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Supplementary Text

section S1. Hamiltonian

The theory is based on the standard Frenkel exciton Hamiltonian

H =
∑
m

(
Em +

∑
ξ

~ωξg(m)
ξ Qξ

)
|m〉〈m|+

m 6=n∑
m,n

Vmn|m〉〈n|+
∑
ξ

~ωξ
4

(
Q2
ξ + P 2

ξ

)
, (S1)

where |m〉 is a localized excited state of the complex, in which pigment m is excited and all other
pigments are in their electronic ground state. The diagonal element Em is the local electronic
transition energy of pigment m at the equilibrium position of nuclei in the electronic ground
state, termed site energy. The coupling constant g

(m)
ξ describes how the site energy of pigment

m fluctuates if the vibrational coordinates Qξ are displaced from their equilibrium positions.
The off-diagonal element Vmn describes the coupling between localized excited states m and n
(excitonic coupling). In principle, also the excitonic couplings are modulated by the vibrational
dynamics of the complex. However, this modulation was found to be about two orders of magnitude
smaller than that of the site energies and can, therefore, be neglected (23 ). The last part of the
Hamiltonian describes the vibrational dynamics, where Qξ and Pξ are dimensionless coordinates
and momenta of vibrational mode ξ of the pigment-protein complex. A description in terms of
(effective) harmonic oscillators is chosen.

A challenge for a theoretical description is the comparable magnitude of the excitonic and the
exciton-vibrational coupling. The nearest neighbor excitonic couplings Vmn in the FMO protein
and the exciton-vibrational reorganization energy

Eλ =
∑
ξ

~ωξg2ξ (S2)

of the local electronic transition of the pigments are in the same order of magnitude. Eλ is the
energy released after optical excitation of a localized excited state of the complex, caused by relax-
ation of nuclei to a new equilibrium position. Electronic delocalization in a homo dimer lowers the
excited state by the excitonic coupling V12 between the two monomers and by the reorganization
energy of the low energy exciton state, which, however equals only half the reorganization energy
of a localized excitation. Hence, there is a certain competition between the excitonic coupling and
the exciton-vibrational coupling in the minimization of the free energy of excited states. Whereas
the former lowers the free energy by delocalization, the latter does it by localization of excited
states.

Transformation of the Hamiltonian in eq. (S1) to the basis of exciton states |M〉 =
∑

m c
(M)
m |m〉,

defined as the eigenstates of the above Hamiltonian at the equilibrium position of nuclei in the
electronic ground state of the complex, gives

H =
∑
M

(
EM +

∑
ξ

~ωξgξ(M,M)Qξ

)
|M〉〈M |+

M 6=N∑
M,N

~ωξgξ(M,N)Qξ|M〉〈N |

+
∑
ξ

~ωξ
4

(
Q2
ξ + P 2

ξ

)
, (S3)

with the exciton-vibrational coupling constant in the new basis reading

gξ(K,M) =
∑
m

g
(m)
ξ c(K)

m c(M)
m . (S4)



Due to the partial localization of exciton states, caused by the different site energies of the
pigments, the off-diagonal elements gξ(K,M) (K 6= M) are smaller than the diagonal elements
gξ(M,M), as discussed in detail later, see Fig. S2 and the discussion below eq. (S9). This
inequality will be used below, where an exact theory is used for the diagonal elements and the
off-diagonal elements are treated in Markov and secular approximation.

section S2. Parameterization of the exciton-vibrational Hamiltonian

The site energies and excitonic couplings determined by Schmidt am Busch et al. (17 ) for
the holo structure from P. aestuarii (106) are used. The numerical values are given in Table S1.
The exciton-vibrational coupling is described by the spectral density

J(ω) =
∑
ξ

g2ξδ(ω − ωξ) , (S5)

that contains the square of the local coupling constant g
(m)
ξ of the modulation of pigment transition

energies from eq. (S1).

Note that we assume a site-independent spectral density for simplicity. In the present calculations
the spectral density extracted from fluorescence line narrowing experiments on the FMO protein
of P. aestuarii by Wendling et al. (105 ) is used (Fig. S1). The Huang Rhys factor S =

∫
dωJ(ω)

was extracted by the same authors from the temperature dependence of the low energy absorption
band of the FMO protein, resulting in S = 0.45 (105 ). With this spectral density a reorganization
energy of the local optical transition Eλ (eq. (S2)) of 45 cm−1 results, which is in the same order
of magnitude as the excitonic couplings (Table S1).

We note that Wendling et al. (105 ) used a two-level system theory and, therefore, obtained an
effective spectral density of the lowest exciton transition (107). However, since this transition
is practically localized at a single pigment (16 ) (BChl 3, see Fig. 1D of the main text), it
can be assumed that this spectral density is already very close to the local spectral density
of this pigment. We will check this assumption and the above parameterization of the exciton
Hamiltonian of the FMO protein by calculating various optical spectra using a multi-level theory,
summarized next.

section S3. Theory of optical spectra and delocalization of excited states

The inequality between diagonal and off-diagonal exciton-vibrational coupling constants in
the exciton basis (eq. (S4)) is used in the following, where an exact treatment of the diagonal
elements is combined with a Markov and secular approximation for the off-diagonal elements. For
this purpose we use a second-order cumulant expansion with partial ordering prescription (POP)
(104). The lineshape of linear optical spectra is obtained from the off-diagonal density matrix
elements ρM0, for which the equation of motion

∂

∂t
ρM0(t) = −iωMOρM0 −

∑
KL

γMKKL

∫ t

0

dτC(τ)eiωKLτρL0(t) (S6)

holds, where C(t) =
∫∞
0
dωω2J(ω) [(1 + n(ω))e−iωt + n(ω)eiωt] is the correlation function of the

fluctuations in the local transition energy of the pigments containing the Bose-Einstein distribution
function of vibrational quanta n(ω) and the spectral density J(ω) of eq. (S5). The constant

γMKKL =
∑
m

c(M)
m c(K)

m c(K)
m c(L)m (S7)



contains exciton coefficients and was obtained by assuming that the fluctuations in the site energies
of different pigments are uncorrelated. Due to the off-diagonal elements gξ(M,K) and gξ(K,L)
different off-diagonal elements of the density matrix ρM0 and ρL0 (L 6= M) are coupled. These
couplings to a minor extent can redistribute oscillator strength between different exciton states,
but, in general, they do not have a significant effect on the linear optical spectra (108, 109 ).
Applying a secular approximation to eq. (S6) restricts the sum over L on the r.h.s. to L = M .
The solution of the resulting equation reads (104, 110 )

ρM0(t) = ρM0(0) exp

{
−iωM0t−

∑
K

γMK

∫ t

0

dτ(t− τ)C(τ)eiωMKτ

}
, (S8)

where
γMK ≡ γMKKM , (S9)

which for K 6= M contains the off-diagonal exciton vibrational coupling constants gξ(M,K) and
for K = M the diagonal exciton vibrational coupling constants gξ(M,M). The (disorder-averaged)
diagonal and off-diagonal elements obtained for the FMO protein are compared in Fig. S2. The
diagonal elements are indeed larger than the off-diagonal elements. This inequality is used to apply
a Markov approximation to the off-diagonal elements, that is,

γMK

∫ t

0

dτ(t− τ)C(τ)eiωMKτ ≈ γMKt

∫ ∞
0

dτC(τ)eiωMKτ = γMKtC̃(ωMK) (S10)

for (M 6= K). The real part of C̃(ωMK) is related to the spectral density J(ω) by

C̃Re(ω) = πω2 {[1 + n(ω)]J(ω) + n(−ω)J(−ω)} , (S11)

and the imaginary part of C̃(ωMK) is obtained from the real part by the principal value integral

C̃Im(ω) =
1

π
℘

∫ ∞
−∞

dω
C̃Re(ω)

ωMK − ω
. (S12)

The diagonal elements of the exciton-vibrational coupling in eq. (S8) are treated exactly, yielding

γMM

∫ t

0

dτ(t− τ)C(τ) = −γMM

(
G(t)−G(0) + i

Eλ
~
t

)
, (S13)

with the function

G(t) =

∫ ∞
0

dωJ(ω)
{

[1 + n(ω)]e−iωt + n(ω)eiωt
}
, (S14)

and the reorganization energy Eλ of the local electronic transitions as defined in eq. (S2). The
linear absorption spectrum is determined by the half-sided Fourier transform of the dipole-dipole
correlation function α(ω) ∝ ωRe

∫∞
0
dteiωtD(t), which is given by D(t) =

∑
M µM0µ0M(t), with

µ0M(t) = µ0MρM0(t) with the above ρM0(t) and ρM0(0) = 1, resulting in

α(ω) ∝ ω
∑
M

|µM0|2DM(ω) , (S15)

with the lineshape function

DM(ω) =
1

2π

∫ ∞
−∞

dtei(ω−ω̃M0)teγMM{G(t)−G(0)}e−|t|/τM (S16)



of the excitation of the Mth exciton state (107 ), where

ω̃M0 = ωM0 − γMMEλ/~ +

K 6=M∑
K

C̃Im(ωMK) , (S17)

and the exciton relaxation-induced lifetime broadening

τ−1M =
1

2

∑
K

kM→K , (S18)

that contains the Redfield relaxation rate constant

kM→K = 2γMKC̃
Re(ωMK) , (S19)

with the C̃Re(ωMK) given in eq. (S11). The prefactor γMK in eqs. (S7) and (S9) is a measure of
the spatial overlap between the exciton states |M〉 and |K〉.
The linear dichroism spectrum LD(ω) is obtained by replacing the |µM0|2 in eq. (S15) by |µM0|2(1−
3 cos2 θM), with the angle θM between the exciton transition dipole moment ~µM0 and the symmetry
axis of the FMO trimer. In the calculation of the circular dichroism spectrum CD(ω), the |µM0|2
in eq. (S15) has to be replaced by

∑
m,n c

(M)
m c

(M)
n

~Rmn · (~µm0 × ~µn0) , with the distance vector
~Rmn = ~Rm − ~Rn and the local transition dipole moments ~µm0 and ~µn0 of pigments m and n,
respectively.

Static disorder, caused by conformational motion that is slow compared to the excited state
lifetimes, is considered by including distribution functions of site energies that are centered around
the mean values given in Table S1. Motivated by the central limit theorem of statistical mechanics,
a Gaussian functional form is assumed for these distribution functions. As reported in Ref. (15 ),
the fit of the spectra can be somewhat improved by assigning a larger width to the distribution
functions of those pigments which are in contact with water molecules. Based on this criterion,
a FWHM of 60 cm−1 was assigned for BChls 1, 3 and 4, 100 cm−1 for BChl 2, and 120 cm−1

for BChls 5 - 7 (15 ). We take the same values in the present calculations. In the calculation
of the spectra, the site energy is randomly chosen from each distribution function, and for this
particular realization of static disorder a homogeneous spectrum is calculated. The inhomogeneous
spectrum is obtained as an average over many (30000) such realizations. The linear optical spectra
(absorption, linear and circular dichroism), obtained with the above theory and parameters, are
compared to experimental data (105, 111 ) in Fig. S3 revealing a good quantitative agreement.
From the agreement of the temperature dependence of the absorption spectrum (right half of
Fig. S3), we conclude that the effective spectral density extracted by Wendling et al. (105 ) for
the lowest exciton state is close to the local spectral density of the pigments. In order to further
improve the agreement between experimental and calculated spectra, it will be helpful to (i) refine
the parameterization of the exciton Hamiltonian by, e.g., including a site-specific spectral density
of the local pigment-protein coupling, and/or (ii) to include non-secular and non-Markovian effects
in the treatment of off-diagonal elements of the exciton-vibrational coupling in the theory of optical
spectra (108-110 ).

In order to visualize the delocalization of excited states in energy, we compare the density of
exciton states dM(ω), defined as

dM(ω) =

〈∑
M

δ(ω − ωM0)

〉
dis

, (S20)

with the exciton states pigment distribution function (112 )

dm(ω) =

〈∑
M

|c(M)
m |2δ(ω − ωM0)

〉
dis

, (S21)



where the sums run over all exciton states |M〉. Moreover, |c(M)
m |2 is the probability to find pigment

m excited in the exciton state |M〉, and 〈...〉dis denotes an average over static disorder in the site
energies. The functions dM(ω) and dm(ω) resulting from the above parameterization of the exciton
Hamiltonian are compared in Fig. 1D of the main text. As seen there, the lowest exciton state
is strongly localized at BChl 3 with a minor contribution from BChl 4, the second exciton state
has the largest contribution from BChl 4 and some minor contributions from BChls 3, 5-7. The
third and the sixth exciton states are delocalized over BChls 1 and 2 and the 4th and 5th exciton
state are delocalized over BChls 4-7. The seventh exciton state is delocalized over pigments 5 and
6. The highest exciton state is mainly localized at BChl 8 with a minor contribution from BChl
1. A structural illustration of the delocalization of exciton states is given in Fig. 1A of the main
text, where the 8 BChl pigments of the monomeric subunit of the FMO protein are shown in an
orientation, in which the baseplate is situated above and the reaction center complex below the
FMO protein and those pigments, that contribute to a certain exciton state, are enclosed by lines.
The high-energy exciton states 1 and 2 (blue lines) formed by BChls 8 and 1 and by BChls 5 and
6 are situated in the upper part of the FMO protein, that is close to the baseplate, from where the
excitation energy arrives. The central part contains intermediate-energy exciton states 3-7 (green
lines) with contributions from BChls 1,2, 4-7 and the lowest-energy exciton state 7 (red line) is
situated at the bottom of the complex close to the reaction center.

Finally, we note that the inequality between the diagonal and off-diagonal exciton-vibrational
coupling constants γMN (Fig. S2) ensures that the delocalization of excitons is limited by the
difference in site energies and not by the exciton-vibrational coupling. In other words, the
dynamic localization of excitons is small in the FMO protein.

section S4. Exciton relaxation and decay of coherences after δ-pulse excitation

Within second-order perturbation theory in the coupling of the complex with an external
δ-pulse ~E(t) = A~eδ(t), with amplitude A and polarization unit vector ~e, the initial exciton density
matrix ρMN(0) is obtained as

ρMN(0) =
2A2

~2
〈(~e · ~µM)(~e · ~µN)〉orient (S22)

=
2A2

3~2
µMµN cosαMN ,

where 〈...〉orient denotes an orientational average over randomly oriented complexes in the sam-
ple and αMN is the angle between the exciton transition dipole moments ~µM and ~µN . In secular
approximation, the dissipative dynamics of the exciton state populations ρMM and of the coher-
ences between exciton states are decoupled. The population dynamics is described by the master
equation

∂

∂t
ρMM(t) = −

K 6=M∑
K

{kM→KρMM(t)− kK→MρKK(t)} , (S23)

with the Redfield rate constant kM→K given in eqs. (S11) and (S19). The evolution of exciton
coherences in secular approximation is obtained from (23 )

∂

∂t
ρMN(t) = −(iωMN + FMN(t))ρMN(t) , (S24)

with the time-dependent function

FMN(t) =
∑
L

∫ t

0

dτ
[
γMLe

iωMLτC(τ) + γNLe
iωLN τC∗(τ)

]
− 2γMMNN<

∫ t

0

dτC(τ) , (S25)



with the γMMNN and the γMN in given eqs. (S7) and (S9). Using again a Markov approximation
for the off-diagonal elements of the exciton-vibrational coupling and integrating eq. (S24), we
obtain

ρMN(t) = ρMN(0)e−iω̃MN te−t(1/τM+1/τN )eγMM (G(t)−G(0))eγNN (G∗(t)−G(0))

× e−γMMNN (G(t)+G∗(t)−2G(0)) .

Within a short-time approximation for the temperature-independent imaginary part of G(t), that
shifts the exciton state energies, we obtain

ρMN(t) = ρMN(0)e−iω
′
MN tΓMN(t) , (S26)

with the damping function

ΓMN(t) = eκMN{GRe(t)−G(0)}e−t(1/τM+1/τN ) , (S27)

where
κMN = γMM + γNN − 2γMN =

∑
m

(
|c(M)
m |2 − |c(N)

m |2
)2
, (S28)

and

ω′MN = ωMN +

K 6=M∑
K

γMKC̃
Im(ωMK)−

K 6=N∑
K

γNKC̃
Im(ωNK) . (S29)

As described above (see section on the linear absorption), the coherence between the electronic
ground state and the Mth exciton state is given as

ρM0(t) = ρM0(0)e−iω
′
M0teγMM{GRe(t)−G(0)}e−t/τM

= ρM0(0)e−iω
′
M0tΓM0(t) , (S30)

where a short-time approximation was used for the imaginary part of G(t), see eq. (S14) shifting
the exciton energies. Moreover, the damping function

ΓM0(t) = eγMM{GRe(t)−G(0)}e−t/τM (S31)

was introduced, containing the real part of G(t) and the exciton relaxation-induced life time
broadening constants τM , see eq. (S18). The frequency ω′M0 reads

ω′M0 = ωM0 +

K 6=M∑
K

γMKC̃
Im(ωMK) , (S32)

with the C̃Im(ωMK) given in eq. (S12).

As shown in section S6 below, a classical treatment of the nuclear motion results in a function
G(t) = 2kBT

∫∞
0

J(ω)
~ω cos(ωt). Applying, in addition, a short time approximation to the cos function

(cos(ωt) ≈ 1− ω2t2

2
) leads to the classical limit

ρclMN(t) = ρMN(0)e−iω
′
MN tΓMN(t) (S33)

of the evolution of inter-exciton coherences, with the classical damping function

ΓMN(t) = exp

[
−(1/τ clM + 1/τ clN)t− κMN

EλkBT

~2
t2
]
, (S34)



with

1/τ clM =
1

2

∑
K

k
(cl)
M→K , (S35)

which contains the classical limit of the Redfield rate constant, obtained in section S6 as

k
(cl)
M→K =

2πkBT

~
γMK |ωMK |J(|ωMK |) = k

(cl)
K→M . (S36)

We note that in this limit the exact form of the detailed balance condition kM→K/kK→M =
exp(~ωMN/kBT ) is not fulfilled. It is only fulfilled in the high-temperature limit kBT � ~ωMN . As
discussed in section S6, the neglect of the quantum mechanical uncertainty principle is responsible
for this result.

The classical limit of the damping function ΓM0(t) of the coherence between the ground state and
the Mth exciton state, see eq. (S31), is obtained similarly as

ΓM0(t) = exp(−t/τM) exp

(
−ΛM

EλkBT

~2
t2
)
, (S37)

with the inverse participation ratio

ΛM = γMM =
∑
m

|c(M)
m |4 (S38)

of the Mth exciton state.

The populations of local excited states follow from the above exciton density matrix and the
coefficients of the exciton states as

Pm(t) =
∑
M,N

c(M)
m c(N)

m ρMN(t) . (S39)

A similar relation holds for the classical populations P cl
m(t) =

∑
M,N c

(M)
m c

(N)
m ρclMN(t), where the

classical off-diagonal elements are given in eq. (S33) and the classical diagonal elements are ob-

tained by solving eq. (S23) with the classical rate constants k
(cl)
M→K in eq. (S36).

The disorder-averaged exciton dynamics initiated by δ-pulse excitation at 300 K is shown in Fig.
S4, where we compare the exciton state populations and the populations of local excited states
obtained by using a quantum mechanical description of nuclear motion with the classical limit,
see eq. (S36), described above. The violation of the detailed balance condition for the classical
rate constants has a dramatic effect on the equilibrium populations of exciton states and local
excited states, which in the classical limit are equal for all exciton states and all pigments. In
contrast, the quantum mechanical description leads to a correct Boltzmann population of exciton
states. Since the exciton states are partially localized at certain pigments, also the equilibrium
population of local excited states is different. BChl 3, which has the largest contribution in the
lowest exciton state, is populated strongest after exciton relaxation. Please note that the FMO
protein is indeed oriented such, as predicted theoretically (19 ) and proven experimentally (20 ),
that BChl 3 is closest to the reaction center complex, the final destination of the excitation energy.

The inter-exciton coherences ρMN are shown together with the corresponding damping functions
ΓMN(t) in Fig. 1E of the main text. Both, in a classical and in a quantum description these
coherences decay in about 50 fs, at room temperature. This decay is somewhat faster than that
of the coherences ρM0 between the exciton states and the ground state occurring in about 75 fs,
as shown in Fig. 1F in the main text. In both cases the damping is dominated by pure dephasing



processes, which in the classical limit contribute a factor exp
(
−κMN

EλkBT
~2 t2

)
to the damping of

inter-exciton coherences and a factor exp
(
−ΛM

EλkBT
~2 t2

)
to that of optical coherences. Due to the

partial localization of exciton states in FMO, it holds that κMN > ΛM and, hence, inter-exciton
coherences decay somewhat faster.

It is interesting to note that the population dynamics (Fig. S4) is much more influenced by
quantum effects in the nuclear motion than the decay of inter-exciton and optical coherences (Fig.
1E in the main text), simply because of the classical violation of the detailed balance principle.
Please note, that there are semiclassical approaches in the literature that are able to circumvent
this deficiency by taking into account the reaction of the quantum (electronic degrees of freedom)
part on the classical (vibrational degrees of freedom) part of the system in an appropriate way
(113 ). It might even be possible to go one step further and describe the motion of the electronic and
vibrational degrees of freedom classically, but ”quantizing” the action variables of the electronic
motion by histogram ”window functions” (114 ).

From a more fundamental point of view it is the quantum mechanical uncertainty principle for the
spatial coordinates and momenta of the electrons and nuclei that is responsible for the directed
energy transfer. If there was no uncertainty for electrons, there would be no discrete excited states
and if there was no uncertainty for nuclei, there would be no preference for the population of low
energy excited states of the electrons (see section S6).

Transformation of the exciton density matrix to the local basis gives

ρmn =
∑
M,N

c(M)
m c(N)

n ρMN(t) , (S40)

where the off-diagonal elements m 6= n contain the spatial coherences between different pigments
m and n. The inter-pigment coherences, resulting at T = 300 K for a δ-pulse excitation at time
zero (as before) are shown in Fig. S5. After some initial fast decaying oscillations (caused by the
inter-exciton coherences created by the δ-pulse excitation), the inter-pigment coherences relax
towards their non-zero equilibrium values, which reflect the delocalization of Boltzmann popu-
lated exciton states. The non-zero equilibrium values of inter-pigment coherences demonstrate
that the site basis is not suitable for an interpretation of optical spectroscopy. The latter always
detects the eigenstates of a system, that can be identified as the basis, in which the equilibrium
off-diagonal elements of the density matrix become zero.

section S5. Exciton relaxation initiated by incoherent transfer from the baseplate

The excitation energy transfer from the baseplate is described by generalized Förster the-
ory, where we take into account the partial localization of exciton states in the FMO protein and
the knowledge about the polarization and the optical lineshape of the low-energy excited state of
the baseplate (115 ). The initial conditions of exciton populations in the FMO protein are chosen
according to the rate constants kb→M for the transfer from the baseplate to the respective exciton
state, ρMM(0) ∝ kb→M , which in generalized Förster theory reads (9 )

kb→M ∝ |VbM |2
∫
dωD′b(ω)DM(ω) , (S41)

where |VbM |2 is the electronic coupling between the transition density of the low-energy state of
the baseplate and that of the Mth exciton state in the FMO protein and D′b(ω) and DM(ω) are the
fluorescence lineshape functions of the low energy baseplate state and the absorption lineshape
function of the Mth exciton state in the FMO protein, respectively. Taking into account that



the low-energy state of the baseplate is polarized in the plane of the baseplate (115 ), that is
perpendicular to the symmetry axis ~e of the FMO protein, and that the exciton states in the
FMO protein are partially localized at neighboring pigments (19 ) (Figs. 1A and 1D of the main
text) exhibiting a different distance to the baseplate, we estimate that

VbM ∝
sin θM

(R0 + ∆RM)3
, (S42)

where θM is the angle between the symmetry axis ~e of the FMO complex and the transition
dipole moment ~µM of the Mth exciton state, R0 is the vertical distance between the baseplate

plane and the center ~R8 of BChl 8 of the FMO protein and ∆RM =
(∑|c(M)

m |>0.3
m

~Rm − ~R8

)
· ~e

corrects for different spatial localizations of exciton states giving rise to different vertical distances
R0+∆RM to the baseplate. ~Rm is the center of BChl m and the sum in ∆RM runs only over those
pigments that have an exciton coefficient with an absolute magnitude larger than 0.3 to exciton
state |M〉. The lineshape function DM(ω) in eq. (S16) is applied together with the parameters of
the Hamiltonian outlined above. For the fluorescence lineshape function of the baseplate we use
the analytical two-level system result (116 )

D′b(ω) =
1

2π

∫ ∞
−∞

dte−i(ω−ωb0)teGb(t)−Gb(0) , (S43)

together with parameters estimated on the basis of a comparison with a recent analysis of ab-
sorption, linear and circular dichroism and anisotropic circular dichroism data (115 ), resulting
in a transition energy ~ωb0 of 12422 cm−1 (corresponding to a wavelength λBP = 805 nm) and a
function Gb(t) = G(t) in eq. (S43) calculated with the spectral density J(ω) that has the same
functional form as that of the B777-complex (10 ) and a Huang-Rhys factor of 1.7. For the FWHM
of the distribution function of the transition energy we obtain 283 cm−1. These parameters have
been estimated from a recent exciton model of the baseplate (115 ), taking into account the effect
of the excitonic coupling on the excitation energies, the exciton-vibrational coupling and the width
of the static distribution function of excitation energies.

The exciton dynamics calculated for T = 300 K is shown in Fig. S6 and compared again to
the classical limit. Similar relaxation times as for the δ-pulse excitation (Fig. S4) are obtained.
Initially, mainly the highest exciton state, which has the largest contribution from BChl 8 and
therefore the closest distance to the baseplate, is excited. Equilibrium is reached in about 1.5 ps
in both the quantum and the classical description of nuclear motion, with the deficiency of the
classical population discussed above. A structural illustration of this deficiency is given in Fig. S8,
where it becomes obvious that only a quantum mechanical description of nuclear motion leads to
a directed energy transfer.

The relative pathways of exciton relaxation are relatively insensitive with respect to the exact
values of the energy of the low-energy excited state of the baseplate and the vertical distance
between BChl 8 and the baseplate plane, as demonstrated in Fig. S7, where the exciton relaxation
for the above parameters (λBP = 805 nm, R0 = 20 Å) are compared to results obtained for
λBP = 815 and 825 nm (117 ) and R0 = 15 and 25 Å, using a quantum mechanical treatment of
the nuclear motion.

Since the transfer from the baseplate most likely takes much longer than the intra FMO
equilibration time, only the relaxed state is relevant for the overall energy transfer process from
the baseplate to the reaction center complex. An explicit inclusion of the baseplate-to-FMO
transfer has to await better defined structural information.
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section S6. Classical description of the nuclear motion

Nuclear motion enters the above theories only in the correlation function C(t) of the local
energy gap of the pigments, which will be calculated classically in the following. For this purpose,
we rewrite the Hamiltonian in eq. (S1) using the completeness relation as

H =
∑
m

(
Em +

∑
ξ

~ωξg(m)
ξ Qξ

)
|m〉〈m|+

m 6=n∑
m,n

Vmn|m〉〈n|

+
∑
ξ

~ωξ
4

(
Q2
ξ + P 2

ξ

)(
|0〉〈0|+

∑
m

|m〉〈m|

)
. (S44)

The energy gap between the mth localized excited state and the ground state is obtained from
the diagonal elements of the above Hamiltonian as

Xm(t) = Em +
∑
ξ

~ωξg(m)
ξ Qξ(t) . (S45)

Since we assume the same local coupling constants g
(m)
ξ of all pigments, we can drop the index m

in the following. Changing back from the dimensionless coordinates Qξ(t) and momenta Pξ(t) to
the original coordinates and momenta qξ = Qξ/

√
2ωξµξ/~ and pξ with the reduced mass µξ and

the frequency ωξ of the ξth normal mode results in

Xm(t) = Em +
∑
ξ

ωξgξ
√

2~ωξµξ qξ(t) , (S46)

and a vibrational Hamiltonian of the electronic ground state

Hvib =
∑
ξ

(
p2ξ

2µξ
+
µξω

2
ξ

2
q2ξ

)
. (S47)

The correlation function of the electronic energy gap of the pigments is defined as

C(t) =
1

~2
〈δX(t)δX(0)〉 , (S48)

where
δX(t) = X(t)− 〈X〉 . (S49)

Here 〈...〉 denotes an ensemble average with respect to Boltzmann distributed initial coordinates
and momenta, defined below, and the time dependence of the energy gap is determined by Hvib

given in eq. (S47). With eq. (S46) we obtain

δX(t) =
∑
ξ

ωξgξ
√

2~ωξµξ (qξ(t)− 〈qξ(t)〉) , (S50)

where the time dependence of the coordinates qξ(t) and momenta pξ(t) is determined by Hamilton’s
classical canonical equations of motion

q̇ξ =
∂

∂pξ
Hvib =

pξ
µξ

(S51)

and

ṗξ = − ∂

∂qξ
Hvib = −µξω2

ξqξ , (S52)



which are solved by

qξ(t) = q0ξ cos(ωξt) +
p0ξ
µξωξ

sin(ωξt) , (S53)

where q0ξ = qξ(t = 0) and p0ξ = pξ(t = 0) are the initial values of the coordinates and momenta.
In the canonical ensemble, the initial momenta and coordinates are Boltzmann distributed and
the ensemble average 〈qξ(t)〉 vanishes because

〈q0ξ〉 ∝
∫ +∞

−∞
dq0ξ q0ξe

−
µξω

2
ξ

2kBT
q20ξ = 0 , (S54)

and

〈p0ξ〉 ∝
∫ +∞

−∞
dp0ξ p0ξe

−
p20ξ

2µξkBT = 0 . (S55)

The correlation function, therefore, becomes

C(t) =
2

~
∑
ξ

ω3
ξµξg

2
ξ 〈qξ(t)q0ξ〉

=
2

~
∑
ξ

ω3
ξµξg

2
ξ

(
cos(ωξt)〈q20ξ〉+ sin(ωξt)〈q0ξp0ξ〉

)
. (S56)

Since the expectation value 〈q0ξp0ξ〉 factorizes, reflecting the fact that in classical physics there
is no correlation between initial coordinates and momenta, we have, using eqs. (S54) and (S55),
that

C(t) =
2

~
∑
ξ

ω3
ξµξg

2
ξ cos(ωξt)〈q20ξ〉 . (S57)

The ensemble average on the r.h.s. is obtained as

〈q20ξ〉 =

∫ +∞
−∞ dq0ξ q

2
0ξe
−
µξω

2
ξ

2kBT
q20ξ∫ +∞

−∞ dq0ξ e
−
µξω

2
ξ

2kBT
q20ξ

=
kBT

µξω2
ξ

, (S58)

and hence the classical correlation function reads

C(t) =
2kBT

~
∑
ξ

ωξg
2
ξ cos(ωξt) . (S59)

The exciton relaxation rate constant kM→K in eq. (S19) is obtained from the real part of the
half-sided Fourier transform of the correlation function C̃Re(ω = ωMK), which is obtained as

C̃Re(ω) =
1

2

∫ ∞
0

dt
[
eiωtC(t) + e−iωtC∗(t)

]
=

1

2

∫ ∞
−∞

dteiωtC(t)

=
πkBT

~
∑
ξ

ωξg
2
ξ [δ(ω − ωξ) + δ(ω + ωξ)] . (S60)

Inserting this expression into eq. (S19) gives for the rate constant

kM→K =
2πkBT

~
γMK

∑
ξ

ωξg
2
ξ [δ(ωMK − ωξ) + δ(ωMK + ωξ)] , (S61)



where ωMK is the transition frequency between the Mth and the Kth exciton state. We note
already that obviously the rate constant kM→K equals kK→M and hence the detailed balance
principle obtained for a quantum mechanical treatment of nuclear motion does not hold. With
the help of the spectral density J(ω) in eq. (S5), the above classical rate constant may be written
as

kM→K =
2πkBT

~
γMK |ωMK |J(|ωMK |) , (S62)

which exactly equals the high-temperature limit of the quantum rate constant, see eqs. (S11) and
(S19), while using 1 + n(ω) ≈ n(ω) ≈ kBT/~ω. Note, however, that the classical rate constant
derived above does not fulfil detailed balance at any finite temperature. It is the neglect of the un-
certainty principle in classical physics that leads to uncorrelated initial momenta and coordinates
〈q0ξp0ξ〉 = 0 and thereby to a time-symmetric real valued correlation function of the energy gap of
the pigments that cannot describe the detailed balance of the rate constant of excitation energy
transfer. The consequences of this violation are seen in the population dynamics of the exciton
states and the local excited states in Figs. S4 and S6. An illustration of the local populations,
assuming incoherent transfer from the baseplate, for a quantum and a classical description of
nuclear motion is presented in Fig. S8. In a quantum description the detailed balance condition
for the rate constant leads to a large equilibrium population of the lowest exciton state, located
at the bottom. In a classical model no such directed energy transfer is obtained.

According to eq. (S13), the function G(t) needed for the description of pure dephasing in the
classical limit (real C(t)) is obtained as∫ t

0

dτ(t− τ)C(τ) = −(G(t)−G(0)) . (S63)

With the C(t) in eq. (S59) we obtain

G(t) = 2
∑
ξ

kBT

~ωξ
cos(ωξt) = 2

∫ ∞
0

dω
kBT

~ω
J(ω) cos(ωt) , (S64)

which is used to derive the classical limit of the damping functions of the inter-exciton and optical
coherences in eqs. (S27) and (S31), respectively. Interestingly, the classical damping functions
provide a qualitatively correct description of the quantum results (Figs. 1E and 1F of the main
text).



fig. S1. Spectral density of the FMO protein. Spectral density J(ω) extracted from fluores-
cence line-narrowing and temperature-dependent absorption data by Wendling et al. (105).
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fig. S2. Matrix elements of the exciton-vibrational coupling of the FMO protein.
Disorder-averaged elements γMK of eqs. (S7) and (S9) of the exciton-vibrational coupling. The
horizontal dashed line is drawn between the diagonal elements in the upper and the off-diagonal
elements in the lower part.
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fig. S3. Linear optical spectra of the FMO protein. Left: Low temperature absorption
(top), linear dichroism (middle) and circular dichroism spectra (bottom). Calculations (solid
lines) are compared with experimental data (111 ) (dashed lines). Right: Temperature dependence
of linear absorption. The upper part contains the experimental (105 ) and the lower part the
calculated spectra.
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fig. S4. Exciton relaxation in the FMO protein initiated by a δ-pulse excitation.
Population dynamics of the exciton states (left) and the local excited states (right) initiated
by a δ-pulse excitation at time zero, calculated for room temperature (300 K). The quantum
mechanical treatment (eqs. (S11) and (S19)) of the nuclear motion in the upper parts is compared
with the classical limit (eq. (S36)) in the lower parts.
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fig. S5. Inter-pigment coherences in the FMO protein. Disorder averaged inter-pigment
coherences ρmn given by eq. (S40) after a δ-pulse excitation at time zero calculated for T = 300
K. The largest equilibrium coherences are labeled as (m,n).

0 500 1000 1500

time (fs)

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

 ρ
m

n
 (

a
.u

.)

(3,4)

(1,2)

(4,7)
(4,5)

(2,3)

(5,6)

fig. S6. Exciton relaxation in the FMO protein initiated by incoherent transfer
from the baseplate. Exciton relaxation in the FMO protein assuming incoherent transfer from
the baseplate, as explained in section S5, calculated for room temperature (300 K). A vertical
distance R0 = 20 Å has been assumed between BChl 8 and the baseplate plane. The left half
shows exciton state populations and the right part populations of locally excited states of the
pigments. The upper and lower parts were obtained using a quantum (eqs. (S11) and (S19)) or
classical (eq. (S36)) description, respectively, for the nuclear motion.
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fig. S7. Dependence of the exciton relaxation in the FMO protein on the baseplate
excitation energy and distance. Populations of exciton states in the upper left part of Fig.
S6 (λBP = 805 nm, R0 = 20 Å) are compared with results obtained for different excitation
wavelengths λBP of the low-energy exciton state of the baseplate (left part) and for different
vertical distances R0 between BChl 8 and the baseplate plane.
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fig. S8. Local population of the excited states in the FMO protein for quantum
mechanical and classical treatment of the nuclear motion. Exciton relaxation in the FMO
protein assuming incoherent transfer from the baseplate, as in Fig. S6, but illustrating the local
populations of excited pigment states at four different times by illuminating the pigments accord-
ingly. Panel a) contains the results obtained by using a quantum description of the nuclear motion
(as in Fig. 1 of the main text) and panel b) shows the respective results of the classical calculations.



Table S1. Parameters of the Hamiltonian of the FMO protein. Site energies (diagonal)
and excitonic couplings (off-diagonal) in holo form of the FMO protein from P. aestuarii,
all in units of cm−1, according to Ref. (17 ). We note that the excitonic coupling V12 = −94.8
cm−1 in the SI of this reference was misprinted with the wrong sign. The correct sign is given here.

BChl 1 2 3 4 5 6 7 8
1 12505 -94.8 5.5 -5.9 7.1 -15.1 -12.2 39.5
2 12425 29.8 7.6 1.6 13.1 5.7 7.9
3 12195 -58.9 -1.2 -9.3 3.4 1.4
4 12375 -64.1 -17.4 -62.3 -1.6
5 12600 89.5 -4.6 4.4
6 12515 35.1 -9.1
7 12465 -11.1
8 12700

movie S1. Illustration of the exciton relaxation in the FMO protein initiated by incoherent
transfer from the baseplate in the presence of a classical bath.

movie S2. Illustration of the exciton relaxation in the FMO protein initiated by incoherent
transfer from the baseplate in the presence of a quantum bath.
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