the 1000 Ge-

nomesProject.Wefirst ranaPCAonthe1000GenomesProj-

ect phase 3 samples and then projected the MVP samples

onto these PCs. We found that most MVP samples lie close

to reference populations of European origin. In addition,

when we performed PCA on MVP samples alone, we found

thatgeneticancestrysubgroupscontainmorecomplex inter-

continental population structure, and a sizeable fraction of

MVP samples exhibit admixture with respect to African

and Asian references samples (Figures 3B and S9).

To assess ancestry proportion for each sample in MVP,

we ran the program ADMIXTURE in supervised mode by

using five 1000 Genomes Project phase 3 reference popula-

tions: Han Chinese in Beijing, China (CHB); British in En-

gland and Scotland (GBR); Luhya in Webuye, Kenya

(LWK); Peruvians from Lima, Peru (PEL); and Yoruba in

Ibadan, Nigeria (YRI).16 For most participants, the largest

percentage of their genome aligns with the GBR popula-

tion (Figure S8C). However, a substantial fraction of sam-

ples contains a moderate amount of genetic ancestry

similar to the YRI reference population. Examples were

also found of participants who have almost 100% of their

genetic ancestry aligning to each of the five reference pop-

ulations except for LWK. By using ADMIXTURE analysis

results, we grouped the MVP samples into 16 subgroups

and determined the proportion of MVP samples belonging

to each (Figure 3C). For example, 326,777 samples have

over 80% of their genome aligning with the GBR reference

population (MVP_GBR), whereas 58,267 samples have

80% or more of their genome aligning with YRI

(MVP_YRI). Excluding samples with more than 80% of

their genome aligning to one reference population,

25,295 of the samples have 90% or more of their genome

aligning with a combination of GBR and YRI reference

populations (MVP_GBR_YRI). Approximately 16,351 sam-

ples (MVP_OTHER) have neither 80% of their genome

aligning with one reference population nor 90% aligning

with a combined pair, indicating substantial admixture be-

tween three or more reference populations.

Finally, we visualized the diverse ancestry composition

of MVP by using a non-parametric dimensionality reduc-

tion method called uniform manifold approximation pro-

jection (UMAP) (Figure 3D). As shown through PCA and

ADMIXTURE, the largest cluster corresponds to samples

with largely European ancestry. In this visualization, the

distance between samples and clusters is not to be directly

interpreted as genetic distance. Although there are distinct

clusters (such as the tight cluster of individuals with Asian

ancestry on the top left corner, and another small cluster of

probable Polynesians in the middle of the plot), most MVP
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samples of different ancestries form a large single cluster

rather than individual ancestry clusters with distinct

breaks. This large cluster shows a continuum of ancestry

proportion that transitions from GBR on the top right to

different levels of admixture with YRI and PEL propor-

tions. This is in line with a previous report based on

32,000 US individuals in the National Geographic Geno-

graphic Project cohort.23

GWAS of Height

To further validate the quality of our genotype data and the

utility of MVP 1.0 array, we conducted a GWAS of height in

both the EA and African American (AA) MVP subpopula-

tions. EAs were defined as individuals with a GBR propor-

tion greater than 90%, and AAs were defined as individuals

with a YRI proportion greater than 60% and less than 40%

GBR on the basis of ADMIXTURE results (Figures S8A and

S8B). Our GWAS of height within EA and AA cohorts

showed moderate inflation of lGC ¼ 1.12 and lGC ¼ 1.13

and pseudo-heritability of 0.396 and 0.378, respec-

tively,19,24,25 levels comparable to those found in previous

height association studies without genotype imputation.26

Of the 822 reported height associations listed in the

GWAS catalog,27 230 were present in the MVP EA GWAS,

and 209 were present in the MVP AA GWAS. We assessed

whether we could replicate effect sizes and direction of ef-

fects for markers present in MVP EA and AA GWASs by

plotting these against the GWAS-catalog effect sizes and di-

rection of effects (Figure 4). For the two subpopulations,

the MVP associations perfectly replicated the directions

of effect in most markers (two SNPs had an effect size

near zero in EA). However, because most associations in

the GWAS catalog are derived from Europeans, the overall

correlation across all markers was lower for the AA cohort

(r ¼ 0.69) than for the EA cohort (r ¼ 0.85).

Overall, we show that the performance of MVP 1.0 and

the quality of its genotyping across 459,777 individuals

of diverse ethnic backgrounds is very consistent and accu-

rate by a variety of metrics.
Discussion

In this report, we provide an overview of the design of the

MVP 1.0 genotyping array, the development of accompa-

nying quality-control analyses, and our initial data explo-

ration of an interim MVP genotyping dataset that consists

of nearly 460,000 veterans. Our results demonstrate that

the MVP 1.0 chip and the subsequent QC procedures

have addressed notable challenges characteristic of large

projects with individuals of diverse genetic backgrounds

and that the resulting genotype calls are of high quality

akin to that of other projects similar in scope. By using a

single chip and unified quality control across the diverse

cohort, we aimed to minimize batch effects between

different ancestries and provide an initial genome-wide

scan before whole-genome-sequenced samples become

available.
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Figure 4. GWAS of Height with MVP Cohort
(A) Replication of the direction of effect for markers previously associated with height as annotated in the NHGRI-EBI GWAS Catalog in
the MVP cohort of non-related European Americans (n ¼ 291,609). Color coding denotes the genetic ancestry of the original cohort in
which the markers were associated with height.
(B) Same as (A) except with the MVP cohort of non-related African Americans (N ¼ 73,190).
Addressing the Challenges of MVP

MVP’s large, diverse, and still-growing cohort poses

numerous challenges for designing genotyping procedures

and their subsequent quality-assessment and quality-con-

trol protocols. Genotyping large and ethnically diverse co-

horts along with clinically relevant markers is even more

challenging because of the finite number of probesets

that can fit on a single array. However, using different ar-

rays for different ethnic groups can also exacerbate the dif-

ferences between these groups and lead to batch effects.

To address the limitations of array-based genotyping in

diverse cohorts, we carefully selected array content to

maximize clinical utility while at the same time ensuring

both broad coverage of variants and robust imputation ca-

pabilities across different ethnic groups. We also developed

comprehensive quality controls for markers and samples

both before and after genotyping. These controls included

intentional duplication of ~5% randomly selected samples

over time, blinded-to-assay technicians so that batch vari-

ation could be detected and mitigated; assessment of gen-

otyping concordance with positive control samples and

HapMap samples (Figure S7A, Table 2); comparison of

MVP 1.0 MAFs to those in gnomAD and the UK Biobank

(Figure 2); and a height GWAS intended to replicate previ-

ously reported results (Figure 4). Overall, we retained and

released 459,777 samples and 668,418 markers after QC

for the initial release of data. Although QC metrics vary

slightly over time and genotyping vendors, the final geno-

typed sample set shows consistently high call rates (98.5%)

and genotype concordance over intentional duplicates

(99.8%) both within and between vendors and over time.

Furthermore, marker concordance is also high even for

rare markers. Additionally, genotype concordance, MAF,

and GWAS association results are generally in strong agree-
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ment with external or previously reported results. These

results indicate that the design of the MVP 1.0 array and

the associated quality-control and assessment procedures

provide a robust, reliable method for genotyping common,

low-frequency, and rare variants in a large, ethnically

diverse cohorts.

Challenges remain however, and the MVP 1.0 array has

several limitations. Notably, although concordance rates

were high, our results demonstrate that low-frequency

and rare variants are still more difficult to genotype accu-

rately with the MVP 1.0 array than are common variants.

Additionally, while although added markers to MVP 1.0

to increase coverage for AAs, we lack boosters for other

ethnic groups, such as Asian and Native American popula-

tions, which currently comprise smaller but growing pro-

portions of the MVP population. In addition, although a

standard imputation to the 1000 Genomes reference has

been completed, we have yet to quantify the effect of

imputation across different ancestries within MVP to

devise an optimized imputation strategy. The strategy im-

plemented by the UK Biobank was to use the Haplotype

Reference Consortium (HRC) as themain imputation refer-

ence panel and to supplement with variants from 1000 Ge-

nomes if those variants were missing in HRC. However,

this is not viable for MVP, which has a large proportion

of non-European individuals. Further understanding and

analyses of imputation strategies in a multi-ethnic and ad-

mixed cohort will be required if we are to obtain an opti-

mized strategy for MVP.

The MVP Dataset Is Ethnically and Genetically Diverse

Our exploratory analysis indicates that the MVP dataset

and samples offer unique value for disease research. One

particularly valuable aspect of the MVP dataset is the
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ethnic diversity it encompasses. Genetic ancestry analysis

suggests that the MVP dataset contains sub-populations

with both homogeneous and admixed genetic ancestry

from multiple global populations. The largest sub-popula-

tion corresponds to 71% of samples of mostly European

descent, and the remaining samples show substantial Afri-

can, East Asian, and Native American ancestry.

Because MVP recruits participants from United States

veterans who receive care at VA hospitals, the demo-

graphics of the MVP dataset diverge from those of the

United States population. Approximately 8.5% of MVP

samples are female, which is similar to the fraction of

women in the Veteran population.28 With a median age

of 68 years as opposed to 37.9 years, MVP participants

are also substantially older than the United States popula-

tion.29 However, the demographics of MVP might change

with increasing use of the VA by more recent veterans. The

proportion of female veterans is projected to continuously

grow and nearly double, to 16.5%, by 2043.28 Meanwhile,

the proportion of veterans from minority populations is

expected to increase by approximately 50% over the

same time period.28 Thus, the VA and MVP is in a unique

position for further inclusion of participants from diverse

backgrounds.

The MVP Dataset Is an Invaluable Disease Research

Resource

MVP has several unique features that make it an invalu-

able resource for researching human disease. As evidence

of the general utility of this resource, initial reports using

an earlier tranche of ~300,000 genotyped participants

have reported substantial new findings regarding the ge-

netics of blood lipids, a major cardiovascular risk fac-

tor.30 Not only is MVP ideal for studying the burden of

chronic disease, which increases with age, many of the

clinical records in its EHR span several decades, allowing

for robust longitudinal analysis. This is possible because

patients using the VA health services do not lose

coverage even after changing employers or residence.

Additionally, MVP provides an opportunity to study dis-

eases, such as PTSD and31 alcohol- and substance-abuse

disorders,32 that disproportionately affect US veterans,

as well as to study other deployment-related conditions

and their impact on human health. The MVP pheno-

types are collected in the VA EHR as part of the routine

clinical care at VA national hospitals and clinics across

the country, and clinical data spanning the past three de-

cades are available to be integrated with genomic data on

demand. A list of prevalent disease phenotypes surveyed

from raw International Classification of Diseases (ICD)

diagnostic codes in the VA EHR are provided in Table

S9. Although ethnically diverse, the MVP cohort is not

a true representation of the US general population, given

the underrepresentation of women and requirements for

military service. For instance, early-onset disease pheno-

types (e.g., Mendelian diseases with large effect sizes)

that might limit military service are underrepresented.
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In conclusion, the high-quality genotype data generated

with the MVP 1.0 array provides a valuable resource for re-

searchers investigating the effect of both rare and common

genetic variants within MVP. These quality-controlled ge-

notype data as well as the results from genetic ancestry

and relatedness analyses are made available to all approved

researchers. MVP intends to make coded data available in a

secure data and computing environment after periodic

requests for proposals, where the data use intent and prov-

enance will be clearly verified in accordance with the

participant consent and MVP policies. The genotype data

can be linked to participants’ full EHR, often covering de-

cades of care provided by the VA. MVP is a continuously

expanding research cohort made available by participants

with diverse backgrounds and altruistic intentions to sup-

port research that will benefit their fellow veterans and

others.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.03.004.
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Figure S1. Comparison of MVP 1.0 markers to those in other databases. The distribution of 
MVP 1.0 Array markers by their functional annotation and whether they overlap with existing 
genetic variation databases, the 1000 Genomes Project and the ExAC database. 



 
Figure S2. MVP 1.0 Array marker overlap with databases of functional and disease-related 
variants. Distribution of markers overlapping with (A) the NHGRI-EBI GWAS catalog; (B) the 
ClinVar database (2017 December release); and (C) the ExAC database by MAF bins and 
ancestral population groups. MAFs and ancestral population definitions were extracted for (A) 
and (B) from the 1000 Genomes Project and for (C) from the ExAC database. Common variants 
are markers with MAF ≥ 5%; low-frequency variants are markers with 1% ≤ MAF < 5%; rare 
variants are markers with MAF < 1%; and monomorphic variants are markers with MAF = 0%. 
(EUR: European, NFE: Non-Finnish European, AFR: African, EAS: East Asian, SAS: South Asian, 
AMR: Admixed American) 



 

 

Figure S3. The overall genotyping quality control and MVP data analysis procedure. 
Overview of the steps of the genotype calling, quality control, data exploration, and final validation 
processes for the MVP dataset.  



 



Figure S4. Batch variation correction. (A) Example of a mis-clustered probeset in a batch 
detected using Fisher’s Exact Test. (B) The GWAS experimental design used to detect batch 
effects across releases. Release A samples were designated “Controls,” and Release B samples 
were designated “Cases.” (C) Filters introduced in addition to Fisher’s Exact Test, and the number 
of batch-SNP combinations removed and significant GWAS associations remaining after each 
step. (D) Manhattan plot showing 204 significant associations before batch correction. (E) 
Manhattan plot showing 48 remaining significant associations after application of batch correction 
procedure. 



 

 

Figure S5. Axiom® genotyping DQC, sample QC call rate and sample call rate metrics. 
Metrics were reported directly from vendors, and distributions for each metric are for all samples 
genotyped before sample QC filtering. (A) Density curves of the distributions of the dish QC (DQC) 
metric by genotyping vendor. (B) Density curves of the distribution of sample QC call rate by 
genotyping vendor. Sample QC call rate is referred to as Step 1 call rate in the Axiom® 
Genotyping Solution Data Analysis Guide. (C) Density curves of the distribution of the sample call 
rate over all MVP 1.0 array probesets by genotyping vendor after re-batching and recalling 
genotypes at the VA. Sample call rate is referred to as Step 2 call rate in the Axiom® Genotyping 
Solution Data Analysis Guide. (D) Density plot of sample QC call rate against the DQC metric 
before sample quality control filtering. Color density is scaled by the log of the number of samples, 
with red indicating higher density and blue indicating lower density. 



 



Figure S6. Assessments of sample and marker missingness. (A) Sample non-missingness 
(i.e. 1 – missingness) for each batch. The X-axis conains identifiers for genotyping batches in 
sequential time order. (B) Percent marker missingness startified by MAF bin. (C) Minor allele 
discordance by MAF bin. 

 

 



 

Figure S7. Sample and marker concordance. (A) Sample concordance over the marker set 
after the advanced marker QC procedure for pairs of positive controls and pairs of intentional 
duplicates genotyped both within and between vendors. Positive controls are only from Vendor 2, 
since Vendor 1 did not include positive controls on genotyped plates. Distributions are shown for 
a randomly selected 5,000 pairs for each category. (B-D) Marker concordance for (B) all markers, 
(C) common (MAF ≥ 5%) markers, and D) low-frequency (MAF < 5%) markers between positive 
control samples and the consensus positive control genotyping sequence, grouped by batch. 
Batches are ordered by time. 

 



 

Figure S8. Genetic ancestry analysis of the MVP cohort using ADMIXTURE. (A) Distribution 
of British in England and Scotland (GBR) proportion in all MVP individuals. Individuals with more 
than 0.9 GBR proportion were defined as European American. (B) Kernel density estimates of 
Yoruba in Ibadan, Nigeria (YRI) and GBR proportion within individuals with less than 0.9 GBR 
proportion (i.e. non-European individuals). Individuals with more than 0.6 YRI and less than 0.4 
GBR proportion were defined as African American. (C) Distribution of ADMIXTURE proportions 
for each of the five 1000 Genomes Project reference populations, sorted by average fraction, 
across all MVP samples. Reference population abbreviations: British in England and Scotland 



(GBR); Yoruba in Ibadan, Nigeria (YRI); Peruvians from Lima, Peru (PEL); Han Chinese in 
Beijing, China (CHB); and Luhya in Webuye, Kenya (LWK). 



 



Figure S9. Ancestry Principal Component Analysis (PCA) of the MVP Cohort. Colors represent 
genetic ancestry subgroups as defined by ADMIXTURE analysis. (A) Principal components (PCs) 1 and 
2 of the MVP cohort mimic patterns seen in PCA of the 1000 Genomes Project population. (B) PC3 splits 
samples aligning with the East Asian reference population (MVP_CHB) from the Native American 
reference population (MVP_PEL). (C) PC 6 reveals a separate cluster of samples with European 
Ancestry (MVP_GBR) that splits out distinctively from the main cluster of samples in this subgroup. (D) 
PC 7 reveals substantial diversity in the MVP_CHB subgroup, whereas PC 8 separates MVP_GBR 
participants from those with admixture from three or more global reference populations (MVP_OTHER). 
PC 8 also reveals substantial diversity within participants admixed between European and American 
ancestries (MVP_GBR_PEL). (E) PC 10 reveals a gradient between MVP_GBR and MVP_PEL samples, 
with MVP_GBR_PEL samples lying between the two clusters.  

 

 

 

 

 

 

  

 



 

Figure S10. Analysis of relatedness in the MVP cohort using KING. (A-B) Number of related individuals per person in (A) round 1 
of KING and (B) round 2. (C) Distribution of cluster size of 3rd degree-related individuals after round 2 of KING analysis. The two large 
clusters of related individuals are denoted as cluster200 and cluster1000. (D) Cluster membership of all individuals with more than 15 
3rd degree relatives. 



 

Figure S11. Race breakdown in the full MVP cohort (A) compared to breakdown in 
Cluster200 (B) and Cluster1000 (C). Pie charts show proportion of self-identified race in 
each group. 



Table S1. Breakdown of MVP 1.0 Array markers by chromosome region. 

 Region Number of markers 

Mitochondrial chromosome 270 

Non-pseudoautosomal Y chromosome 142 

Pseudoautosomal X and Y chromosome 1,139 

Non-pseudoautosomal X chromosome 18,026 

Autosomal 667,105 



 
 

Table S2. Comparison of PLINK-predicted sample gender to EHR-recorded sample 
gender. 
 

Recorded gender / Result Unknown Male Female OK Mismatch 
Unknown 10 1,646 344 0 2,000 

Male 292 440,653 753 440,653 1,045 
Female 608 420 41,130 41,130 1,028 
Total 910 442,719 42,227 481,783 4,073 



 
 

Table S3. The top ten ACMG recommended genes for reporting incidental findings, and 
the number of overlapping MVP 1.0 Array markers. 

Disease Gene Number of markers on the MVP 
1.0 arraya 

Breast-ovarian cancer: familial 2 (MIM 
612555) BRCA2 662 

Breast-ovarian cancer: familial 1 (MIM 
604370) BRCA1 541 

Marfan's syndrome (MIM 154700) FBN1 176 

Dilated cardiomyopathy 1A (MIM 115200) MYBPC3 120 

Familial hypertrophic cardiomyopathy 4 
(MIM 115197) 

MYBPC3 120 

Familial hypertrophic cardiomyopathy 1 
(MIM 192600) MYH7 101 

Brugada syndrome 1 (MIM 601144) SCN5A 77 

Long QT syndrome 3 (MIM 603830) SCN5A 77 

Juvenile polyposis syndrome (MIM 174900) SMAD4 66 

Dilated cardiomyopathy 1A (MIM 115200) LMNA 60 

a We only included markers located in coding or regulatory regions having ClinVar annotation as 
either pathogenic or likely pathogenic. 

 

 

 

 

 

 

  

 



 
 

Table S4. The top 10 disease categories by number of markers shared between the MVP 
1.0 Array and the gene-disease associations reported in DisGeNET. 

 

 
Disease Number of 

markers Example diseases 

Congenital, Hereditary, 
and Neonatal Diseases 

and Abnormalities 
6,048 

Charcot-Marie-Tooth Disease, 
Hemophilia A, Hereditary Breast 
and Ovarian Cancer Syndrome 

Nutritional and Metabolic 
Diseases 4,223 Diabetes Mellitus, 

Hyperlipidemia, Obesity 

Nervous System 
Diseases 3,994 Alzheimer's Disease, Common 

Migraine, Multiple Sclerosis 

Cardiovascular Diseases 3,211 
Abdominal Aortic Aneurysm, 

Coronary Heart Disease, 
Hypertensive Disease 

Neoplasms 3,087 Adenocarcinoma, Leukemia, 
Osteosarcoma 

Skin and Connective 
Tissue Diseases 2,566 Psoriasis, Rheumatoid Arthritis, 

Lupus Erythematosus 

Immune System 
Diseases 2,260 Asthma, Hay Fever, Rheumatoid 

Arthritis 

Pathological Conditions, 
Signs and Symptoms 2,251 Chronic pain, motion sickness, 

seizures 

Digestive System 
Diseases 1,999 Crohn’s Disease, Inflammatory 

Bowel Disease, Esophagitis 

Endocrine System 
Diseases 1,985 Hypothyroidism, Adrenal Cortical 

Adenoma, Dwarfism 



 
 

Table S5. The Distribution of MVP 1.0 Markers by Minor Allele Frequency, Functional 
Annotation, and Ancestral Group as Extracted from the ExAC Database.  
 

ExAC MAF Frameshift Stop 
gain/loss 

Splice 
site Missense Ins/Del 

NFE 

MAF ≥ 5% 28 128 683 15,018 26 
5% > MAF ≥ 1% 24 110 246 9,288 8 
1% > MAF > 0% 1,533 10,805 4,260 138,093 94 
MAF = 0% 2,344 8,314 2,554 39,190 77 

AFR 

MAF ≥ 5% 522 2,670 1,296 33,791 40 
5% > MAF ≥ 1% 37 230 522 19,664 21 
1% > MAF > 0% 718 3,442 2,750 87,686 64 
MAF = 0% 2,619 13,014 3,175 60,445 80 

EAS 

MAF ≥ 5% 27 118 592 14,058 22 
5% > MAF ≥ 1% 24 79 174 6,453 5 
1% > MAF > 0% 915 4,304 1,662 35,304 47 
MAF = 0% 2,929 14,855 5,315 145,766 131 

SAS 

MAF ≥ 5% 32 127 650 14,934 23 
5% > MAF ≥ 1% 13 92 232 7,279 9 
1% > MAF > 0% 605 4,394 2,272 69,268 38 
MAF = 0% 3,243 14,744 4,589 110,103 135 

AMR 

MAF ≥ 5% 29 131 633 14,932 23 
5% > MAF ≥ 1% 22 74 263 8,090 11 
1% > MAF > 0% 401 2,907 2,490 101,308 84 
MAF = 0% 3,443 16,244 4,357 77,243 87 

Not in ExAC 4,513 5,091 680 10,985 168 
 



 
 

Table S6. MVP 1.0 Array markers categorized by PolyPhen and SIFT score categories 
based on predicted protein sequence changes. 

 

 

aPolyPhen and SIFT scores and categories were obtained from the Ensemble Variant Effect 
Predictor. 

 

 

  

¾ 

SIFTa 

deleterious 
deleterious 

Low 
confidence 

tolerated 
tolerated  

low 
confidence 

PolyPhena 

probably_damaging 47,954 3,005 12,447 716 
possibly_damaging 14,107 1,778 14,576 1,160 

benign 13,355 2,043 74,197 7,950 
unknown 752 612 1221 798 



 
 

 

Table S7. MVP 1.0 array imputation accuracy for the five 1000 Genomes Project Phase 3 
continental populations.  

¾ 1% <MAF <5% MAF ≥ 5% 

Population 
Number of 
imputed 
markers 

Accuracy 
(mean.r2) 

Number of 
imputed 
markers 

Accuracy 
(mean.r2) 

EUR 2,902,508 0.777 7,244,340 0.931 
AFR 7,339,754 0.767 10,097,459 0.874 
EAS 2,297,176 0.656 6,693,655 0.890 
SAS 3,190,047 0.710 7,437,310 0.904 
AMR 4,140,903 0.824 7,464,928 0.925 



 
 

Table S8. Breakdown and number of closely related pairs in the MVP Cohort and UK 
Biobank.  

¾ MVP UK Biobank 
Total sample size 459,777  488,410 

Total pairs (billions) 105.70  119.27 
Trios 28 1,066 

Monozygotic twins 49 179 
Parent-child 2,886 6,276 
Full sibling 5,330 22,666 

2nd or 3rd degree 9,055 78,041 

 
  



 
 

Table S9. Thirty of the top ICD diagnostic code names, by prevalence in MVP, available in 
the VA EHR database. Code names are listed in alphabetical order. 

Top ICD diagnostic code names 
Acute kidney failure and chronic kidney disease (CKD) 
Anemias 
Benign neoplasms 
Dermatophytosis 
Diabetes mellitus 
Diseases of esophagus, stomach and duodenum 
Disorders of lipoid metabolism 
Diseases of male genital organs 
Diseases of oral cavity and salivary glands 
Diseases of the ear and mastoid process 
Diseases of the musculoskeletal system and connective tissue 
Diseases of the nervous system 
Diseases of the respiratory system 
Diseases of the skin and subcutaneous tissue 
Disorders of fluid electrolyte and acid-base balance 
Disorders of the eye and adnexa 
Disorders of thyroid gland 
Diverticula of intestine 
Hemorrhoids 
Hypertension and heart disease 
Hypotension 
Malignant neoplasm of prostate 
Mental, behavioral, and neurodevelopmental disorders 
Metabolic disorders 
Organic sleep disorders 
Other dermatoses 
Other diseases of intestines and peritoneum 
Other disorders of urethra and urinary tract 
Overweight, obesity and other hyperalimentation 
Vitamin D deficiency 

 



 
 

Supplemental Materials and Methods 

Axiom Array Terminology  

Here, we first define terms used in standard marker quality control. A marker refers to a 
genetic variation at a specific genomic location in the DNA of a sample. Both single nucleotide 
polymorphisms (SNPs) and insertion/deletions (indels) are markers and are genotyped. A set of 
one or more probe sequences from which array intensities are combined to interrogate a marker 
is referred to as a probeset. Most Axiom® markers are interrogated with one or two probesets 
derived from the forward strand sequence, the reverse strand sequence, or both.  

Thermo Fisher Scientific Axiom® Genotyping Platform 

The MVP 1.0 array is based on the Applied Biosystems Axiom® Biobank core variants. 
The Axiom® Biobank array modules (A-F1) include: 

(1) Genome-wide coverage for common European variants (N= 246,038; Module “High 
coverage imputation grid”): Markers were selected using Affymetrix imputation aware 
marker choice algorithms to provide genome-wide coverage in European populations 
of common (MAF ≥ 5%) markers using the CEU panel from 1000 Genomes Project. 

(2) Loss-of-function (LoF) SNPs and indels (N= 70,396; Module “High confidence LoF 
SNPs and Indels”): Markers with a high-confidence loss of function call, possible 
splice-site impact, or representing known, disease-associated mutations. Markers are 
extracted from an exome sequencing initiative of 26,000 people. This category of 
markers also includes known disease-causing mutations and potential splice variants 
from Human Gene Mutation Database (HGMD). 

(3) Exome SNPs and indels (N= 264,193; Module “Exome Grid”): Non-synonymous 
coding markers in exonic regions of the genome. This content was derived from the 
Exome Chip Design Consortium, the NHLBI Exome Project, the Genetics of Type 2 
Diabetes program (GoT2D), the 1000 Genomes Project, the Cancer Genome Atlas 
Project, the SardiNIA Medical Sequencing Study, the Autism Exome Sequencing 
Study, the UK10K project, and others. 

(4) Expression quantitative trait locus (N= 5,884; Module “Expression quantitative loci 
from GTEx”): Markers with known associations to RNA expression traits taken from 
NCBI Genotype-Tissue Expression (GTEx) database.  

(5) Pharmacogenomic/ADME (N= 2,031; Module “Pharmacogenetics”): Markers 
associated with phases of drug absorption, distribution, metabolism, and excretion 
(ADME). This content was derived from the PharmaADME and PharmGKB databases. 
The content is enriched for markers in Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guidelines and those used in calling “star alleles” variants of genes 
that affect drug metabolism. 

(6)  ApoE (N=2, not shown) The two SNPs, rs429358 and rs7412, which define the ApoE 
isoforms known to be associated with risk of Alzheimer’s disease and lipoprotein-
associated conditions.  

 
MVP-Specific Modules 

(1) SNPs and indels based on known associations with diseases or traits of interest 
(N=21,627; module “Other diseases associated and exome markers”). Over 800 
potential clinical conditions and 3,400 gene regions are covered by this module with 



 
 

an emphasis on conditions of high prevalence in US Veterans such as substance 
abuse1, amyotrophic lateral sclerosis (ALS [MIM: 105400]) 2, chronic obstructive 
pulmonary disease (COPD [MIM: 606963])3, and diabetes4. Additionally, we included 
the 59 genes currently recommended for reporting of incidental findings by the 
American College of Medical Genetics and Genomics (ACMG)5,6 in anticipation of 
future clinical applications. 

(2) Human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptor (KIR) 
region markers for fine mapping and imputation (N=8,058; module “Markers within 
genomic regions of interest”). Genes in the HLA region are critical players in immune 
function, and some have known roles in histocompatibility7,8. We also included 
additional KIR markers that have an important role in infectious disease, autoimmune 
disorders, cancer, and reproduction by virtue of the region’s interaction with the HLA 
region. Furthermore, to optimize coverage and improve imputation quality in non-
European ancestry populations, we also included additional HLA and KIR markers in 
multiple ethnicities, including African ancestry (N= 1,043; Module “HLA imputation 
booster for non-Caucasian cohorts”). 

(3) Psychiatric condition-associated markers (N=26,928, module “Psychiatric relevant 
markers”). 11-20% of US military personnel who served in Operations Iraqi Freedom 
and Enduring Freedom are estimated to have diagnosed or undiagnosed post-
traumatic stress disorder (PTSD)9. The lifetime prevalence of PTSD among Vietnam 
Veterans, who form the largest subset of the MVP cohort, is 15-20%10. To study 
genetic factors that affect the development of mental illness and the functional 
disability and cognitive impairment that accompany these conditions, we included 
additional markers extracted from the Psychiatric Genomics Consortium11 (personal 
communications with PGC group leaders) that have been linked with common 
psychiatric disorders such as schizophrenia (MIM: 181500), bipolar disorder (MIM: 
125480), autism spectrum disorders (MIM: 209850), attention deficit hyperactivity 
disorder (MIM: 143465), major depressive disorder (MIM: 608516), obsessive 
compulsive disorder (MIM: 164230), anorexia (MIM: 606788), and Tourette syndrome 
(MIM: 137580). Many of these variants are rare for some ethnicities and have minor 
allele frequency (MAF) < 1%. 

(4) Candidate genes associated with rheumatoid arthritis (MIM: 180300) (N=11,144; 
module “Rheumatoid Arthritis relevant markers”). Markers include a) rheumatoid 
arthritis-associated SNPs outside of the MHC region12,13,14 (personal communications); 
b) SNPs with minor allele count (MAC) > 2 found in genes in rheumatoid arthritis risk 
loci in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing 
Project (ESP) data (European ancestry cohort); and c) SNPs in the 1000 Genomes 
Project European population that overlap with the rheumatoid arthritis risk loci having 
MAF > 1% after linkage disequilibrium pruning to remove SNPs with r2 >0.8. 

(5) Genome-wide imputation booster for African ancestry population (N=50,000; module 
“Imputation booster”). The MVP population contains multi-ethnic groups, and African 
Americans comprise the second largest self-reported ethnic group in the MVP. To 
optimize the coverage of African genetic ancestry, an additional set of markers were 
tiled on the MVP array to boost corresponding imputation coverage. Markers were 
selected using Axiom® imputation aware marker choice algorithms15 and the YRI 
panel from the 1000 Genomes Project to provide genome-wide coverage in African 
populations of common (MAF ≥ 5%) markers.  

 

 



 
 

Overlap with databases of functional and disease-related variants 

The MVP 1.0 array was designed to increase coverage of known functional and disease- 
or trait-associated variants across the genomes of diverse populations. To evaluate this coverage, 
we aimed to check the coverage of MVP 1.0 markers with markers from various data sources 
cataloging potential functional variants in multiple populations that were not considered during the 
design of the chip: the NHGRI-EBI GWAS catalog16,17, ClinVar 18; the Exome Aggregation 
Consortium (ExAC)19,20; and DisGeNET, which also contains the genes in the ACMG guideline 
recommendations for reporting incidental findings and gene-disease associations5,6. Markers in 
the MVP 1.0 chip overlapped with 7,199 variants in the GWAS catalog v1.016, 31,067 in ClinVar18, 
and 294,092 in ExAC r.0.3.120. As expected by the number of GWAS hits in the GWAS catalog, 
the top five diseases associated with variants shared between MVP 1.0 and the GWAS catalog 
are schizophrenia, rheumatoid arthritis, Crohn disease, type 2 diabetes, and systemic lupus 
erythematosus, and the top five biological traits are height, BMI, HDL, cholesterol, LDL 
cholesterol, and triglycerides. Furthermore, around half of the variants shared between MVP 1.0 
and ClinVar (17,124 of 31,067) are classified by ClinVar as pathogenic or likely pathogenic and 
have low allele frequency in all ancestral groups.  

Additionally, MVP 1.0 contains markers overlapping with pathogenic variants residing in 
all 59 ACMG genes5,6. The top ten ACMG genes and the corresponding number of MVP 1.0 
markers are listed in Table S3. DisGeNET also contains one of the largest publicly available 
collections of genes and variants associated with human diseases21, and the MVP 1.0 array 
contains 6,048 DisGeNET markers associated with congenital, hereditary, and neonatal diseases 
and abnormalities, which represents the largest overlapping disease category. The top ten 
DisGeNET categories and the corresponding number of MVP 1.0 markers are listed in Table S4. 

Variants in the ExAC database predicted to have severe consequences (e.g. missense, 
frameshift, stop-gain, start-loss variants) were highly enriched in the rare and low frequency MAF 
ranges (Table S5). Furthermore, in addition to containing markers for variants observed in the 
1000 Genomes Project and ExAC database, the Axiom Biobank Genotyping Array backbone has 
many variants not found in these databases. For example, more than half of the frame shift 
variants and one-third of the insertion or deletion variants were absent from these databases 
(Figure S1). We also examined MVP 1.0 nonsynonymous single nucleotide variants (nsSNVs) in 
detail by implementing functional annotation using the Ensembl Variant Effect Predictor (VEP), 
release 8622. 66,790 coding variants were predicted as deleterious by both PolyPhen23 and Sift24 
(Table S6), and 16,598 non-coding variants were annotated as regulatory variants. 

Finally, we examined the allele frequency distribution of variants on the MVP 1.0 chip to 
assess its coverage across ancestral population groups. Allele frequencies of variants in the 
GWAS catalog and ClinVar were assessed using 1000 Genomes, whereas ExAC variant 
frequencies were used directly. Four MAF categories were defined as: common variants (MAF ≥ 
5%), low-frequency variants (MAF 1-5%), rare variants (MAF < 1%), and monomorphic variants 
(MAF = 0%). In general, markers in the MVP 1.0 chip showed similar distribution of MAFs across 
all ancestral groups in all subsets (Figure S2). As expected, most markers in the MVP 1.0 chip 
that overlaps NHGRI-EBI GWAS catalog variants were common (MAF ≥ 5%, Figure S2A), 
whereas markers that overlap ClinVar variants were mostly uncommon (MAF < 5%, Figure S2B). 
On the other hand, although the proportion of common variants in ExAC was fairly consistent 
across ancestral groups, the proportion of less common ones showed greater variability (Figure 
S2C).  

 



 
 

Assessing imputation accuracy of the MVP v1 chip   

Imputation was executed using IMPUTE29 and the 1000 Genomes Phase 3 reference 
panel10. To assess imputation accuracy, we performed ten-fold cross-validation, which 
corresponds to a sub-sample of the participants in each of the five populations. The 1000 
Genomes Phase 3 genotypes of the held-out samples for the markers on the MVP 1.0 array were 
used to impute the genotypes of the markers in the modified reference panel. The accuracy of 
imputed variants was calculated as the squared Pearson correlation coefficient (r2) between 
imputed genotype dosages (0–2) and the genotypes from the 1000 Genomes Phase 3 release 
(0,1,2). The results were stratified into two non-overlapping minor allele frequency (MAF) bins 
MAF ≥ 5% and 1% < MAF < 5%, and accuracy was summarized as the mean r2 over the marker 
count in the MAF bin. 

In addition to the aim of increasing coverage of functional variants, the MVP 1.0 array was 
designed to maximize imputation performance for GWAS studies. We analyzed imputation 
performance of the array on 1000 Genomes Project data by performing cross-validation with 10% 
of the samples at a time. We report the accuracy of imputed variants across two MAF bins in 
terms of the squared Pearson correlation coefficient (r2) between imputed genotype dosages (0-
2) and the genotypes from the 1000 Genomes Project Phase III release (0, 1, 2) (discussed in 
Materials and Methods.) (Table S7). For example, the mean r2 for the EUR group is 0.931 in 
common variants and 0.777 in low frequency variants. Among the five ancestry groups, imputation 
of common variants was most accurate for the EUR population, while imputation of less common 
variants was most accurate for the AMR population. The high accuracy of imputation of less 
common variants in the AMR population reflects the admixture from European, African, and 
Native American ancestries, two of which were already included in the 1000 Genomes Project. 

Vendor quality control (QC) 

Two vendors, referred to as Vendor 1 and Vendor 2, performed initial genotyping of MVP 
samples for internal QC purposes. The vendors genotyped all MVP samples on the custom MVP 
1.0 array. To batch samples in preparation for genotype calling, the vendors grouped 
approximately 5,000 samples into each batch and used either the Axiom® Analysis Suite 
(Windows graphical user interface) or Affymetrix® Power Tools (APT, command line software) to 
execute the AxiomGT1 genotyping algorithm. Vendor 1 called genotypes with the Axiom® 
Analysis Suite versions 1.15, 1.16, 2.3, and 2.4. Vendor 2 called genotypes with the APT software 
and used versions 1.15.1 and 1.16.1. Both the Axiom® Analysis Suite and the APT software call 
genotypes in each batch independently of other batches. 

The vendors followed the Axiom® Best Practices to filter the data for QC purposes25 and 
so reprocessed samples with dish QC (DQC) values less than 0.82 or sample QC call rate less 
than 97%. Whereas Vendor 2 used a threshold of 97% to filter samples in all batches for re-
genotyping, Vendor 1 began with a threshold of 97% but switched to a 98% threshold after 
genotyping several batches to increase genotyping quality. This is the reason why Vendor 1’s QC 
call rate is consistently higher than that of Vendor 2 even after re-batching and re-genotyping on 
the full cohort (Figure S5 A-C). Only samples that pass internal vendor QC were sent to the VA. 

The vendors also investigated plates with the plate QC metric (average QC call rate of 
passing samples over the plate) lower than 98.5% to identify any systematic row or column failure 
and removed these plates if found. Since both vendors re-processed failed samples immediately 
after performing the Best Practices analyses and did not always return the failed samples in the 



 
 

delivered data, we relied on the vendors' reports for the plate QC, sample DQC, and QC call rate 
values.  

Genotype calling on the MVP cohort 

All samples that passed vendor QC were then re-batched and recalled internally at the VA 
under a unified workflow. After comparing vendor and multiple additional batching strategies, we 
separated MVP samples by vendor and then batched samples in groups of 4,000 to 5,000 
samples by each sample’s plate scan date. We incorporated samples into each batch at the unit 
of a plate so that all samples on one plate would be within the same batch. Since experimental 
metadata captured in CEL files (Axiom® files that report the array intensity data) is considered 
the most reliable, we extracted the plate scan date from the CEL file header by using an APT 
program called calvin-extract. After batching samples, we had 112 batches with a median of 4,500 
samples. Then, we called genotypes in each batch with the APT software, version 1.18, following 
the Axiom® Best Practices Genotyping workflow25.  

Initial QC 

To provide an initial assessment of MVP sample genotyping quality, we analyzed several 
QC metrics in detail:  

1) The DQC metric is an approximate measure of contrast between genotyping channels 
at non-polymorphic genomic locations25. Because the DQC metric is calculated only 
on non-polymorphic probesets, this metric assesses the signal to background noise 
ratio for each channel and should be close to 1 for high-quality samples.  

2) We also analyzed QC call rates (call rates computed over a set of 20K QC probesets, 
also referred to as step 1 call rate) and sample call rates over all probesets (also 
referred to as step 2 call rate) by batch for all samples. The sample call rate is similar 
except it is calculated on genotype calls over all probesets in a second round of calling 
after samples that failed the QC call rate threshold were removed.  

3) The final metric, sample missingness, is the fraction of genotype calls which are 
missing per individual after the advanced marker QC procedure over the number of 
markers that are called in at least one individual in the sample. The sample 
missingness is an indicator of sample genotype call completeness after the conclusion 
of all QC procedures. 

Standard marker quality control 

Standard marker quality control is executed by the Axiom® Best Practices Genotyping 
workflow. This workflow executes rules to select a best probeset for markers that are interrogated 
with more than one probeset, which is followed by the sorting of probesets into four recommended 
and three not-recommended SNP QC classes. Three recommended classes require probesets 
to produce well-resolved genotype clusters for probesets with three (the PolyHighResolution 
class), two (the No Minor Homozygous class), or one (the Mono High Resolution class) genotype 
clusters in the given batch (see the Axiom® Genotyping Solution Data Analysis Guide). The fourth 
recommended class is “Hemizygous” for Y chromosome and mitochondrial markers. The best 
practices guideline is to only use genotype calls from a given batch for marker probesets that are 
both best and recommended.   



 
 

Advanced Marker Quality Control Procedure for the MVP 1.0 array 

Approach 1: Exclude probesets that fail Advanced QC tests 
The goal of the Advanced QC tests is to identify probesets that systematically 

underperform in most batches or that are interrogating multi-allelic markers. Such probesets were 
identified in five ways: (1) probesets for multi-allelic markers; (2) probesets with higher than 
expected variance in allele frequency between batches; (3) probesets that failed to cluster into 
recommended classes in a large fraction of batches; (4) probesets with large differences in allele 
frequency when compared to reference datasets; and (5) mitochondrial or Y chromosome 
probesets that fail visual inspection of their cluster plots. 

Approach 1.1: Probesets for multi-allelic markers 
Because the current AxiomGT1 genotyping algorithm only calls the three genotypes for 

bi-allelic markers, probesets for multi-allelic markers, which have a minimum of six genotypes, 
are excluded. Only 0.22% of probesets interrogate multi-allelic markers. 

Approach 1.2: Probesets with inconsistent allele frequencies across batches  
Probesets exhibiting larger than expected variance in allele frequency across genotyping 

batches could indicate genotype calling issues. We used a statistic called the ratio A allele 
frequency (RatioAAF) to measure the stability of a probeset’s allele frequency across batches26. 
The RatioAAF is defined as the expected allele frequency variance over the observed allele 
frequency variance: 

 

where P is a vector consisting of the marker allele frequencies across all recommended batches 
and p’ is the average allele frequency across all recommended batches. A larger RatioAAF 
indicates a more stable allele frequency. Overall, 3.41% probesets have RatioAAF less than 1,000 
when computed over recommended batches. These probesets are often recommended in 
individual batches but produce inconsistent allele frequencies when measured over multiple 
batches. Visual inspection of a sampling of cluster plots of low RatioAAF probesets confirms that 
such probesets produce poor genotype clusters. 

Approach 1.3: Probesets that are recommended in few batches 
Probesets that are not often classified into one of the four recommended categories 

(discussed above) over most batches are typically genotyping poorly. Visual inspection of cluster 
plots for probesets recommended in less than 20 batches out of 112 confirms that such probesets 
produce poor genotype clusters and suggests that probesets recommended in only a few batches 
are fundamentally not working. 2.68% of probesets were eliminated by this filter. 

Approach 1.4: Probesets with allele frequencies diverging from those in reference datasets 
A small fraction of probesets demonstrate large discrepancies in reference allele 

frequency between the MVP dataset and the 1000 Genomes Project, phase 1 CEU reference 
population. Such probesets were identified with the following thresholds on the reference allele 
frequencies: (MVP < 0.02 AND CEU ≥ 0.5) OR (MVP > 0.98 AND CEU ≤ 0.5). Allele frequency 
thresholds were set more stringently for the MVP samples because of the larger sample size. 
Only 0.82% of probesets were excluded by these criteria. 
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Approach 1.5: Probesets on the mitochondrial or Y chromosome that fail visual inspection 
We conducted a manual review of cluster plots for probesets on the mitochondrial and Y 

chromosomes as recommended by the Best Practices for these hemizygous markers. Only a 
small fraction of probesets (0.01%) were excluded by this filter. 

Approach 2: Exclude calls from a mis-clustering event by batch 
After removing probesets that were fundamentally not working over all genotyping 

batches, we then turned to a batch level metric of performance. If a probeset was generally 
working but not one of the four recommended classes in a particular batch, the calls for that 
probeset in that batch were set to missing. In this way, we retained working probesets while 
removing calls in sporadic problematic batches. 

Approach 3: Select one probeset per marker over all batches 
There are 36,601 markers that are interrogated by more than one probeset on the MVP 

array. For markers that are interrogated by more than one probeset, the Axiom® Best Practices 
Workflow designates only one probeset as the best probeset per batch based on twelve 
performance metrics calculated as a part of the genotype calling procedure. However, the 
probeset that is designated as the best probeset can be different in different batches. We used 
five metrics to determine the best probeset per marker over all batches. These five metrics 
included the number of batches in which the probeset succeeded, the number of batches in which 
the probeset was marked best, the number of batches in which the probeset was classified as 
Poly High Resolution, the average probeset call rate over all batches, and the average Fisher 
Linear Discriminate (FLD) over all batches. We compared each probeset’s value for each of these 
metrics sequentially and selected the first probeset that had a higher value for one of the metrics. 
If all probesets for a marker were equivalent for all five metrics, we selected the first probeset in 
alphanumeric order. 

Correction of batch variation 

Individuals in subsequent tranches (Release A and Release B) were randomly sampled 
from the same population and similarly processed. Therefore, we hypothesized no common 
genetic variants were significantly associated with assignment to release. We tested this 
hypothesis by conducting a preliminary GWAS. We restricted the GWAS to samples with 
European ancestry (GBR >= 0.9 in ADMIXTURE). We used genotypes called from both tranches 
combined and assigned samples to pseudo-control and case groups according to their Release 
tranches. Specifically, we assigned Release A samples to the control group (n=238,229) and 
Release B samples to the case group (n=73,153) as shown in Figure S4B. We ran the association 
using only common markers (MAF > .05) and used the first 10 principal components (projected 
to 1000 Genomes Project principal components) as covariates and a linear-mixed model 
association in BOLT-LMM, which adjusts for cryptic relatedness. 

We found 204 significant (p ≤ 5 x 10-8) genome-wide independent signals (Figure S4D). 
The signals were single variant associations without local LD structure based on manual 
inspection of locuszoom plots27, suggesting batch effects. We subsequently ran an association 
adjusting for batch membership as a categorical variable (n = 112) and found only one genome-
wide significant hit (in the HLA region). We also ran an association randomly assigning each 
individual to case or control and observed no significant associations. 

For each variant that was genotyped, we then used Fisher’s Exact Test to identify batches 
in which allele distributions significantly differed from that of all other batches. This tests the null 
hypothesis that a given batch has the same genotype frequencies as all other batches combined. 



 
 

We compared distribution of allele frequencies across batch-SNP combinations (~60 million) with 
significant deviance defined as p < 6.7 x 10-10 (i.e., 0.05/batch-SNP combinations). 173 of the 204 
genome-wide significant SNPs from the Bolt-LMM GWAS failed the Fisher’s Exact Test. An 
example of a SNP-batch combination that was detected by the Fisher’s Exact Test is shown in 
Figure S4A. We then set all failing SNP-batch combinations to ‘no-call’ (approximately ~50,000 
of ~60,000,000 batch-SNP combinations) and re-ran the Bolt-LMM GWAS as above, this time 
finding 73 significant independent signals. 

We then investigated the remaining 73 significant hits by examination of genotype cluster 
plots. We identified certain patterns for which Fisher’s Test would fail and came up with a series 
of additional batch correction rules. For probes that fail Fisher’s Test in at least one batch:  

1) If the RatioAAF is less than 1,000, then exclude all batches for the probeset.  
2) If the batches with passing probesets all have fewer clusters than the batches with 

failing probesets, then switch the pass/fail assignment.  
3) If the batch has a call rate less than 98% and FLD less than 5, then fail the batch.  
4) If a batch is classified as No Minor Homozygous and has an HWE p-value < 1x10-4, 

then fail it.  

An overview of these steps and number of SNPs identified is summarized in Figure S4C. 

After applying these additional batch correction rules, we re-ran the Bolt-LMM GWAS and 
found an overall reduction in the number of significant associations from 204 to 47 (Figure S4 D-
E). These remaining associations were unlikely to be meaningful signals based on manual visual 
inspection of locuszoom plots and were set to no-call. 

Relatedness analysis 

Even after excluding 35 individuals with more than 200 relatives, we observed two clusters 
(denoted as cluster200 and cluster1000) with more than 100 family members in our KING analysis 
(Figure S10 C-D). Interestingly, all individuals with greater than 15 3rd degree relatives are in one 
of the two clusters. Members of each cluster are tightly interconnected with each other rather than 
there being a few individuals promiscuously interacting with other members of the cluster. It is 
unlikely that these two clusters are real families, and further investigations are warranted. We also 
observe an underrepresentation of individuals self-identifying as “white” in these two clusters 
(Figure S11), suggesting the low weight SNP strategy may not have fully removed the 
overestimation of relatedness in admixed individuals. We flagged all individuals in cluster200 and 
cluster1000 and redefined a new set of unrelated individuals using the 
largest_independent_vertext_sets() function to identify the largest set of unrelated individuals to 
use in our analyses.  



 
 

 

Web Resources 
Axiom Genotyping Solution Data Analysis Guide, https://assets.thermofisher.com/TFS-
Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf 

Locuszoom, http://locuszoom.org/ 
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