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A Fast and Simple Method for Detecting Identity-
by-Descent Segments in Large-Scale Data

Ying Zhou,1 Sharon R. Browning,1 and Brian L. Browning1,2,*

Segments of identity by descent (IBD) are used in many genetic analyses. We present a method for detecting identical-by-descent haplo-

type segments in phased genotype data. Our method, called hap-IBD, combines a compressed representation of haplotype data, the po-

sitional Burrows-Wheeler transform, and multi-threaded execution to produce very fast analysis times. An attractive feature of hap-IBD

is its simplicity: the input parameters clearly and precisely define the IBD segments that are reported, so that program correctness can be

confirmed by users. We evaluate hap-IBD and four state-of-the-art IBD segment detection methods (GERMLINE, iLASH, RaPID, and

TRUFFLE) using UK Biobank chromosome 20 data and simulated sequence data. We show that hap-IBD detects IBD segments faster

and more accurately than competing methods, and that hap-IBD is the only method that can rapidly and accurately detect short 2–4

centiMorgan (cM) IBD segments in the full UK Biobank data. Analysis of 485,346 UK Biobank samples through the use of hap-IBD

with 12 computational threads detects 231.5 billion autosomal IBD segments with length R2 cM in 24.4 h.
Introduction

Segments of identity by descent (IBD) are genomic re-

gions over which a pair of individuals share a haplotype

due to inheritance from a recent common ancestor. IBD

segments are useful in a wide variety of applications

because they capture information about genetic relation-

ships between individuals. Correlation between pairwise

IBD and phenotypic similarity can be used to detect

genomic regions harboring trait-affecting variants1–6

and to estimate heritability.7–10 IBD segments are also

used to estimate kinship coefficients,11 detect close rela-

tionships,12–14 and identify fine-scale population struc-

ture.15–20

Recent demographic history can be inferred from IBD

segments.15,16,21–24 Populations with smaller effective

population size havemore IBD sharing because individuals

are more closely related on average. Short segments have a

larger time to the most recent common ancestor (TMRCA),

and thus are informative about less recent effective size,

while long segments have a smaller TMRCA and are infor-

mative about very recent effective size. Similarly, IBD

segments shared between populations are informative

about migration rates. Approximately the past 100 genera-

tions of demographic history can be inferred from IBD

segments.23

IBD segments are also useful for estimating population

genetic parameters, including mutation rates25–28 and

recombination rates,29 and for detecting regions undergo-

ing recent selection.10,20,30–32 The mutation rate is esti-

mated from the observed discordance rate in IBD haplo-

types. Recombination rate maps can be estimated using

the rate of IBD segment endpoints. Selection is detected

by looking for genomic regions with higher rates of IBD

sharing.
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There are several classes of methods for detecting IBD

segments. The first class of methods are probabilistic.

These methods include PLINK,2 Beagle IBD,33 and

others.4,10,34–39 For these methods, the unobserved IBD

status for a pair (or set) of individuals at a locus takes

two (IBD/non-IBD) or more possible states. Typically, a

hidden Markov model is used to infer the IBD state at

each marker. In the context of a pedigree, with shared

haplotypes inherited only through pedigree founders,

this IBD-state approach makes sense. However, in popu-

lation samples, the concept of ‘‘IBD state’’ is ill defined.

Two haplotypes are identical by descent if they are de-

scended from a common ancestor, which is trivially

true for all pairs of haplotypes at each position in the

genome.

The second class of methods, which includes all the

methods presented in this paper, look for long segments

of identical-by-state allele sharing either in phased or in

unphased genotype data. These identity-by-state (IBS)

methods include GERMLINE40 and others.41–44 In contrast

to most of the probabilistic methods, these methods do

not dichotomize pairwise haplotypic sharing into ‘‘IBD’’

and ‘‘non-IBD,’’ but instead dichotomize it into ‘‘long-

IBD’’ and ‘‘not-long-IBD,’’ which better fit the realities of

population-based IBD sharing. Ideally, reported IBD seg-

ments should primarily represent IBD from a single com-

mon ancestor, rather than a conflation of segments from

multiple ancestors, and this is achieved when the length

threshold is relatively long.45 A drawback to these methods

is that the handling of allelic discordances within IBD

segments tends to be ad hoc.

For IBS methods, the requirement that two individuals

share a haplotype is more stringent than the requirement

that the two individuals share at least one allele in their

genotypes across a given region. Thus, haplotype-based
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methods can detect short IBD segments (e.g 2–10 centi-

Morgan [cM] in length) with much greater accuracy than

genotype-based methods can. However, haplotype-based

methods can break up a long-IBD segment into a sequence

of shorter IBD segments if there are haplotype phasing

errors in the long-IBD segment. For some downstream

applications, after detecting IBD segments, it is necessary

to perform a merging step in order to recover the original

long-IBD haplotype. On the other hand, genotype-based

methods do not require accurately phased genotype data,

and they can detect long segments (R15 cM) with high ac-

curacy, which is sufficient for highly accurate detection of

first- and second-degree relatives.13

A third class of methods are those that combine aspects

of probabilistic modeling and length-based thresholding

on IBS. Typically, these methods detect candidate long

shared segments and then form a likelihood ratio for IBD

versus non-IBD.11,46–48 These methods tend to be more

computationally efficient than the full probabilistic

methods, but unlike some of the purely length-based IBS

methods, they cannot analyze biobank-scale datasets.

Although ‘‘identity by descent’’ implies allelic identity,

in fact, positions of discordance will be observed. Causes

of this discordance include mutation or gene conversion

since the common ancestor, and genotype error. Probabi-

listic methods allow for these discordances via an error

term in the modeling, whereas length-based methods

allow for short, infrequent gaps in allele sharing.

Genotype error rates vary greatly across datasets. Data

from two recent studies give genotype error rate estimates

of 0.008 per Mb per individual in a large SNP array study49

and 25 per Mb per individual for single-nucleotide variants

in a large sequencing study50 (with error rates estimated

as half the discordance between duplicate samples after

quality control filtering, multiplied by the average number

of called and/or assayed variants per Mb). Exclusion of rare

variants can decrease the genotype error rate,51 particularly

for sequence data.50

With increasingly large datasets, computational issues

become significant. The detection of sets of shared haplo-

types can be reduced to linear computational complexity

by means of hashing40,44 or by use of the positional Bur-

rows-Wheeler transform (PBWT).43 However, the genera-

tion of pairwise IBD segments from these sets scales

quadratically with sample size, because the number of

pairs of individuals grows quadratically with sample size.

Consequently, detecting IBD segments in biobank-scale

data is challenging. As well as computation time being

an issue, some algorithms require unfeasibly large amounts

of computer memory to analyze such datasets.

In this work, we present hap-IBD, a method which

scales to biobank-sized data, has greater accuracy than

competing methods, and is notable for the simplicity of

its algorithm and tuning parameters. Hap-IBD utilizes the

PBWT52 and parallel computation to reduce computing

time, and it uses data compression to reduce memory re-

quirements.53 It addresses the issue of allele discordance
The Ame
in IBD segments by requiring that a reported segment

have a central core (the ‘‘seed’’) that is free of discordance,

while allowing extension beyond the seed after a short gap

containing discordance. The key parameters for hap-IBD

are the minimum seed length, the minimum extension

length, the maximum gap length, and the minimum

length of reported IBD segments. These parameters directly

control which IBD segments are detected and reported.

The hap-IBD program is open-source and freely available

for academic and commercial use.
Material and Methods

The Hap-IBD Algorithm
The hap-IBD method employs a simple seed-and-extend algo-

rithm. A seed is an IBS segment with genetic length (i.e., length

in cM) greater than a specified minimum length (2 cM by default).

The hap-IBD algorithm finds all seed segments, and it extends

each seed if possible (Figure 1). A seed segment is extended if

there is another long-IBS segment for the same pair of haplotypes

that is separated from the seed segment by a short non-IBS gap.

The maximum number of base pairs between the first and last

markers in the non-IBS gap and the minimum cM length of the

extension IBS segment can be specified by the user, and these

are 1,000 base pairs and 1 cM, respectively, by default. A segment

may be extended multiple times. When it is no longer possible to

extend the segment, the segment is written to the output file if its

centiMorgan length is greater than a specified minimum output

length (2 cM by default).

Allowing short non-IBS gaps provides robustness to three sour-

ces of discordant alleles in IBD segments: genotype error, gene

conversion, and mutation since the most recent common

ancestor. Genotype error and mutation will typically introduce a

single discordant allele in an IBD segment. Gene conversion will

generally produce a very short interval containing one or a few

discordant alleles in an IBD segment. When the phasing of the

surrounding alleles is correct, the mismatching alleles on the

pair of IBD haplotypes result in two IBS segments for the same

pair of haplotypes, separated by a single marker, or at most a few

markers in the case of gene conversion. Our method allows these

breaks in IBS sharing to be detected and the IBS segments on each

side of the break to be included in the same reported IBD segment.

The maximum length is specified in base pairs rather than

centiMorgans, because breaks due to mutation or genotype error

typically involve a single marker, and breaks due to gene conver-

sion are typically less than 1,000 base pairs.54

Two or more distinct IBS seed segments can result in the same

IBD haplotype after each seed is extended. If an IBS segment

that extends the seed segment to the left is itself a valid seed

segment, we stop the extension process and discard the seed

segment that is being extended, because the same IBD haplotype

will be generated by a seed segment that occurs earlier on the

chromosome.

The hap-IBD algorithm also has an optional min-markers

parameter that requires seed IBS segments to have a minimum

number of markers. The min-markers parameter can be useful

for ensuring a minimum level of evidence for IBD in genomic re-

gions having low marker density. When a min-markers parameter

is specified, IBS segments that extend a seed are also required

to have a minimum number of markers. We set the minimum
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Figure 1. Overview of Hap-IBD Algo-
rithm
The hap-IBD algorithm first identifies a
seed identity-by-state (IBS) segment whose
genetic length exceeds the minimum seed
length. Here the seed segment is markers
6–15. The seed segment is extended to
the right because it is followed on the right
by a short non-IBS region (markers 16–17)
with base-pair length that is less than the
maximum gap length and another long

IBS segment (markers 18–23) with genetic length that exceeds the minimum extension length. The seed segment is not extended to
the left because the IBS segment to the left (markers 2–4) is shorter than the minimum extension length.
number of markers in an extension to be the product of the min-

markers parameter and the ratio of the minimum extension

length to the minimum seed length.

We first describe a single-threaded implementation of the

preceding algorithm and then describe how the single-threaded

implementation is modified to permit parallel computation.
Computationally Efficient Detection of Seed Segments
After the genotype data for a chromosome are read into memory,

we apply the PBWT.52 The PBWT sweeps through the markers in

chromosome order, and at each marker, it sorts the reverse haplo-

type prefixes in lexicographic order (the reverse haplotype prefix

at the m-th marker is the sequence of alleles at markers m� 1;

m� 2; .). At marker m, we generate a ‘‘divergence’’ array

that stores the first marker of the IBS segment containing marker

m� 1 for each pair of haplotypes that are adjacent after sort-

ing.52 The divergence array is used to efficiently identify all seed

IBS segments that end at marker m (see Durbin’s Algorithm 3).52

After a seed is identified, it is extended (if possible) by comparing

the alleles on the two IBS haplotypes in the regions preceding and

succeeding the seed segment as described above.
Memory-Efficient Computation
The hap-IBD program takes phased genotype data in variant call

format (VCF) as input.55 As the genotype data are read into mem-

ory, the data are immediately converted to binary reference format

(version 3).53 Binary reference format compresses low-frequency

variants by storing only the indices of the haplotypes carrying

non-major alleles. Higher-frequency variants are compressed by

storing unique allele sequences in a region, along with a vector

that maps haplotype indices to the allele sequence carried by

the haplotype. We use binary reference format because it permits

data for an entire chromosome to be stored compactly in memory,

and it allows rapid queries of alleles carried by haplotypes at each

marker.

The PBWTrequires only two additional arrays of stored informa-

tion, eachwith length equal to the number of haplotypes. Seed IBS

segments are extended as soon as they are identified by the PBWT.

After extension, segments that are longer than the minimum

output segment length are immediately printed to an output

buffer, which is flushed to disk when full. Consequently, only a

limited number of IBD segments are stored inmemory at any time.
Parallelization
The hap-IBD algorithm is parallelized by applying the PBWT

concurrently in overlapping marker windows. If L is the genetic

distance between the first and last markers on the chromosome,

S is the minimum seed genetic length, and T is the number of
428 The American Journal of Human Genetics 106, 426–437, April 2,
computational threads, we sequentially define T overlapping

marker windows W1;W2;.;WT that each have length approxi-

mately equal to ððL�SÞ =T þSÞ cM, and that have approximately

S cM overlap between adjacent windows. The first window W1

begins at the first marker on the chromosome and ends at the first

marker after genetic position ððL�SÞ =T þSÞ whose index is greater

than the minimum number of markers required for an IBS seed

segment. The first marker in Wiþ1 is the first marker in Wi that

cannot be the start of a seed IBS segment contained within Wi

because the number of markers or genetic distance separating

the marker from the last marker inWi is too small. The last marker

inWiþ1 is the first marker that isRðL�SÞ=T cM away from the last

marker in window Wi. With these definitions, every seed IBS

segment will be detected in at least one of the overlapping

windows.

We run the PBWT algorithm in each overlapping window in

parallel. When a seed IBS segment is found, we ignore the window

boundaries when we extend the segment, so that the extension

process is the same as for the single-threaded case. If multiple seeds

result in the same maximal IBD segment after extension, we keep

the maximal IBD segment generated by the first seed, and we

discard the duplicate IBD segments generated by later windows

seeds.

Input and Output Data
The input data is a VCF file55 with phased genotypes and no

missing genotypes, and a PLINK-format genetic map.2 Linear

interpolation is used to estimate the genetic map positions for

any marker whose position is not on the genetic map. Although

the use of a genetic map is recommended, hap-IBD can be used

with Mb units simply by supplying a genetic map with a recombi-

nation rate of 1 cM ¼ 1 Mb.

Two output files are produced: one containing within-individ-

ual segments of homozygosity by descent (HBD) and one contain-

ing between-individual IBD segments. Each output line contains

the pair of samples, the specific haplotypes, the starting base

position, the ending base position, and the genetic length of the

HBD or IBD segment.

Hap-IBD Parameters
The minimum seed length parameter has a large influence on

computation time. Increasing the minimum seed length reduces

computation time because fewer seed IBS segments will be consid-

ered. Decreasing the minimum seed length can increase power to

detect short IBD segments that have discordant alleles on the pair

of shared haplotypes.

The maximum gap length and minimum extension length

allow reported IBD segments to contain discordant alleles due

to genotype error, mutation, or gene conversion. The hap-IBD
2020



software also has an option for excluding input markers that have

low minor allele counts.

The minimum markers parameter controls the minimum

number of markers in IBS seed and extension segments. The

number of reported IBD segments should be approximately con-

stant throughout the genome; however, regions with low

marker density can produce local spikes in the number of re-

ported IBD segments (see Results). These spikes contain many

IBS segments that satisfy the genetic length requirements, but

contain relatively few markers. The spikes can be reduced or

eliminated by post-processing23,56 or by requiring seed and

extension IBS segments to contain a minimum number of

markers.

UK Biobank Genotype Data
We downloaded the UK Biobank genotype data from the

European Genome-phenome Archive57 (dataset accession:

EGAD00010001497). The UK Biobank data contain 488,377 indi-

viduals and 784,256 autosomal markers.49 We excluded markers

with more than 5% missing genotypes (n ¼ 70,246), markers

that had only one individual carrying a minor allele (n ¼ 5,123),

and markers that failed one or more of the UK Biobank’s batch

quality control tests (n ¼ 1,527).49 After we excluded 72,601

markers that failed one or more of these filters, there were

711,655 autosomal markers.

We then excluded 968 individuals that were identified by the

UK Biobank as being outliers for their proportion of missing geno-

types or proportion of heterozygous genotypes, and we excluded

nine individuals that were identified by the UK Biobank as

showing third-degree or closer relationships with more than 200

individuals (indicating sample contamination).49 After these ex-

clusions, there were 487,400 individuals.

We identified parent-offspring trios using the kinship coeffi-

cients and the proportion of markers that share no alleles

(IBS0) that are reported by the UK Biobank.49,58 First-degree

relatives were considered to be pairs of individuals with a

kinship coefficient between 2�2:5 and 2�1:5. Among first-

degree relatives, parent-offspring relationships were assumed

to be the first-degree relative pairs with IBS0 < 0.0012. These

are the same kinship coefficient and IBS0 thresholds used by

the UK Biobank to identify parent-offspring relationships.49

We considered an individual to be the offspring in a parent-

offspring trio if the individual had a parent-offspring relation-

ship with exactly one male and one female individual, and if

the male and female first-degree relatives were not in the set

of related pairs of individuals reported by the UK Biobank,

which is the set of pairs of individuals with estimated kinship

coefficient greater than 2�4:5. In this case, we considered the

male and female first-degree relatives to be the offspring’s par-

ents. Using this procedure, we identified 1,064 parent-offspring

trios.

The 1,064 trio offspring have 2,054 distinct parents. We

excluded these parents from the data before phasing and

IBD segment detection so that phasing accuracy in the trio

offspring would more closely match phasing accuracy in unre-

lated individuals. After we excluded the trio parents, there

were 485,346 remaining individuals. We listed the 1,064 trio

offspring followed by the remaining samples in random order.

By taking the corresponding number of samples from the top

of this list, we created five telescoping genotype datasets that

included 5,000, 15,000, 50,000, 150,000, and all 485,346

individuals. We then used Beagle 5.1 to phase each dataset.59
The Ame
Because we use trio genotypes to determine the genotype

phase in the offspring, we selected the 850 trios that had the

lowest genotype error rate, as measured by the number of auto-

somal sites with Mendelian inconsistent genotypes.60 The

number of inconsistent sites in the 1,064 trios ranged from 57

to 5,102 sites per trio, and the number of inconsistent sites in

the 850 trios with the lowest genotype error rate ranged from

57 to 456 sites per trio. We phased the 850 trio offspring at

all heterozygous genotypes for which phase could be deter-

mined from parental genotypes and Mendelian inheritance

constraints (82.4% of heterozygous genotypes), and we masked

genotypes at Mendelian inconsistent sites in this phased data.

We used these estimated haplotypes to evaluate false-positive

and false-negative rates for IBD segment detection as described

below.

After we excluded trio parents, there were 43 remaining parent-

offspring pairs who were not part of a trio in the 50,000 individual

subset of the UK Biobank data. We used these 43 remaining

pairs to compute the mean proportion of chromosome 20 covered

by detected IBD segments in parent-offspring pairs.

Simulated Data
In order to test the performance of hap-IBD and other methods

on sequence data, we generated 60 Mb of data for 50,000 individ-

uals from a demographic model that simulates the present UK

European population.47 This model has a population size of

24,000 in the distant past, a reduction to 3,000 occurring 5,000

generations ago, growth at rate 1.4% per generation starting

300 generations ago, and growth at rate 25% beginning 10 gener-

ations ago.

We used forward simulation with SLiM v3.361,62 to simulate the

ancestral recombination graph for the most recent 5,000 genera-

tions. Gene conversion tracts were initiated at a rate of 2310�8

per base pairs (bp) per generation, and had geometrically distrib-

uted lengths with mean 300 bp, giving an overall gene conversion

rate of 6310�6.27,63 A constant recombination rate of 1310�8

was used. We then used coalescent simulation in msprime

(v0.7.1) to add mutations (at rate 1:38310�8Þ and simulate the

more distant past.64 This hybrid strategy of using SLiM and

msprime enables utilization of msprime’s computational effi-

ciency for large datasets, while incorporating biologically realistic

settings, such as gene conversion, that are implemented in SLiM

but not currently implemented in msprime.65 Our simulation

only includes gene conversion events in the most recent 5,000

generations, but it is the more recent gene conversions that have

the greatest potential impact on haplotype phase accuracy

and that can create discordances between identical-by-descent

haplotypes.

We determined the true IBD segments for 1,000 simulated indi-

viduals from the simulated ancestral recombination graphs. IBD

segments are required to have the same ancestral node along their

length, except for short breaks due to gene conversion.

We added genotype error at a rate of 0.02%, which is the

error rate that produces the observed 0.04% rate of discordance

at SNVs that pass quality control in the TOPMed Freeze 5

whole-genome-sequence data.50 We then removed variants with

frequencies less than 10% and used Beagle 5.1 to phase the re-

maining genotypes.59 We also separately phased a subset of

5,000 individuals with the same minor allele frequency threshold

of 10%. Low-frequency variants are not very informative for IBD

because most individuals are homozygous for the major allele,

and because allele discordance at low-frequency variants in IBD
rican Journal of Human Genetics 106, 426–437, April 2, 2020 429



segments could be due to genotype error, recent mutation, or

phasing error, rather than indicating that they are non-IBD

variants. Other methods for IBD detection in sequence data have

used a minor allele frequency filter. The application of GERMLINE

to the Genomes of the Netherlands whole-genome sequence data

used a minor allele frequency filter of 1%.56 The TRUFFLE analysis

of 1000Genomes sequence data usedminor allele frequency filters

of 5% and 10%.42
Parameter Settings
Each method has an option for setting the minimum length of re-

ported IBD segments. All methods, except TRUFFLE, measure dis-

tance in cM units. For TRUFFLE, we substituted Mb units for cM

units. All genetic distances are interpolated from the HapMap ge-

netic map.66

We required all UK Biobank chromosome 20 analyses to com-

plete within two days of wall-clock time on the compute nodes

used for these analyses. Parameter settings for analysis of UK

Biobank and simulated sequence data are based on previously

published analyses of SNP array5,42–44 and sequence data.42,43,56

Parameter settings for each method are reported in Tables S1

and S2.

The hap-IBD parameter settings in Tables S1 and S2 are recom-

mended parameter settings for analysis of SNP array data (Table

S1) and sequence data (Table S2) that have marker densities, rates

of genotype error per Mb, and effective population sizes similar to

those of the data considered in this paper. We used a lower mini-

mum seed length and extension length for analysis of the

sequence data because IBS segments are shorter in the sequence

data due to the much higher number of genotype errors per Mb.

We use the same 2.0 cM minimum output IBD length for both

SNP array data and sequence data because both datasets are

derived from outbred, human populations, and previous work

has shown that allele identity at this scale is an accurate proxy

for identifying IBD segments in outbred populations.45 If one is

analyzing data from an inbred population, then use of a longer

minimum output IBD length could be appropriate due to the

increased probability in an inbred population that a 2.0 cM IBS

segment is actually a conflation of multiple shorter IBD segments.
Comparison of Methods
For the simulated data, coalescent trees for 1,000 simulated sam-

ples were used to determine true IBD segments exceeding 1.5 cM

in length for those samples. For the UK Biobank data, we consid-

ered true IBD segments to be IBS segments exceeding 1.5 cM in

length among the 850 trio offspring which were phased using

parental genotypes and Mendelian inheritance rules.

False-Positive Rate Estimation

We divided detected IBD segments into bins according to the

detected segment length (2–3, 3–4, 4–6, 6–10, 10–18, and >18

cM). For each detected IBD segment, we identified the cM length

of the portion of the detected segment that is not covered by

any true IBD segment with length >1.5 cM, and we calculated

the sum of these false-positive segment lengths. The false-positive

rate for a bin is the sum of the false-positive segment lengths

divided by the sum of the detected segments’ lengths.

False-Negative Rate Estimation

We divided true IBD segments into bins according to the true

segment length. The length bins and number of true UK Biobank

IBD segments in each length bin are: 2.5–3 cM (2,492), 3–4 cM

(1,360), 4–6 cM (551), 6–10 cM (160), 10–18 cM (55), and >18
430 The American Journal of Human Genetics 106, 426–437, April 2,
cM (64). For each true IBD segment, we identified the cM length

of the portion of the true segment that is not covered by any de-

tected IBD segment with length R2.0 cM, and we calculated the

sum of these false-negative segment lengths. The false-negative

rate for the bin is the sum of the false-negative segment lengths

divided by the sum of the true segments’ lengths.

ROC Analysis

In order to account for inter-method differences in determining

IBD end-points, differences which affect the reported lengths of

IBD segments, we calculated false-positive and false-negative rates

for each method over a range of detected segment length thresh-

olds (1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, and 2.4 cM).We calculated

the false-positive rate for each threshold as described above using

all true segments having length >1.5 cM, and we calculated

the false-negative rate as described above using all true segments

having length >2.5 cM. For each method, we then generated a

receiver operating characteristic (ROC) curve that shows the

true-positive rate (which is one minus the false-negative rate)

and false-positive rate for each detected segment length threshold.

For length thresholds <2.0 cM, the hap-IBD minimum seed

length was set to 1.6 cM.

We also generated ROC curves for each method for 5 cM

segments. For this analysis, we used detected segment length

thresholds of 4.6, 4.8, 5.0, 5.2, and 5.4 cM.We calculated false-pos-

itive rates using all true segments having length >1.5 cM, and we

calculated false-negative rates using all true segments having

length >5.5 cM.

Computation Time

All analyses were run on a 12-core 2.6 GHz computer with Intel

Xeon ES-2630 processors and 128 GB of memory. Computation

time was measured using the Unix time command, which returns

a ‘‘real,’’ a ‘‘system,’’ and a ‘‘user’’ time. The wall-clock time is the

‘‘real’’ time, which is the length of time the program was running.

The central processing unit (CPU) time is the sum of the ‘‘system’’

and ‘‘user’’ times. For multi-threaded compute jobs, the CPU

time includes the sum of the CPU time for each computational

thread, so that it represents the total CPU resources consumed

by the program. A maximum of 2 days of wall-clock time was

allowed for each analysis of UK Biobank chromosome 20 data or

of the 60 Mb of simulated sequence data, with no results reported

if the analysis did not complete within this time frame.
Results

Computational Feasibility

Figure 2 shows CPU times for subsets of the UK Biobank

chromosome 20 data (5,000 to 485,346 individuals) for 2

cM and 5 cM output length thresholds. For the full UK

Biobank data with 485,346 individuals, hap-IBD detected

3.43 billion IBD segments on chromosome 20 at the 2

cM threshold, and 106 million segments at the 5 cM

threshold. GERMLINE could not analyze subsets of

50,000 or more individuals because it required more than

128 GB of memory. TRUFFLE could not analyze subsets

of 150,000 or more individuals on our compute nodes.

iLASH could not analyze subsets of 150,000 or more indi-

viduals at the 2 cM output threshold because it needed

more than 128 GB of memory, but it could analyze the

full dataset at the 5 cM output threshold. RaPID could

not analyze the full chromosome 20 dataset at the 2 cM
2020



Figure 2. CPU Time
Central processing unit (CPU) time for de-
tecting IBD segments with length R2
centiMorgan (cM) (left panel) and R5
cM (right panel) on chromosome 20 in
samples of 5,000, 15,000, 50,000,
150,000, and 485,346 individuals from
the UK Biobank. CPU time is the sum of
the computation time for each CPU core.
All programs used 12 computational
threads, except RaPID and GERMLINE,
which are limited to one computational
thread each. The CPU times for using
Beagle 5.1 to phase the 5,000, 15,000,
50,000, 150,000, and 485,346 individ-
uals were 168, 525, 2,008, 6,595, and
20,567 min.
threshold within the permitted two days of wall-clock

time, but it could analyze the full dataset at the 5 cM

output threshold.

Three of the five methods can use multiple computa-

tional threads, and running these methods on a 12-core

computer leads to an approximate 10-fold reduction in

computing time compared to single-threaded analysis

(Figure S1). This degree of speedup is important for

analysis of large datasets. For example, the single-threaded

RaPID program required 223.6 min of wall-clock time to

output IBD segments R5 cM for all samples on chromo-

some 20, but hap-IBD required only 13.4 min when using

12 computational threads.

Overall, we see that hap-IBD is the fastest program

except when analyzing the smallest sample size (5,000 in-

dividuals) using the largest output threshold (5 cM output

threshold); for this combination, iLASH is faster. In our

experiments, hap-IBD was the only method that could

analyze the full UK Biobank chromosome 20 data on our

compute servers in less than 2 days when using a 2 cM

output length threshold.

We also performed a genome-wide analysis of the 22

autosomes for the UK Biobank data. Genome-wide analysis

of 485,346 UK Biobank samples using hap-IBD with 12

computational threads detected 231.5 billion autosomal

IBD segments in 24.4 h.

Accuracy

Some methods have a low false-positive rate (Figure 3 and

Figure S2) but a high false-negative rate (Figure 4 and

Figure S3), or vice versa. The methods apply different algo-

rithms for determining the end points of IBD segments,

and this results in different methods reporting different

lengths for a true IBD segment. Because false-positive rates

and false-negative rates can be traded off by changing the

output length threshold, we constructed ROC curves by

varying the output IBD segment length threshold for

each method in order to assess the true-positive versus

false-positive trade-off. The true-positive rate is one minus

the false-negative rate. An ideal method would have a

true-positive rate of 1 and a false-positive rate of 0. For 2
The Ame
cM IBD segments (Figure 5) and for 5 cM IBD segments

(Figure S4) hap-IBD shows the best performance on these

ROC curves. In particular, hap-IBD has much lower false-

positive rates than RaPID and much higher true-positive

rates than iLASH. The IBD segment detection method for

unphased genotype data (TRUFFLE) has high error rates

for these short IBD segments.

We also investigated the proportion of chromosome 20

in parent-offspring pairs that was covered by detected

IBD segments with length R2 cM in 43 parent-offspring

pairs in the set of 50,000 UK Biobank samples. The propor-

tions were 0.978 for iLASH, 0.987 for hap-IBD, 0.994 for

RaPID, and 1.0 for TRUFFLE. GERMLINE was not evaluated

because it could not analyze 50,000 individuals on our

compute server. All methods detected IBD across all or

nearly all of the chromosome in the parent-offspring pairs.

For haplotype-based methods, the methods with higher

false-positive rates (Figure 3) detected slightly higher

numbers of IBD segments in the parent-offspring pairs.

Genotype-based methods are not affected by haplotype

phase errors, and the genotype-based method (TRUFFLE)

had the highest detection rate for these chromosome-

length shared haplotypes.

We examined the effect of varying the hap-IBDmin-seed

and min-extend parameters when detecting 5 cM seg-

ments in the UK Biobank chromosome 20 data for 5,000

individuals. Accuracy was unchanged when using min-

seed values between 1 cM and 3 cM (Figure S5). The

false-positive rate doubled when the min-extend param-

eter decreased from 1.0 cM to 0.1 cM (Figure S6), although

the absolute increase in the false-positive rate is small

(approximately 0.5%).

In genome-wide analysis of the UK Biobank data, we

found regions in which IBD detection methods reported

inflated levels of IBD segments. These are generally regions

with large gaps in marker coverage, or very low marker

density, and often occur around centromeres. Figure 6

shows results for chromosomes 1 and 20 for the methods

with the highest accuracy for short IBD segments (the

four haplotype-based methods) for the 5,000 individuals’

UK Biobank data. Around the chromosome 1 centromere,
rican Journal of Human Genetics 106, 426–437, April 2, 2020 431



Figure 3. False-Positive IBD Segment Detection in UK Biobank Chromosome 20 Data
False-positive rates for identity by descent (IBD) segment detection for 5,000, 50,000, and 485,346 UK Biobank samples. IBD segments
with length R2 centiMorgan (cM) were detected with each method. Detected IBD segments were assigned into bins of 2–3, 3–4, 4–6,
6–10, 10–18, and >18 cM according to their segment length. The false-positive rate is the proportion of detected IBD segments in a
bin that are not covered by any true IBD segment>1.5 cM in length. Hap-IBD is the onlymethod shown for the full UK Biobank analysis
(485,346 individuals) because other methods were unable to complete the analysis with a 2 cM output threshold within the memory
and time constraints (see the Computational Feasibility subsection in Results). The x-coordinate of each data point is the left bin end
point (e.g., 2 cM for the 2–3 cM bin). For the full range of y-coordinate values, see Figure S2.
the methods found IBD segments at a rate 40 to 3,000

times greater than the baseline level. The inflation was

worse for RaPID and iLASH than for GERMLINE and hap-

IBD. Figure S7 shows that the inflated detection can be

reduced by increasing hap-IBD’s min-markers parameter.

However, the use of overly high values of this parameter

will reduce power to detect short IBD segments. Alterna-

tively, regions with high rates of IBD segment discovery

can be identified after IBD segment detection and

excluded.67

We also assessed accuracy by using simulated sequence

data. There are several important differences between the

UK Biobank analysis and the simulated sequence data

analysis. First, the approach to assessing accuracy differs.

In the UK Biobank data, we determined the true phase of

trio offspring, and we used that to determine identity by

state at the haplotype level, which we used as a proxy for

true IBD. The genotype error rate was extremely low in

these data (with a duplicate discordance rate of 6:73

10�5),49 but genotype errors can disrupt both the true

IBD and the estimated IBD in the UK Biobank analysis.

In contrast, in the simulated data, the true IBD status

was obtained directly from the simulation (defined as

no change in common ancestor across a segment except

in tracts of gene conversion), and mis-called alleles may

have disrupted the estimated IBD but did not affect the

ascertainment of true IBD. Second, the marker density

was much higher for the simulated sequence data.

Although we removed markers with minor allele fre-

quency <10% (see Material and Methods), the marker

density was still five times greater than that of the UK

Biobank data (97,890 markers with minor allele fre-

quency R10% in the simulated 60 Mb region, compared

with 18,424 total UK Biobank markers on chromosome

20). Third, the genotype error rate in the simulated

sequence data was much higher than for the UK Biobank

data. With current technology, error rates tend to be
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higher for sequence data than for SNP array data, even

with high sequence coverage and careful processing.

We added genotype error to the simulated sequence

data at a rate that generates the level of duplicate discor-

dance observed in the TOPMed data, which is 4310�4

for SNVs passing quality control.50 This level of duplicate

discordance is six times higher than for the UK Biobank

SNP data. There are also important similarities between

the two analyses, which include the length of the

region (approximately 60 Mb for the simulated analysis

and for the UK Biobank chromosome 20 analysis), large

sample size (up to 50,000 for the simulated data and

up to 485,346 for the UK Biobank data), and demo-

graphic history (UK-like simulation versus actual UK

population).

In the simulated sequence data, we used settings which

the authors of the GERMLINE, RaPID, and TRUFFLE

methods have used in published analyses of sequence

data, while for iLASH, we used the same settings as for

SNP array data (see Material and Methods for details). To

compare accuracy, we produced ROC curves for detection

of 2 cM segments. We considered sample sizes of 5,000

(Figure 7) and 50,000 individuals (Figure S8). We found

that hap-IBD and GERMLINE have a very similar accuracy

profile (for the 5,000 individuals only, because GERMLINE

could not analyze the 50,000 individuals with the available

computer memory). iLASH had reduced power to detect 2

cM IBD segments, while TRUFFLE had very low power to

detect these segments, and RaPID had a high false-positive

rate. Overall, these results are similar to those seen in the

UK Biobank analysis, except that the relative accuracy of

GERMLINE is improved in these simulated sequence

data. The parameters that we used for GERMLINE in the

simulated sequence analysis may be a better match for

these data than were the parameters that we used for the

UK Biobank data, although we used published parameter

settings in both instances.
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Figure 4. False-Negative IBD Segment Detection in UK Biobank Chromosome 20 Data
False-negative rates for identity by descent (IBD) segment detection for 5,000, 50,000, and 485,346 UK Biobank samples. IBD segments
with lengthR2 centiMorgan (cM) were detected with each method. True IBD segments with length >2.5 cM were assigned into bins of
2.5–3, 3–4, 4–6, 6–10, 10–18, and >18 cM according to their segment length. The false-negative rate is the proportion of true IBD seg-
ments in a bin that are not covered by any detected IBD segment R2 cM in length. Hap-IBD is the only method shown for the full UK
Biobank analysis (485,346 individuals) because othermethodswere unable to complete the analysis with a 2 cM output thresholdwithin
the memory and time constraints (see the Computational Feasibility subsection in Results). The x-coordinate of each data point is the
left bin end point (e.g., 2.5 cM for the 2.5–3 cM bin). For the full range of y-coordinate values, see Figure S3.
Discussion

We have presented an IBD segment detection method for

large-scale genotype data that is substantially faster and

more accurate than four state-of-the-art competing

methods (GERMLINE, iLASH, RaPID, and TRUFFLE). We

applied hap-IBD to 485,346 samples from the UK Bio-

bank49 and detected 231.5 billion autosomal IBD segments

having lengthR2 cM in less than 24.4 h of wall-clock time

on a compute server with 12 CPU cores.
Figure 5. Receiver Operating Characteristic Curves for 2 cM IBD
Segment Detection in UK Biobank Chromosome 20 Data
False-positive and false-negative rates for detection of identity by
descent (IBD) segments over a range of output length thresholds
around 2 centiMorgan (cM) for 5,000 UK Biobank samples. In or-
der to allow for some discrepancy between reported and true
lengths, false positives are assessed using true segments having
length >1.5 cM, and false negatives are assessed using true seg-
ments having length >2.5 cM. IBD segments were detected with
each method using length thresholds of 2 cM (plotted symbol)
and with other thresholds between 1.6 and 2.4 cM (plotted lines;
see Material andMethods). Figure S4 shows a similar plot for 5 cM.
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An attractive feature of hap-IBD is its simplicity. All seed

IBS segments that exceed a specified length are identified

and then extended if possible. The extension process al-

lows for sporadic non-IBS alleles due to mutation, geno-

type error, or gene conversion. The hap-IBD parameters

define the minimum length of IBS seed and extension

segments and the maximum length of non-IBS gaps.

These parameters have a simple and direct relationship to

the IBD segments that are reported, and this enables the

correctness of the output results to be confirmed. In

contrast, some methods utilize a large number of tuning

parameters which have only an indirect relationship to

output IBD segments, such as iLASH’s seven parameters

for controlling locality-sensitive hashing: perm_count,

shingle_size, shingle_overlap, bucket_count, match_thres-

hold, interest_threshold, and minhash_threshold.44

The hap-IBD method shares some similarities with

the GERMLINE method: both methods search for long-

IBS segments via a seed and extend algorithm, and both

methods allow for the presence of some discordant alleles

in a reported IBD segment.40 However, hap-IBD achieves

much greater computational efficiency and greater accu-

racy than GERMLINE does, because hap-IBD employs

the PBWT instead of a hash table, and hap-IBD identifies

seeds that exceed a specific genetic length rather than a

specified number of markers.

In our tests, hap-IBD consistently required less CPU time

than competing methods did. One factor contributing to

hap-IBD’s fast computation time is that it only considers

shared haplotype segments that exceed a relatively long

minimum seed length, and these segments are efficiently

detected using the PBWT. The hap-IBD method also in-

cludes internal parallelization that can yield wall-clock

compute times that are a fraction of the total CPU time

on multi-core processors.

The hap-IBD method requires phased genotype data. In

practice, nearly all large genotype datasets are phased
rican Journal of Human Genetics 106, 426–437, April 2, 2020 433



Figure 6. Chromosome-wide IBD
Segment Detection in the UK Biobank
The methods were run on 5,000 UK Bio-
bank samples on chromosome 1 and chro-
mosome 20 in order to detect identity by
descent (IBD) segments having length
R2 centiMorgan. Each chromosome is
divided into non-overlapping 10 kb inter-
vals. For each interval, all IBD segments
(from all pairs of individuals) that inter-
sect the interval are each weighted by
the proportion of the 10 kb interval that
is covered by the IBD segment, and the
sum of the weights is plotted as the IBD
coverage.
because phased data are required to obtain the highest ac-

curacy for many downstream analyses, including IBD

segment detection, relationship inference,13 local ancestry

inference,68 population demography inference,21–23 and

detection of selection.10 Phased data are also required for

computationally efficient and accurate genotype imputa-

tion.53,69 With state-of-the-art methods, the effort and

computational cost required to phase large datasets is

modest when using a small compute cluster. We phased

the UK Biobank genome-wide data with Beagle 5.1 in less

than two days using 16 compute servers, each with 20

CPU cores.

Our results confirm that IBD segment detectionmethods

for phased genetic data can detect much shorter IBD seg-

ments than can methods for unphased genetic data. In

our tests, the method for unphased data (TRUFFLE) could

not accurately detect segments with length <10 cM, but

most methods for phased data could accurately detect

IBD segments with length R2 cM (Figure 5). Furthermore,

haplotype-based methods identify the shared allele

sequence, whereas genotype methods cannot identify the

shared allele when the individuals both carry an identical

heterozygote genotype. However, genotype-based IBD

detection methods, such as TRUFFLE, have some advan-

tages. Genotype-based methods can detect first- and sec-

ond-degree relationships with high accuracy before haplo-

types are estimated,13,42 and this can be useful during

initial data quality control. In addition, genotype-based

methods can be used when genotype data cannot be accu-

rately phased due to non-uniformmarker coverage or high

rates of genotype error, as can be the case for exome and

low-coverage sequence data. If the sample size is less

than 50,000, if one is interested only in accurately detect-

ing long (R15 cM) IBD segments, and if haplotypes have

not been estimated, then TRUFFLE can detect long IBD seg-

ments in less CPU time than is required for phasing and

haplotype-based IBD segment detection. The CPU time

for the TRUFFLE analysis of the chromosome 20 UK Bio-

bank data for 50,000 individuals was 4.4 times faster

than the combined CPU time for Beagle 5.1 phasing and

hap-IBD analysis (461 min versus 2,014 min). However,

pairwise IBD detection scales quadratically with sample
434 The American Journal of Human Genetics 106, 426–437, April 2,
size, while phasing with Beagle 5.1 scales approximately

linearly. Thus, an extrapolated TRUFFLE CPU time for all

485,346 UK Biobank individuals is more than twice as

long as the total CPU time for Beagle 5.1 phasing and

hap-IBD analysis (43,447 min versus 20,815 min).

The hap-IBD method performs well across a range of

haplotype switch error rates. In the UK Biobank data, the

switch error rate for 5,000 samples is more than an order

of magnitude higher than the switch error rate for

485,346 samples.60 However, even for the 5,000-sample

subset of the UK Biobank data, the IBD-detection accuracy

is very high and is sufficient to identify close relatives in

the data. Furthermore, one can increase the accuracy of

phase estimates in small samples by phasing the samples

together with a reference panel of sequenced individ-

uals.70

Segments of IBD are genomic regions over which the

pair of haplotypes share a recent ancestor. The expected

length of the segment is related to the number of genera-

tions to the common ancestor, so the genetic length of

the segment acts as a proxy for how recent the ancestry

is. When using a genetic length threshold to determine

which segments to report, as is done in this paper, the

choice of threshold determines the degree of recentness.

If the length threshold is increased, only more recent

ancestry will be included, while if the threshold is

decreased, slightly less recent ancestry will be included.

In this paper, we used a 2 cM threshold. Segments of IBD

resulting from shared ancestry 25 generations ago have

an expected length of 2 cM, while the typical 2 cM

segment has a common ancestor around 50–100 genera-

tions ago,16 because there are many more segments with

less recent ancestry, and some of these are by chance rela-

tively long for their age and pass the length threshold.

Thus ‘‘recent’’ in the context of this paper essentially

means ‘‘within the past 100 generations.’’ One problem

with the length-based approach is that informativeness

of the genotype data varies considerably across the

genome, primarily due to gaps in marker coverage around

repetitive regions, leading to increased false positive detec-

tion in some regions. We found that all of the methods

investigated in this paper are affected by this issue.
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Figure 7. Receiver Operating Characteristic Curves for IBD
Segment Detection in Simulated Sequence Data
False-positive and false-negative rates for detection of identity by
descent (IBD) segments over a range of output length thresholds
around 2 centiMorgan (cM) for 5,000 simulated samples. In order
to allow for some discrepancy between reported and true lengths,
false positives are assessed using true segments having length>1.5
cM, and false negatives are assessed using true segments having
length >2.5 cM. IBD segments were detected with each method
using length thresholds of 2 cM (plotted symbol) and with other
thresholds between 1.6 and 2.4 cM (plotted lines; see Material
and Methods). Figure S8 shows a similar plot for 50,000 samples.
Reported IBD segments in these regions typically do not

result from recent shared ancestry. Previous attempts to

address this issue of variable informativeness across the

genome include methods that are based on haplotype fre-

quency modeling, such as fastIBD11 and RefinedIBD,46

however, these methods do not scale to analysis of large

datasets.

A general limitation of IBD segment detection methods

that rely on IBS is that there is some degree of error in

determination of segment endpoints. The IBS interval

can extend beyond the endpoints of a contained IBD

segment. Consequently, IBD detection methods that

report the full IBS interval will often overextend the

IBD segment ends. Such methods can also miss some re-

gions at the end of IBD segments when genotype error,

mutation, or gene conversion near the end of the IBD

segment causes the IBS segment to end before the actual

end of the IBD segment. If the genetic distance between

the truncated end of the IBS segment and the true end of

the IBD region is short, it is not possible to determine

with confidence whether or not the IBD segment extends

past the end of the IBS segment. Development of IBD

segment detection methods that are robust to genotype

error, recent mutation, and gene conversion that occur

near the ends of IBD segments is an area for future

research.
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Figure S1. Wall-clock compute time. Wall-clock time for multi-threaded programs when using 12 CPU 

cores for detecting IBD segments with length ≥ 2 cM (left panel) and ≥ 5 cM (right panel) on 

chromosome 20 in samples of 5000, 15,000, 50,000, 150,000, and 485,346 individuals from the UK 

Biobank. All programs used 12 computational threads. The wall-clock times for phasing the 5000, 

15,000, 50,000, 150,000, and 485,346 individuals using Beagle 5.1 were 14, 44, 169, 554, and 1729 

minutes. 
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Figure S2. False-positive IBD segment detection in UK Biobank chromosome 20 data. As for Figure 2, 

but zoomed out to show the full range of false-positive rates. False-positive rates for IBD segment 

detection for 5000, 50,000, and 485,346 UK Biobank samples. IBD segments with length ≥ 2 cM were 

detected with each method. Detected IBD segments were assigned into bins of 2-3, 3-4, 4-6, 6-10, 10-

18, and >18 cM according to their segment length. The false-positive rate is the proportion of detected 

IBD segments in a bin that are not covered by any true IBD segment > 1.5 cM in length. Hap-IBD is the 

only method shown for the full UK Biobank analysis (485,346 individuals) because other methods were 

unable to complete the analysis with a 2 cM output threshold within the memory and time constraints 

(see Computational Feasibility Results). The x-coordinate of each data point is the left bin end point (e.g. 

2 cM for the 2-3 cM bin).  
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Figure S3. False-negative IBD segment detection in UK Biobank chromosome 20 data. As for Figure 3, 

but zoomed out to show the full range of false-negative rates. False-negative rates for IBD segment 

detection for 5000, 50,000, and 485,346 UK Biobank samples. IBD segments with length ≥ 2 cM were 

detected with each method. True IBD segments with length > 2.5 cM were assigned into bins of 2.5-3, 3-

4, 4-6, 6-10, 10-18, and >18 cM according to their segment length. The false-negative rate is the 

proportion of true IBD segments in a bin that are not covered by any detected IBD segment ≥ 2 cM in 

length. Hap-IBD is the only method shown for the full UK Biobank analysis (485,346 individuals) because 

other methods were unable to complete the analysis with a 2 cM output threshold within the memory 

and time constraints (see Computational Feasibility Results). The x-coordinate of each data point is the 

left bin end point (e.g. 2.5 cM for the 2.5-3 cM bin). 
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Figure S4. ROC curves for 5 cM IBD segment detection in UK Biobank chromosome 20 data. False-

positive and false-negative rates for detection of IBD segments over a range of output length thresholds 

around 5 cM for 5000 UK Biobank samples. The right panel is a zoomed-in version of the left panel. False 

positives are assessed using true segments having length > 1.5 cM, and false negatives are assessed 

using true segments having length > 5.5 cM in order to allow for some discrepancy between reported 

and true lengths. IBD segments were detected with each method using length thresholds of 5 cM 

(plotted symbol) and with other thresholds between 4.6 and 5.4 cM (plotted lines; see Methods). 
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Figure S5. Effect of varying hap-IBD min-seed parameter on ROC curves for 5 cM IBD segment 

detection in UK Biobank chromosome 20 data. False-positive and false-negative rates for detection of 

IBD segments over a range of output length thresholds around 5 cM for 5000 UK Biobank samples. False 

positives are assessed using true segments having length > 1.5 cM, and false negatives are assessed 

using true segments having length > 5.5 cM in order to allow for some discrepancy between reported 

and true lengths. IBD segments were detected using length thresholds of 5 cM (plotted symbol) and 

with other thresholds between 4.6 and 5.4 cM (plotted lines; see Methods). The ROC curves for 

minimum seed lengths of 1, 2, and 3 cM are indistinguishable. 
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Figure S6. Effect of varying hap-IBD min-extend parameter on ROC curves for 5 cM IBD segment 

detection in UK Biobank chromosome 20 data. False-positive and false-negative rates for detection of 

IBD segments over a range of output length thresholds around 5 cM for 5000 UK Biobank samples. False 

positives are assessed using true segments having length > 1.5 cM, and false negatives are assessed 

using true segments having length > 5.5 cM in order to allow for some discrepancy between reported 

and true lengths. IBD segments were detected using length thresholds of 5 cM (plotted symbol) and 

with other thresholds between 4.6 and 5.4 cM (plotted lines; see Methods). 
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Figure S7: Effect of marker thresholds on IBD segment detection in UK Biobank. The hap-IBD program 

was run on 5000 UK Biobank samples on chromosome 1 (left panel) and chromosome 20 (right panel) 

with the min-markers parameter set to 1, 100, 200, and 400 markers. The min-markers parameter 

controls the minimum number of markers that must be present in a reported seed IBD segment. All 

other hap-IBD parameters were set at their default values. Each chromosome is divided into non-

overlapping 10 kb intervals. For each interval, the IBD segments intersecting the interval are each 

weighted by the proportion of the 10 kb interval that is covered by the IBD segment, and the sum of 

weights is plotted as the IBD coverage.  
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Figure S8. ROC curves for IBD segment detection in simulated sequence data. False-positive and false-

negative rates for detection of IBD segments over a range of output length thresholds around 2 cM for 

50,000 simulated samples. False positives are assessed using true segments having length > 1.5 cM, and 

false negatives are assessed using true segments having length > 2.5 cM in order to allow for some 

discrepancy between reported and true lengths. IBD segments were detected with each method using 

length thresholds of 2 cM (plotted symbol) and with other thresholds between 1.6 and 2.4 cM (plotted 

lines; see Methods).  
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Method Parameters 

hap-IBD v1.0 Default options (min-seed=2.0 max-gap=1000 min-

extend=1.0 min-output=2.0 min-mac 2 min-

markers=100)  

TRUFFLE v1.38 –mindist 5000 –maf 0.05 –segments –L 1    

(output was filtered to exclude segments <2.0 cM in length) 

GERMLINE 1.5.3 –haploid –bits 32 -w_extend –min_m 2.0 

RaPID v1.7 –r 10 –s 2 –w 3 –d 2.0  

iLASH (commit de697321*) perm_count 12 shingle_size 20 shingle_overlap 0 

bucket_count 4 max_thread 12 match_threshold 

0.99 interest_threshold 0.7 max_error 0 

min_length 2.0 auto_slice 1 cm_overlap 1.4 

Table S1: Parameters used for analysis of UK Biobank data with 2 cM minimum IBD segment length. 

Parameters that control the minimum output IBD segment length are in red. 
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Method Parameters 

hap-IBD v1.0 min-seed=1.0 max-gap=1000 min-extend=0.2 min-

output=2.0 min-markers=100 

TRUFFLE v1.38 –mindist 5000 –maf 0.1 –segments –L 1 

(output was filtered to exclude segments <2.0 cM in length) 

GERMLINE 1.5.3 –haploid –bits 75 -w_extend –min_m 2.0 -err_hom 

2 

RaPID v1.7 –r 10 –s 2 –w 80 –d 2.0 

iLASH (commit de697321*) perm_count 12 shingle_size 20 shingle_overlap 0 

bucket_count 4 max_thread 12 match_threshold 

0.99 interest_threshold 0.7 max_error 0 

min_length 2.0 auto_slice 1 cm_overlap 1.4 

Table S2: Parameters used for analysis of simulated sequence data with minimum 2 cM IBD segment 

length. Parameters that control the minimum output IBD segment length are in red. 
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