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1 Model derivations and initial limit cycles for Design 1A through Design 3 

In this section, we introduce the model designs considered in our work. The various models are 

updated and expanded versions of the minimal cell cycle model of Barberis and colleagues [1], 

shown in Supplementary Figure 1. We will start by discussing the original model. 

 

1.1 Notation and assumptions in the minimal cell cycle model 

The starting point is our published minimal cell cycle model [1]. We consider a system of seven 

species: (i) three representing the complexes that Cdk1 forms with the three pairs of B-type 

cyclins, Clb5,6, Clb3,4 and Clb1,2, which we refer to as 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧, and (ii) the inhibitor Sic1, 

which we refer to as 𝑠𝑠, that binds and inhibits all three Clb/Cdk1 complexes (𝑠𝑠 ⋅ 𝑥𝑥, 𝑠𝑠 ⋅ 𝑦𝑦 and 𝑠𝑠 ⋅ 𝑧𝑧). 

In living cells of budding yeast there is a distinction between the roughly constant concentration 

of Cdk1 and the varying concentration of Clb cyclins throughout cell cycle progression. This 

results in varying concentrations of the Clb/Cdk1 complexes; however, this distinction is not 

needed for the modeling purposes presented here. 

The mathematical description of the minimal model is in terms of a system of coupled 

Ordinary Differential Equations (ODEs). Specifically, the model considers: (i) basal degradation 

of all four species in their free form; (ii) basal synthesis of the Clb/Cdk1 complexes; (iii) forward 

activation in the Clb cyclin cascade from one Clb/Cdk1 complex to another through 

phosphorylation of a transcription factor; (iv) backward inhibition in the Clb cascade from one 

Clb/Cdk1 complex to another through the Anaphase-Promoting Complex (APC); (v) reversible 

formation of the ternary complex formed by any of the Clb/Cdk1 complexes and Sic1; (vi) 

degradation of Sic1 in any of the Clb/Cdk1/Sic1 ternary complexes; and (vii) degradation of Clb 

cyclins in the Clb/Cdk1/Sic1 ternary complexes. We consider 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 to be active in the 

binary complexes, and inactive in the ternary complexes with 𝑠𝑠. We also consider that 

degradation of Sic1 can occur when Sic1 is either free or bound to Clb/Cdk1 in the 
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Clb/Cdk1/Sic1 complexes. We refer to reference [1] and Supplementary Table 2 for the 

experimental evidence of the interactions described above. 
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Supplementary Figure 1. Alternative designs of a minimal cell cycle network in budding yeast. Model 

schemes and simulated time courses of waves of Clb/Cdk1 complexes are represented as follows: 

Design 1A (a) and its time course (b); Design 1B and Design 1C (c) and simulated time course for Design 

1C (d); Design 2 and Design 3 (e) and simulated time course for Design 3 (f). First, the minimal cell cycle 

model (Design 1A) was expanded to generate Design 1B (see Section 1.4) by including: (i) a positive 

feedback loop (PFL) by Clb3/Cdk1 on CLB3 (Clb3 PFL); αyy) in c) through a transcription factor [2], (ii) a 

negative feedback loop (NFL) of Clb3/Cdk1 on itself through activation of degradation (Clb3 NFL; γyy in c), 

and (ii) the four known Clb-regulated degradations (inhibitory regulations) mediated by both the Clb/Cdk1 

complexes and Anaphase Promoting Complex (APC) (γzz, γzy, γzx and γyx) (see Fig. 1C in ref. 1 for 

details). Design 1C removes the Cln2/Cdk1-mediated contribution to Sic1 degradation from the 

Clb/Cdk1/Sic1 ternary complexes (red crosses in c). Design 2 includes the salvaging of Clb3/Cdk1 and 

Clb2/Cdk1 upon degradation of Sic1 from the Clb/Cdk1/Sic1 ternary complexes (see green lines in e 

indicated with 𝛿𝛿) (see Section 1.5; such salvaging was already in place for Clb5/Cdk1 upon degradation 

of the Cdk1-Clb5-Sic1 ternary complex in a and c). Design 3 describes the complex formation between 

Sic1 and Clb cyclins by the association equilibrium constant (KA), instead of the forward (k+) and 

backward (k–) parameters in Design 2, as a consequence of the quasi-steady-state approximation, i.e. 

assumes a fast equilibrium between the free forms of Sic1 and Clb/Cdk1 complexes and the ternary 

complexes they form, which is reflected by a high KA value. This implies that steady-state concentration of 

Clb/Cdk1/Sic1 ternary complexes changes with Sic1 dynamics, and that the fraction of free Clb cyclins is 

directly related to free Sic1 at any moment (Supplementary Information, Section 1.6). This assumption is 

supported by in vitro experimental evidence indicating a strong binding of Sic1 to the Clb/Cdk1 

complexes. (a, c and e) Red arrows indicate activation of each CLB gene, thereby of each Clb/Cdk1 

complex, by any previous Clb/Cdk1 complex in the cascade; blue arrows indicate APC-mediated Clb 

inhibition by Clb/Cdk1 complexes, resulting in Clb degradation; black arrows indicate all other reactions; 

and green arrows indicate the progressive changes with respect to the previous kinetic model(s). Dotted 

arrows indicate the Cln(/Cdk1)- and Clb(/Cdk1)-mediated phosphorylation of Sic1 in Clb/Cdk1/Sic1 

ternary complexes, resulting in its degradation. (b, d and f) Time courses representing the total 

concentrations of Clb5, Clb3 and Clb2 as function of time are shown in red, blue and green, respectively 

(for sake of clarity, Sic1 time course has been omitted). Time courses were obtained by simulating the 

kinetic models with the canonical parameter set (see Supplementary Table 1). 
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We assume basal synthesis (𝑣𝑣) of each Clb/Cdk1 complex to be at a constant rate, and 

basal protein degradation (𝛽𝛽) to be proportional to the current concentration of a species. We 

further implement that activation (𝛼𝛼) of one Clb/Cdk1 complex by the previous one occurs 

through activation of a transcription factor, and is thus assumed to be proportional to the 

activating Clb/Cdk1 complex. Inhibition (𝛾𝛾) from a Clb/Cdk1 complex to the previous one is 

considered to occur through the APC, and is thus assumed to be proportional to the product of 

both species involved. Complex formation (𝑘𝑘+) and dissociation (𝑘𝑘−) are proportional to the 

concentrations of the species forming the complex and to the concentration of the complex, 

respectively. Complex dissociation due to Sic1 or Clb degradation from the Clb/Cdk1/Sic1 

ternary complexes (𝛿𝛿 and 𝜖𝜖, respectively) is assumed to be proportional to the complex 

concentration. In our mathematical notation, we will use brackets to denote concentrations and 

the 𝐴𝐴 ⋅ 𝐵𝐵 notation to denote a complex formed by two species 𝐴𝐴 and 𝐵𝐵. In the equations, we 

neglect to mention Cdk1, as it is most abundant in living cells as compared to the Clb cyclins 

that activate it, thus being the limiting species. 

 

1.2 The Barberis 2012 model 

In terms of the notation introduced above, the model from [1] may be represented as follows: 

 
𝑑𝑑[𝑥𝑥]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑥𝑥 − 𝛽𝛽𝑥𝑥[𝑥𝑥] − 𝛾𝛾𝑦𝑦𝑦𝑦[𝑥𝑥][𝑦𝑦]− 𝛾𝛾𝑧𝑧𝑧𝑧[𝑥𝑥][𝑧𝑧] − 𝑘𝑘𝑥𝑥+[𝑠𝑠][𝑥𝑥] + 𝑘𝑘𝑥𝑥−[𝑠𝑠 ⋅ 𝑥𝑥] + 𝛿𝛿𝑥𝑥(1 + [𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑥𝑥] 
𝑑𝑑[𝑦𝑦]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦 − 𝛽𝛽𝑦𝑦[𝑦𝑦] + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥]− 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧][𝑦𝑦] − 𝑘𝑘𝑦𝑦+[𝑠𝑠][𝑦𝑦] + 𝑘𝑘𝑦𝑦−[𝑠𝑠 ⋅ 𝑦𝑦] 
𝑑𝑑[𝑧𝑧]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑧𝑧 − 𝛽𝛽𝑧𝑧[𝑧𝑧] + 𝛼𝛼𝑧𝑧𝑧𝑧[𝑧𝑧] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧]2 + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − 𝑘𝑘𝑧𝑧+[𝑠𝑠][𝑧𝑧] + 𝑘𝑘𝑧𝑧−[𝑠𝑠 ⋅ 𝑧𝑧] 
𝑑𝑑[𝑠𝑠]
𝑑𝑑𝑑𝑑

= −𝛽𝛽𝑠𝑠[𝑠𝑠]− �𝑘𝑘𝑥𝑥+[𝑥𝑥] + 𝑘𝑘𝑦𝑦+[𝑦𝑦] + 𝑘𝑘𝑧𝑧+[𝑧𝑧]�[𝑠𝑠] + 𝑘𝑘𝑥𝑥−[𝑠𝑠 ⋅ 𝑥𝑥] + 𝑘𝑘𝑦𝑦−[𝑠𝑠 ⋅ 𝑦𝑦] + 𝑘𝑘𝑧𝑧−[𝑠𝑠 ⋅ 𝑧𝑧] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑥𝑥]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑥𝑥+[𝑠𝑠][𝑥𝑥] − 𝑘𝑘𝑥𝑥−[𝑠𝑠 ⋅ 𝑥𝑥] − 𝛿𝛿𝑥𝑥(1 + [𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑥𝑥] − 𝜖𝜖𝑥𝑥[𝑠𝑠 ⋅ 𝑥𝑥] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑦𝑦]
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑦𝑦+[𝑠𝑠][𝑦𝑦]− 𝑘𝑘𝑦𝑦−[𝑠𝑠 ⋅ 𝑦𝑦] − 𝛿𝛿𝑦𝑦(1 + [𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑥𝑥] − 𝜖𝜖𝑦𝑦[𝑠𝑠 ⋅ 𝑦𝑦] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑧𝑧]
𝑑𝑑𝑑𝑑

=   𝑘𝑘𝑧𝑧+[𝑠𝑠][𝑧𝑧] − 𝑘𝑘𝑧𝑧−[𝑠𝑠 ⋅ 𝑧𝑧] − 𝛿𝛿𝑧𝑧(1 + [𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑧𝑧] − 𝜖𝜖𝑧𝑧[𝑠𝑠 ⋅ 𝑧𝑧] 
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1.3 The canonical parameter set from the Barberis 2012 model 

Supplementary Table 1 shows the parameter notation from the original model and the 

translation to the notation used in this text. The parameter values are those used in the original 

publication [1]. 

 

Supplementary Table 1. Parameters of the Barberis 2012 model as originally published. The parameter 

names refer to those used in this work, with the matching parameter from the original publication in 

brackets. Note that some parameters might seem to have different values than in the original publication. 

This is due to the fact that, originally, the positive regulations were multiplied by basal synthesis, and the 

negative regulations were multiplied by basal degradation. Here, we incorporate these multiplications into 

the equations. All parameters have units of min-1 when we adopt the convention that concentrations are 

dimensionless. 

 

Parameter Value Parameter Value Parameter Value 
𝑣𝑣𝑥𝑥 (𝑘𝑘1) 0.1 𝛼𝛼𝑦𝑦𝑦𝑦 (𝑘𝑘𝐵𝐵) 1 𝜖𝜖𝑥𝑥 (𝑘𝑘4) 0.01 
𝑣𝑣𝑦𝑦 (𝑘𝑘7) 0.01 𝛼𝛼𝑧𝑧𝑧𝑧 (𝑘𝑘𝐷𝐷) 0.1 𝜖𝜖𝑦𝑦 (𝑘𝑘17) 0.01 
𝑣𝑣𝑧𝑧 (𝑘𝑘9) 0.001 𝛾𝛾𝑦𝑦𝑦𝑦 (𝑘𝑘𝐸𝐸) 0.7 𝜖𝜖𝑧𝑧 (𝑘𝑘13) 0.01 
𝛽𝛽𝑥𝑥 (𝑘𝑘6) 0.7 𝛾𝛾𝑧𝑧𝑧𝑧 (𝑘𝑘𝐹𝐹) 0.7 𝑘𝑘𝑥𝑥+ (𝑘𝑘2) 5 
𝛽𝛽𝑦𝑦 (𝑘𝑘8) 0.7 𝛾𝛾𝑧𝑧𝑧𝑧 (𝑘𝑘𝐺𝐺) 0.7 𝑘𝑘𝑦𝑦+ (𝑘𝑘15) 5 
𝛽𝛽𝑧𝑧 (𝑘𝑘10) 0.7 𝛾𝛾𝑧𝑧𝑧𝑧 (𝑘𝑘𝐻𝐻) 0.7 𝑘𝑘𝑧𝑧+ (𝑘𝑘11) 5 
𝛽𝛽𝑠𝑠 (𝑘𝑘26) 0.001 𝛿𝛿𝑥𝑥 (𝑘𝑘5) 0.05 𝑘𝑘𝑥𝑥− (𝑘𝑘3) 0.5 

𝛼𝛼𝑥𝑥𝑥𝑥 (𝑘𝑘𝐴𝐴) 1 𝛿𝛿𝑦𝑦 (𝑘𝑘18) 0.05 𝑘𝑘𝑦𝑦− (𝑘𝑘16) 0.5 
𝛼𝛼𝑥𝑥𝑥𝑥 (𝑘𝑘𝐶𝐶) 0.1 𝛿𝛿𝑧𝑧 (𝑘𝑘14) 0.05 𝑘𝑘𝑧𝑧− (𝑘𝑘12) 0.5 

 

 

1.4 Design 1 

In this work, we start from a model that builds on the Barberis 2012 model (Supplementary 

Figure 1A) but contains more regulations in less parameters. We assume that several 

parameters are equal across molecular species, i.e. all 𝛿𝛿, 𝜖𝜖,𝑘𝑘+, and 𝑘𝑘− parameters are assumed 

to be equal, allowing us to describe the same regulations with less parameters. This means that 

we assume rates of complex formation and dissociation, Sic1 degradation from the ternary 
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complexes and total degradation of ternary complexes to be equal among all the three species. 

Of note, this procedure reduces the number of parameters from 27 as in the original model to 

19, but the model output for the default parameter set in [1] remains the same, since these 

parameters were already assumed to be equal (see Supplementary Table 1). 

Recently, Fkh2 was identified as a transcription factor of CLB3 transcription, and that Clb3 

may activate Clb2 [2]. Given that Clb3 may phosphorylate Fkh2, a positive feedback loop 

through Fkh2 has been envisioned in the model. In the Barberis 2012 model, negative feedback 

inhibitions among the Clb/Cdk1 complexes were considered; among these, the self-inhibition of 

M phase cyclins. However, in the model this regulation was only implemented for Clb2. Here, 

we extend the model to additionally implement the Clb3 self-inhibition. Consequently, our model 

has two new parameters (𝛼𝛼𝑦𝑦𝑦𝑦, 𝛾𝛾𝑦𝑦𝑦𝑦), increasing the total number of parameters to 21. 

The Barberis 2012 model included a term representing the Cln1,2/Cdk1 phosphorylation on 

Sic1 for its degradation, when the latter is in the Clb/Cdk1/Sic1 ternary complexes. This term 

was incorporated as a constant parameter, because time-varying concentrations of Cln1,2/Cdk1 

were not considered. However, this leads to an issue in the units of the corresponding 

parameter, which was simultaneously used to indicate the phosphorylation of Sic1 mediated by 

the Clb/Cdk1 complexes. For the former, δ should have units of 1/time and, for the latter, units 

of 1/(concentration*time). For this reason, and for simplicity, we now introduce this term as a 

separate parameter λ (increasing the total number of parameters to 22) with units of 1/time and 

with the convention that λ=δ. 

Of note, the Barberis 2012 model did not include any synthesis of Sic1, instead assuming 

that Sic1 level is high at the start of a cell cycle and decays throughout the cell cycle, rising 

again during the M phase to restart the cycle. This means that, by design, the model could not 

generate multiple oscillations in time since this requires resetting of the Sic1 concentration. 

However, in this work we are interested to retrieve sustained oscillations in all four molecular 

species, and for this the synthesis term for Sic1 is required. Therefore, we added the simplest 
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possible synthesis term for Sic1 in the form the of the parameter vs which has units of 

concentration/time. This increases the total number of parameters to 23. With the new 

parameters just introduced, the set of equations describing the model can be written as follows: 

 

𝑑𝑑[𝑥𝑥]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑥𝑥 − βx[𝑥𝑥] − 𝛾𝛾𝑦𝑦𝑦𝑦[𝑥𝑥][𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑥𝑥][𝑧𝑧] − k+[𝑠𝑠][𝑥𝑥] + k−[𝑠𝑠 ⋅ 𝑥𝑥] 
+δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧]) [𝑠𝑠 ⋅ 𝑥𝑥] + λ [s ⋅ x] 

𝑑𝑑[𝑦𝑦]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦 − βy[𝑦𝑦] + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧][𝑦𝑦]− 𝛾𝛾𝑦𝑦𝑦𝑦[𝑦𝑦]2 − k+[𝑠𝑠][𝑦𝑦] + k−[𝑠𝑠 ⋅ 𝑦𝑦] 
𝑑𝑑[𝑧𝑧]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑧𝑧 − βz[𝑧𝑧] + 𝛼𝛼𝑧𝑧𝑧𝑧[𝑧𝑧] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧]2 + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − k+[𝑠𝑠][𝑧𝑧] + k−[𝑠𝑠 ⋅ 𝑧𝑧] 
𝑑𝑑[𝑠𝑠]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠[𝑠𝑠] − k+([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠] + k− ([𝑠𝑠 ⋅ 𝑥𝑥] + [𝑠𝑠 ⋅ 𝑦𝑦] + [𝑠𝑠 ⋅ 𝑧𝑧])  
𝑑𝑑[𝑠𝑠 ⋅ 𝑥𝑥]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑥𝑥] − k−[𝑠𝑠 ⋅ 𝑥𝑥] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑥𝑥] − ϵ[𝑠𝑠 ⋅ 𝑥𝑥] −  λ [s ⋅ x] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑦𝑦]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑦𝑦] − k−[𝑠𝑠 ⋅ 𝑦𝑦] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑦𝑦] − ϵ[𝑠𝑠 ⋅ 𝑦𝑦] −  λ [s ⋅ y] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑧𝑧]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑧𝑧] − k−[𝑠𝑠 ⋅ 𝑧𝑧] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑧𝑧] − ϵ[𝑠𝑠 ⋅ 𝑧𝑧] −  λ [s ⋅ z] 
 
 

Of note, the Barberis 2012 model does not salvage Clb3,4/Cdk1 and Clb1,2/Cdk1 when Sic1 

is degraded in the Clb/Cdk1/Clb ternary complexes, whereas it does recover Clb5,6/Cdk1, as 

experimentally demonstrated [3]. This can be seen in the equations from the 𝛿𝛿 term occurring 

only for 𝑥𝑥 and not for 𝑦𝑦 and 𝑧𝑧. Last, upon Clb degradation from the Clb/Cdk1/Clb ternary 

complexes, Sic1 is not recycled, as it can be seen from the equation for the evolution of [𝑠𝑠], 

since no terms with 𝜖𝜖 occur. Biologically, this means that we assume that Sic1 is not available to 

function, i.e. it is inactivated due to re-localization to the nucleus. 

Since we have the ability to ‘turn off’ certain interactions by setting the corresponding 

parameters to 0, here we investigate three different scenarios for Design 1: A, B and C. For 

each scenario, we show a transient oscillation (𝑣𝑣𝑠𝑠 = 0), a limit cycle (𝑣𝑣𝑠𝑠 ≠ 0) and we analyze the 

control on the period of the oscillations. 
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COPASI [4] was used to find initial parameter sets that yielded sustained cyclin/Cdk 

oscillations. The slider functionality of COPASI allows for the manual adjustment of one or 

several model parameters, and for the visualization of the output of a given combination of 

parameter sets. Alternatively, limit cycles may be found by using the Manipulate function in 

Mathematica or the bifurcation software such as MATCONT [5,6] and XPPAUT [7]. COPASI 

files for designs 1A–3 are available as Supplementary Code Repository. 

Once a parameter set that generated oscillatory behavior had been identified, the control 

exerted by the model’s parameters on the period of the oscillation was analyzed. Control can be 

quantified by control coefficients: logarithmic derivatives of system properties, e.g. fluxes and 

concentrations, with respect to kinetic parameters. Summation laws have been derived about 

control coefficients for parameters with dimension 1/time with respect to both autonomous and 

forced oscillations [8,9]. Taking log-log derivatives of a period (or any other derivative of a 

stationary state function) is analogous to the concept of a control coefficient for a steady-state 

flux or concentration i.e. 𝐶𝐶𝑝𝑝𝜏𝜏 = 𝜕𝜕 log(𝜏𝜏) /𝜕𝜕log (𝑝𝑝) [10,11]. The sensitivity analysis on limit cycles by 

control coefficients was conducted by using the PeTTSy toolbox in MATLAB [12]. The model 

equations in MATLAB were converted in the specific format required by PeTTSy; furthermore, 

files containing parameters and initial conditions were defined as specified in the PeTTSy 

manual. With these three files (equations, parameters, initial conditions) the model can be read 

by PeTTSy. The PeTTSy input files are available as part of the Supplementary Code 

Repository. Once a model has been imported into PeTTSy, a new parameter set may be 

defined that generates oscillations. PeTTSy then integrates the equations and returns a time 

course. At this point, the user may run the Derivatives function and will be prompted to accept or 

reject the solution. According to the PeTTSy documentation it is crucial, for accuracy reasons, to 

accept only solutions with a log [(condition number)] < 36. Typically, we used 400 time blocks to 

guarantee that this occurred for the models that we considered. After the calculation of the 

derivatives, the sensitivity of the period with respect to parameter changes was analyzed. 
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1.4.1 Design 1A: No inhibition through the APC 

To start with, we considered the model presented in Fig. 2 of [1] (Supplementary Figure 1A). 

In Supplementary Figure 2, the evolution over one cell cycle is plotted by using the equations 

introduced above, and for the parameter values specified in Supplementary Table 1, with all γ 

parameters, αyy and vs set equal to 0. Supplementary Figure 2A shows a transient oscillation 

in the total Clb/Cdk1 concentrations that exhibits their sequential rise and (near simultaneous) 

fall over time. Of note, waves of the total concentrations arise predominantly due to the 

concentrations of the Clb/Cdk1/Sic1 ternary complexes, although waves can be also observed 

for the concentration of Clb/Cdk1 complexes (Supplementary Figure 2B). With regard to the 

parameter set, cyclin degradation was considered to be of several orders of magnitude faster 

when in complex with Cdk1 alone (β) as compared to degradation from the Clb/Cdk1/Sic1 

ternary complexes (ε). Biologically, this translates to a small likelihood of cyclin degradation 

from the ternary complexes. 

This model is able to exhibit limit cycles when a shift in the parameter set occurs. When we 

simply turn on the synthesis of Sic1 by setting vs equal to 0.3. Dampened transient oscillations 

are shown in Supplementary Figure 3. Sustained oscillations are found when increasing the 

rate of ternary complex formation from 5 to 20 (see Supplementary Figure 4); the sustained 

oscillation is a limit cycle with a period of roughly 113 minutes. 

Sensitivity analysis of the period of oscillations points to a few key parameters controlling the 

period, namely: βx, ε, vs, λ, vx. The former three parameters yield positive derivatives, whereas 

the latter two parameters yield negative derivatives (see Supplementary Figure 5). Intriguingly, 

these parameters controlling the period length are all either basal synthesis or basal 

degradation rates for various species in the model. Moreover, the parameters referring to the 

regulations among the Clb/Cdk1 complexes do not control significantly the period length. 
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Supplementary Figure 2. Time courses for Design 1A. (Top) time courses for the total concentrations of 

the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. (Bottom-left) time courses for total 

Sic1, Sic1 in complex with Clb/Cdk1 complexes, and Sic1. (Bottom-right) time courses for the binary 

(Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes. 
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Supplementary Figure 3. Dampened transient oscillations in Design 1A, when switching on Sic1 

synthesis but keeping all other parameters as in Supplementary Table 1. 

 

 

 
 

Supplementary Figure 4. Sustained oscillations in Design 1A. (Left) Limit cycle for the total 

concentrations of the four species. (Right) 3D view of the limit cycle in the Clb5-Clb2-Sic1 space. 
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Supplementary Figure 5. Control coefficients of cell cycle times, obtained as logarithmic period 

derivatives for Design 1A. We normalized the derivative by taking the natural logarithm in both the period 

and the parameter, to end with a measurement of relative change in the period given a relative change in 

a parameter. This is akin to the definition of control coefficients. The sum of these control coefficients was 

equal to –1. 

 

 

1.4.2 Design 1B: Regulatory inhibitions and Clb3 positive and negative feedback loops 

The Design 1B includes the Clb/Cdk1-mediated inhibition on Clb/Cdk1 complexes [13] and the 

potential of Clb3 self-activation, as we have recently proposed [2] (Supplementary Figure 1C). 

We also include the potential of Clb3 self-inhibition, similarly to that identified on Clb2/Cdk1 [14]. 

We assume, as we consistently do, that self-activation and self-inhibition are proportional to the 

protein concentration, in this case 𝑦𝑦. For this extended model, we set the inhibitory parameters 

(γ) to a non-zero value, and add self-activation and self-inhibition terms to the Clb3 (y) ODE, 

where we assume the new parameters to have the values 𝛼𝛼𝑦𝑦𝑦𝑦 = 0.1 and 𝛾𝛾𝐴𝐴𝐴𝐴 = 0.7, i.e. all 

Clb/Cdk1-mediated inhibitions have the same parameter value as in the Barberis 2012 model 

(Supplementary Table 1). In Supplementary Figure 6, the time course for the canonical 
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parameter is plotted for Design 1B. Of note, the peaks of total Clb/Cdk1 concentrations appear 

slightly earlier as compared to Design 1A. 

Activating Sic1 synthesis and increasing the Clb/Cdk1/Sic1 ternary complex formation rate, 

i.e. using the same parameter set as for Design 1A, we again find sustained oscillations, now 

with a period of roughly 95 minutes (see Supplementary Figure 7). Of note, this mirrors the 

anticipation of the Clb/Cdk1 waves in the transient oscillations by a decrease in the limit cycle 

period. We repeated the sensitivity analysis on the period of the sustained oscillations (see 

Supplementary Figure 8), which show the same qualitatively results as compared to Design 

1A. Interestingly, none of the newly added inhibitory parameters (γ’s) nor γyy have much control 

over the period of oscillations. 

 

 
 

Supplementary Figure 6. Time courses for Design 1B. (Top) time courses for the total concentrations of 

the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. (Bottom-left) time courses for total 

Sic1, Sic1 in complex with Clb/Cdk1 complexes, and Sic1. (Bottom-right) time courses for the binary 

(Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes. 
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Supplementary Figure 7. Sustained oscillations in Design 1B. (Left) Limit cycle for the total 

concentrations of the four species. (Right) 3D view of the limit cycle in the Clb5-Clb2-Sic1 space. 
 

 

 
 
Supplementary Figure 8. Control coefficients of cell cycle times, obtained as logarithmic period 

derivatives for Design 1B. 
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1.4.3 Design 1C: Neglecting Cln1,2/Cdk1 on Sic1 degradation from Clb/Cdk1/Sic1 ternary 

complexes 

To simplify the model further, we neglect the λ parameter, i.e. λ=0, which was added in the 

Barberis 2012 model as a way to include basal levels of Sic1 degradation from the 

Clb/Cdk1/Sic1 ternary complexes (possibly due to Cln1,2/Cdk1) (red crosses in Supplementary 

Figure 1C). However, this parameter does not change the structure of the model, and its effect 

can be compensated for by ε and δ. In Supplementary Figure 9, the transient oscillations for 

the canonical parameter is plotted for Design 1C. Of note, the peaks of total Clb/Cdk1 

concentrations appear later as compared to Design 1B. 

To obtain sustained oscillations in Design 1C, a number of parameters had to be altered. 

Ultimately, autonomous oscillations were obtained varying the following parameters as 

compared to the limit cycle parameter set for Design 1A and Design 1B: vs = 0.18, βs = 0.003, δ 

= 0.1, λ = 0, ε = 0.005. The resulting limit cycle is plotted in Supplementary Figure 10, and has 

a period of roughly 96 minutes. 

The sensitivity analysis of the sustained oscillations is shown in Supplementary Figure 11. 

Some changes may be observed as compared to Design 1B. There is a significant increase in 

the absolute value of the control of most parameters (note the difference in y-axis values as 

compared to Supplementary Figure 8) but especially the control coefficients for vx, vs,  βx, δ, 

αxy and αyz increase in absolute value. This may be understood by the fact that λ had significant 

control in Design 1A and Design 1B and, in its absence, other parameters have to ‘take over’ 

this control. It appears that the δ parameter ‘takes over’ the control that was previously of λ, the 

other parameters that are changed in terms of their control. Therefore, there may be some 

complex systemic compensation for the absence of basal Sic1 degradation from the 

Clb/Cdk1/Sic1 ternary complex that is not dependent on the free Clb/Cdk1 concentrations. 
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Supplementary Figure 9. Time courses for Design 1C. (Top) time courses for the total concentrations of 

the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. (Bottom-left) time courses for total 

Sic1, Sic1 in complex with Clb/Cdk1 complexes, and Sic1. (Bottom-right) time courses for the binary 

(Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes. 
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Supplementary Figure 10. Sustained oscillations in Design 1C. (Left) Limit cycle for the total 

concentrations of the four species. (Right) 3D view of the limit cycle in the Clb5-Clb2-Sic1 space. 
 

 

 
 
Supplementary Figure 11. Control coefficients of cell cycle times, obtained as logarithmic period 

derivatives for Design 1C. Of note, the control by λ has switched to parameter δ, and the control by vx, vs,  

βx and αxy has significant increased as compared to Design 1B. 
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1.5 Design 2: Including Clb3/Cdk1 and Clb3/Cdk1 salvaging 

Design 2 includes the salvaging of Clb3/Cdk1 and Clb2/Cdk1 complexes when Sic1 is degraded 

from the Clb/Cdk1/Sic1 ternary complexes, as previously demonstrated for Clb5/Cdk1 [3] 

(Supplementary Figure 1E). 

 

𝑑𝑑[𝑥𝑥]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑥𝑥 − βx[𝑥𝑥] − 𝛾𝛾𝑦𝑦𝑦𝑦[𝑥𝑥][𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑥𝑥][𝑧𝑧] − k+[𝑠𝑠][𝑥𝑥] + k−[𝑠𝑠 ⋅ 𝑥𝑥] 
+δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧]) [𝑠𝑠 ⋅ 𝑥𝑥] 

𝑑𝑑[𝑦𝑦]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦 − βy[𝑦𝑦] + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧][𝑦𝑦]− 𝛾𝛾𝑦𝑦𝑦𝑦[𝑦𝑦]2 − k+[𝑠𝑠][𝑦𝑦] + k−[𝑠𝑠 ⋅ 𝑦𝑦]

+ δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧]) [𝑠𝑠 ⋅ 𝑦𝑦] 
𝑑𝑑[𝑧𝑧]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑧𝑧 − βz[𝑧𝑧] + 𝛼𝛼𝑧𝑧𝑧𝑧[𝑧𝑧] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧]2 + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − k+[𝑠𝑠][𝑧𝑧] + k−[𝑠𝑠 ⋅ 𝑧𝑧]
+ δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧]) [𝑠𝑠 ⋅ 𝑧𝑧] 

𝑑𝑑[𝑠𝑠]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠[𝑠𝑠] − k+([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠] + k− ([𝑠𝑠 ⋅ 𝑥𝑥] + [𝑠𝑠 ⋅ 𝑦𝑦] + [𝑠𝑠 ⋅ 𝑧𝑧])  
𝑑𝑑[𝑠𝑠 ⋅ 𝑥𝑥]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑥𝑥] − k−[𝑠𝑠 ⋅ 𝑥𝑥] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑥𝑥] − ϵ[𝑠𝑠 ⋅ 𝑥𝑥] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑦𝑦]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑦𝑦] − k−[𝑠𝑠 ⋅ 𝑦𝑦] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑦𝑦] − ϵ[𝑠𝑠 ⋅ 𝑦𝑦] 
𝑑𝑑[𝑠𝑠 ⋅ 𝑧𝑧]
𝑑𝑑𝑑𝑑

= k+[𝑠𝑠][𝑧𝑧] − k−[𝑠𝑠 ⋅ 𝑧𝑧] − δ([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])[𝑠𝑠 ⋅ 𝑧𝑧] − ϵ[𝑠𝑠 ⋅ 𝑧𝑧] 
 
 

Of note, positive δ terms in the ODEs for y and z have been added. The transient oscillations 

for the canonical parameter set for Design 2 are shown in Supplementary Figure 12. The 

differences with the transient oscillations observed for Design 1C are negligible. 

To obtain sustained oscillations in Design 2, a number of parameters had to be altered. 

Ultimately, autonomous oscillations were obtained varying the following parameters as 

compared to the limit cycle parameter set for Design 1A and Design 1B: vx  = 0.09, vs  = 0.2, βs 

= 0.005, δ = 0.05. The resulting limit cycle is plotted in Supplementary Figure 13, and has a 

period of roughly 182 minutes. 

The sensitivity analysis of the sustained oscillations is shown in Supplementary Figure 14. 

The results are generally similar to those obtained for Design 1C. 
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Supplementary Figure 12. Time courses for Design 2. (Top) time courses for the total concentrations of 

the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. (Bottom-left) time courses for total 

Sic1, Sic1 in complex with Clb/Cdk1 complexes, and Sic1. (Bottom-right) time courses for the binary 

(Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes. 
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Supplementary Figure 13. Sustained oscillations in Design 2. (Left) Limit cycle for the total 

concentrations of the four species. (Right) 3D view of the limit cycle in the Clb5-Clb2-Sic1 space. 
 

 

 
 
Supplementary Figure 14. Control coefficients of cell cycle times, obtained as logarithmic period 

derivatives for Design 2. Despite some numeric changes, the general direction and relative size of the 

derivatives are similar as compared to the analysis of Design 1C. 
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1.6 Design 3: The quasi-steady-state (QSS) model 

Design 3 refers to a model including a quasi-steady-state approximation on the ternary complex 

formation between Clb/Cdk1 complexes and Sic1 (Supplementary Figure 1E). Although this 

assumption involves removal of one parameter, the mathematical description of the model is 

significantly altered. 

 

1.6.1 Equations for total concentrations 

Starting from Design 2, the system of equations was re-written in terms of the total 

concentrations of the four species considered. The total concentration of the Clb/Cdk1 

complexes, i.e. for Clb5: 𝑥𝑥𝑇𝑇 = [𝑥𝑥] + [𝑠𝑠 ⋅ 𝑥𝑥] and analogous formulas 𝑦𝑦𝑇𝑇 and 𝑧𝑧𝑇𝑇, and Sic1, i.e. 

[𝑠𝑠𝑇𝑇] = [𝑠𝑠] + [𝑠𝑠 ⋅ 𝑥𝑥] + [𝑠𝑠 ⋅ 𝑦𝑦] + [𝑠𝑠 ⋅ 𝑧𝑧], evolve according to the following: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥 − βx[𝑥𝑥]− 𝛾𝛾𝑦𝑦𝑦𝑦[𝑥𝑥][𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑥𝑥][𝑧𝑧]  − ϵ[𝑠𝑠 ⋅ 𝑥𝑥] 

𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑦𝑦 − βy[𝑦𝑦] + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧][𝑦𝑦] − 𝛾𝛾𝑦𝑦𝑦𝑦[𝑦𝑦]2 − ϵ[𝑠𝑠 ⋅ 𝑦𝑦] 

𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧 − βz[𝑧𝑧] + 𝛼𝛼𝑧𝑧𝑧𝑧[𝑧𝑧] − 𝛾𝛾𝑧𝑧𝑧𝑧[𝑧𝑧]2 + 𝛼𝛼𝑥𝑥𝑥𝑥[𝑥𝑥] + 𝛼𝛼𝑦𝑦𝑦𝑦[𝑦𝑦] − ϵ[𝑠𝑠 ⋅ 𝑧𝑧] 

𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠[𝑠𝑠] − �𝜖𝜖 + 𝛿𝛿([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])�([𝑠𝑠 ⋅ 𝑥𝑥] + [𝑠𝑠 ⋅ 𝑦𝑦] + [𝑠𝑠 ⋅ 𝑧𝑧]) 

 

1.6.2 The quasi-steady-state approximation 

We assume that Clb/Cdk1/Sic1 ternary complex formation and/or dissociation (k+ and k-) 

happen on a faster time-scale as compared to the other processes considered in the model. 

This implies that the ratio of active and ternary inactive complexes is at steady-state for a given 

Sic1 concentration. If we assume ternary complex degradation (δ, ε) is relatively small, the 

equilibrium condition implies the following: 
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k−[𝑥𝑥 ⋅ 𝑠𝑠] = k+[𝑥𝑥][𝑠𝑠] 

[𝑥𝑥 ⋅ 𝑠𝑠] = 𝐾𝐾𝐴𝐴[𝑥𝑥][𝑠𝑠] 

 

with 𝐾𝐾𝐴𝐴 = k+
k−

= 1
𝐾𝐾𝐷𝐷

, where 𝐾𝐾𝐴𝐴 and 𝐾𝐾𝐷𝐷 are the association and dissociation constants, 

respectively. Similar equations hold for 𝑦𝑦 and 𝑧𝑧. This implies the following: 

 

[𝑥𝑥𝑇𝑇] = [𝑥𝑥] + [𝑥𝑥 ⋅ 𝑠𝑠] 

= [𝑥𝑥](1 + 𝐾𝐾𝐴𝐴[𝑠𝑠]) 

=
1
𝑓𝑓
⋅ [𝑥𝑥] 

 

where the variable 𝑓𝑓([𝑠𝑠]) is introduced as follows: 

 

𝑓𝑓([𝑠𝑠]) =
1

1 + [𝑠𝑠]𝐾𝐾𝐴𝐴
 

 

Of note, f is a quantity that varies between 0 and 1. Since [𝑥𝑥] = 𝑓𝑓 ⋅ [𝑥𝑥𝑇𝑇], 𝑓𝑓 can be interpreted 

as the fraction of Clb/Cdk1 complex which is active, i.e. not in complex with Sic1, and that this 

fraction depends on the free Sic1 concentration [𝑠𝑠]. Therefore, 𝑓𝑓([𝑠𝑠]) is also time-dependent 

since [𝑠𝑠] is time-dependent. 𝐾𝐾𝐷𝐷 = 1/𝐾𝐾𝐴𝐴 represents the concentration [𝑠𝑠] for which 𝑓𝑓([𝑠𝑠]) = 1/2. 

Of note, since 𝑥𝑥 = 𝑓𝑓 ⋅ [𝑥𝑥𝑇𝑇] we have that [𝑥𝑥 ⋅ 𝑠𝑠] = (1 − 𝑓𝑓) ⋅ [𝑥𝑥𝑇𝑇]. 

 

1.6.3 The quasi-steady-state model 

The quasi-steady-state assumption was incorporated in the expression of the total 

concentrations. The assumption can be considered for each Clb/Cdk1 species 𝑥𝑥, 𝑦𝑦 or 𝑧𝑧 
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independently. The introduced variable 𝑓𝑓([𝑠𝑠]) depends on 𝐾𝐾𝐴𝐴, but 𝐾𝐾𝐴𝐴 depends only on k+ and k-, 

which are the same for 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧. Hence, 𝑓𝑓([𝑠𝑠]) applies to all three Clb/Cdk1 complexes.  

The equation for f has to be supplemented by an equation specifying the free Sic1 

concentration [𝑠𝑠] at any moment in time. From the mass-balance for 𝑠𝑠 we derive that: 

 

[𝑠𝑠𝑇𝑇] = [𝑠𝑠] + [𝑠𝑠 ⋅ 𝑥𝑥] + [𝑠𝑠 ⋅ 𝑦𝑦] + [𝑠𝑠 ⋅ 𝑧𝑧] 

= [𝑠𝑠]�1 + 𝐾𝐾𝐴𝐴([𝑥𝑥] + [𝑦𝑦] + [𝑧𝑧])� 

= [𝑠𝑠] �1 + 𝐾𝐾𝐴𝐴
[𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]

1 + [𝑠𝑠]𝐾𝐾𝐴𝐴
� 

 

Multiplying out the fraction, we get a quadratic equation in [𝑠𝑠], as follows: 

 

[𝑠𝑠𝑇𝑇](1 + [𝑠𝑠]𝐾𝐾𝐴𝐴) = [𝑠𝑠]�(1 + [𝑠𝑠]𝐾𝐾𝐴𝐴) + 𝐾𝐾𝐴𝐴([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])� 

0 =   [𝑠𝑠]2 + �
1
𝐾𝐾𝐴𝐴

+ [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] − [𝑠𝑠𝑇𝑇]� [𝑠𝑠] −
[𝑠𝑠𝑇𝑇]
𝐾𝐾𝐴𝐴

 

 

We find an expression for [𝑠𝑠] by solving quadratic equation and taking the positive root, as 

follows: 

 

[𝑠𝑠] = −

1
𝐾𝐾𝐴𝐴

+ [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] − [𝑠𝑠𝑇𝑇]

2
+ ��

1
𝐾𝐾𝐴𝐴

+ [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] − [𝑠𝑠𝑇𝑇]

2 �

2

+
[𝑠𝑠𝑇𝑇]
𝐾𝐾𝐴𝐴

 

 

Incorporating the quasi-steady-state assumption in the system for the total concentrations is 

achieved by writing down the equations for the total concentrations of the three Clb/Cdk1 

species and Sic1 and replacing every occurrence of [𝑥𝑥] with 𝑓𝑓[𝑥𝑥𝑇𝑇] and [𝑠𝑠 ⋅ 𝑥𝑥] with (1 − 𝑓𝑓)[𝑥𝑥𝑇𝑇]. 
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This is done similarly for 𝑦𝑦 and 𝑧𝑧. The complete QSS model is defined by a system of four first-

order non-linear ODEs for the total concentrations of the species together with the equations for 

f and s. For clarity and brevity of the equations, the expressions for [𝑠𝑠] and 𝑓𝑓 are written 

separately, but they are to be simply substituted into the ODEs. In summary: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥 − 𝛽𝛽𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑧𝑧𝑇𝑇]− 𝜖𝜖(1 − 𝑓𝑓)[𝑥𝑥𝑇𝑇] 

𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦 − 𝛽𝛽𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑦𝑦𝑇𝑇]2 − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑦𝑦𝑇𝑇][𝑧𝑧𝑇𝑇] − 𝜖𝜖(1 − 𝑓𝑓)[𝑦𝑦𝑇𝑇] 

𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧 − 𝛽𝛽𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑧𝑧𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑧𝑧𝑇𝑇]2 − 𝜖𝜖(1 − 𝑓𝑓)[𝑧𝑧𝑇𝑇] 

𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠[𝑠𝑠] − �ϵ + δ 𝑓𝑓 ([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])�(1 − 𝑓𝑓)([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]) 

 

The concentrations of the binary (Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes can be 

deduced by multiplying the total concentrations by 𝑓𝑓 and 1 − 𝑓𝑓, respectively. 

 

1.6.4 Numerical validation of the quasi-steady-state approximation 

As a preliminary theoretical validation of our modeling approach, we explore the discrepancy 

between Design 2 equations and the quasi-steady-state assumption in Design 3. If this 

assumption is satisfied, by high parameter values for Clb/Cdk1/Sic1 ternary complex formation 

and/or dissociation in Design 2, we would expect similar results between the two models. 

Conversely, if this assumption breaks down and these parameters become small, the two 

models should disagree in their behavior. 

To test this assumption, we consider the canonical parameter set and simulate both models. 

We map the KA parameter in the QSS model to the k+ and k- parameters in the standard model 

through the rule k+ = 𝐾𝐾𝐴𝐴 k−. In the canonical parameter set KA = 10. While keeping 𝐾𝐾𝐴𝐴 constant 
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(i.e. equal to 10), we can vary either k+ or k- and keep track of the model behavior. In 

Supplementary Figure 15, the discrepancy between the behavior of both models is shown, 

measured in terms of the Average Relative Difference, i.e. 𝐴𝐴𝐴𝐴𝐴𝐴 =

1
#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅#𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∑ ∑ | 𝑥𝑥(𝑡𝑡)−𝑥𝑥∗(𝑡𝑡)
𝑥𝑥(𝑡𝑡) |𝑡𝑡𝑥𝑥  for the canonical parameter set but at different values for k+ 

and k– at constant ratio KA, where x indicates the total concentrations of each of the four species 

(Sic1, Clb5, Clb3, Clb2) at time t in Design 2, and x* indicates the same in Design 3. 𝑡𝑡 indicates 

the time points at which the ODE solver returns the solution. As shown in Supplementary 

Figure 15, for high KA values the QSS model numerically returns the same behavior as Design 

2. Therefore, we expect all results to be roughly similar for both Design 2 and Design 3. 

Transient oscillations for Design 3 are plotted in Supplementary Figure 16. To obtain 

sustained oscillations in Design 3, we used the same parameter set as for Design 2. The 

resulting limit cycle is plotted in Supplementary Figure 17, and has a period of roughly 226 

minutes. The sensitivity analysis of the sustained oscillations is shown in Supplementary 

Figure 18. The results are generally similar to those obtained for Design 2 and Design 1C. 

 

 
 
Supplementary Figure 15. Analysis of the validity of the QSS assumption in the parameter space. The 

sum of squared errors (SSE) is measured between the model with (Design 3) and without (Design 2) the 

assumption. The k- parameter is varied along the continuous line, whereas the k+ parameter is varied 

along the dashed line, always for constant KA. The two models exhibit a similar behavior for higher values 

of k+ and k-. 
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Supplementary Figure 16. Time courses for Design 3. (Top-left) time courses for the total concentrations 

of the three Clb/Cdk1 complexes: Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. (Top-tight) Plot of the function 𝑓𝑓 

over time. (Bottom-left) time courses for total Sic1, Sic1 in complex with Clb/Cdk1 complexes, and Sic1. 

(Bottom-right) time courses for the binary (Clb/Cdk1) and ternary (Clb/Cdk1/Sic1) complexes. 

 

 
 
Supplementary Figure 17. Sustained oscillations in Design 3. (Left) Limit cycle for the total 

concentrations of the four species. (Right) 3D view of the limit cycle in the Clb5-Clb2-Sic1 space. 
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Supplementary Figure 18. Control coefficients of cell cycle times, obtained as logarithmic period 

derivatives for Design 3. Of note, despite some numeric changes, the general direction and relative size 

of the derivatives are similar as compared to the analysis of Design 2. 

 

 

2 Summary of autonomous oscillations for designs 1A–3 

All five models corresponding to the designs illustrated in Supplementary Figure 1 are able to 

yield sustained oscillations in the form of limit cycles. For each design, initial parameter sets 

resulting in limit cycles were identified through a manual adjustment of one or several model 

parameters through the slider functionality in COPASI [4], starting from the canonical parameter 

set [1] (Supplementary Table 1).  

We quantified the control on the period of the model parameters (Supplementary Figures 5, 

8, 11, 14 and 18). The analysis of our models indicates that this control is shared among several 

parameters, as it has been observed in other biochemical oscillatory systems for which the 

function of the oscillation is unclear [15]. This is the first time that a distributed control is found 

for an oscillation as functional as an autonomous cell cycle. The results recover the fact that the 

sum of the control coefficients on the period of oscillations for all the parameters with dimension 
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1/time must equal –1 [8]. Control coefficients of (–)1 indicate that the controlled property is 

(inversely) proportional to the controlling parameter. Among the parameters that exerted a more 

considerable control in Design 3 (i.e. an absolute value of the control coefficient > 2), some 

increased (vs, βx, βy, KA, ε) and some decreased (negative control coefficient; vx, αxy, αyz, δ) the 

period of oscillations. The latter correspond to the parameters that activate cell cycle 

progression by decreasing the period. Indeed, they stimulate the formation of Clb5/Cdk1, 

Clb3/Cdk1, Clb2/Cdk1 and the degradation of Sic1, respectively. Conversely, activation of the 

former should inhibit cell cycle progression, by stimulating Sic1 formation, dissociation of 

Clb5/Cdk1 and Clb3/Cdk1 and by favoring the formation and degradation of the ternary 

Clb/Cdk1/Sic1 complex. The control that these parameters exhibit is conserved between 

designs 1C, 2 and 3 (Supplementary Figures 11, 14 and 18, respectively). Strikingly, the Clb3 

PFL (associated to the parameter αyy), the Clb3 NFL (γyy) – as well as the Clb2 PFL (αzz) and 

the Clb2 NFL (γzz) – and the four known Clb-regulated inhibitory regulations mediated by both 

the Clb/Cdk1 complexes and Anaphase-Promoting Complex, APC (see Section 1.1) exerted 

almost no control over the period of oscillations. 

 

 

3 Designs 4 through 9: Inhibitory regulations that may boost oscillatory potential 

Below we briefly highlight the changes in the equations for Design 4 through Design 9 as 

compared to Design 3. 

 

3.1 Design 4 

Design 4 entails inhibition of Clb5 synthesis by Clb2/Cdk1. The SBF transcription factor, formed 

by Swi4 and Swi6, promotes transcription of the G1 phase cyclin genes CLN1 and CLN2; the 

MBF transcription factor, formed by Mbp1 and Swi6, promotes transcription of the S phase 

cyclin genes CLB5 and CLB6. Genetic evidence indicates that CLB2 and SWI6 are functionally 
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related [16], and Clb2 has been shown to interact physically with Swi4, thus repressing 

transcription of the G1 cyclins [17]. Inhibition of the G1 cyclins translates to an effective 

inhibition of the Clb5/Cdk1 activity, due to the lack of the PFL between Cln2/Cdk1 and SBF/MBF 

[18] and to the lifted inhibition of Sic1 by Cln1,2/Cdk1 [19]. 

The altered ODE for Clb5 (x) is now written as follows: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥(
1

1 + 𝑧𝑧𝑇𝑇
𝐾𝐾𝑧𝑧𝑧𝑧

) − 𝛽𝛽𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑧𝑧𝑇𝑇] − 𝜖𝜖(1 − 𝑓𝑓)[𝑥𝑥𝑇𝑇] 

 

This structural change in the equations with the inhibitory term is representative for all 

subsequent designs. Of note, vx, which used to represent the synthesis of Clb5, is now the Vmax 

of the synthesis, which is attained when Clb2 is not present. 

 

3.2 Design 5 

Design 5 entails inhibition of Sic1 synthesis by Clb2/Cdk1 through the SWI5 transcription factor. 

During the G2 phase, Cdk1 phosphorylates specific serine residues of Swi5 near the NLS 

(Nuclear Localization Sequence) at its C-terminal, in order to keep Swi5 sequestered in the 

cytoplasm [20], effectively inhibiting SIC1 transcription. The Cdk-dependent phosphorylation 

reaction may be reversed by the phosphatase Cdc14 [21], which thus contributes to SIC1 

transcription. Design 5 describes the inhibition of SIC1 transcription mediated by the Clb/Cdk1 

activity, reflecting the likely scenario where the most abundant Cdk1 activity is due to 

Clb2/Cdk1. 

The altered ODE for Sic1 (s) is now written as follows: 
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𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠(
1

1 + 𝑧𝑧𝑇𝑇
𝐾𝐾𝑧𝑧𝑧𝑧

) − 𝛽𝛽𝑠𝑠[𝑠𝑠] − �ϵ + δ 𝑓𝑓 ([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])�(1 − 𝑓𝑓)([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]) 

 

3.3 Design 6 

Design 6 entails inhibition of Sic1 synthesis by Clb2/Cdk1, Clb3/Cdk1 and Clb5/Cdk1 through 

the SWI5 transcription factor. Design 6 describes the same mechanism detailed for Design 5 

but mediated by the three Clb/Cdk1 complexes: Clb2/Cdk1, Clb3/Cdk1 and Clb5/Cdk1. 

The altered ODE for Sic1 (s) is now written as follows: 

 

𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠(
1

1 + 𝑥𝑥𝑇𝑇 + 𝑦𝑦𝑇𝑇 + 𝑧𝑧𝑇𝑇
𝐾𝐾𝑐𝑐𝑐𝑐

) − 𝛽𝛽𝑠𝑠[𝑠𝑠]

− �ϵ + δ 𝑓𝑓 ([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])�(1− 𝑓𝑓)([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]) 
 

3.4 Design 7 

Design 7 entails inhibition of Clb2 and Clb3 syntheses by Sic1. A recent study that integrated 

experimentation and computer modeling showed that Sic1 oscillations rescue viability of cells 

with low levels of mitotic Clb cyclins [22]. However, the molecular mechanism(s) at the basis of 

this observation at the moment remains obscure. Here we propose that inhibition of Clb2 and 

Clb3 synthesis by Sic1 may rationalize this observation; both CLB2 and CLB3 genes appear to 

be regulated by a similar transcriptional mechanism [2], thus we have incorporated for both the 

same Sic1-mediated inhibitory regulation. 

The altered ODEs for Clb3/Cdk1 (y) and Clb2/Cdk1 (z) are now written as follows: 

 

𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑦𝑦𝑇𝑇]2 − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑦𝑦𝑇𝑇][𝑧𝑧𝑇𝑇]

− 𝜖𝜖(1 − 𝑓𝑓)[𝑦𝑦𝑇𝑇] 
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𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑧𝑧𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑧𝑧]2 − 𝜖𝜖(1

− 𝑓𝑓)[𝑧𝑧𝑇𝑇] 

 

Of note, Design 7 is slightly different from Design 4, Design 5 and Design 6, as the inhibitory 

term is assumed to affect basal synthesis while there are other synthesis terms in the equations 

that are not affected. 

 

3.5 Design 8 

Design 8 entails inhibition of Clb2, Clb3 and Clb5 syntheses by Sic1. The altered ODEs for 

Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1 are now written as follows: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑧𝑧𝑇𝑇] − 𝜖𝜖(1 − 𝑓𝑓)[𝑥𝑥𝑇𝑇] 

𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑦𝑦𝑇𝑇]2 − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑦𝑦𝑇𝑇][𝑧𝑧𝑇𝑇]

− 𝜖𝜖(1 − 𝑓𝑓)[𝑦𝑦𝑇𝑇] 
𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑧𝑧𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑧𝑧]2 − 𝜖𝜖(1

− 𝑓𝑓)[𝑧𝑧𝑇𝑇] 
 

3.6 Design 9 

Design 9 entails inhibition of Sic1 synthesis by Sic1 through the SWI5 transcription factor. This 

regulation does not have any experimental support; however, we aimed to test all possible Sic1-

dependent negative regulations. 

The altered ODE for Sic1 is now written as follows: 
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𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑠𝑠[𝑠𝑠] − �ϵ + δ 𝑓𝑓 ([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])�(1− 𝑓𝑓)([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]) 

 

 

4 System Design Space (SDS) methodology 

In this work we make an extensive use of the System Design Space (SDS) methodology 

developed by Savageau and collaborators [23–26] and the associated Python toolbox [26]. The 

cited papers should be seen as required reading to reproduce the analyses presented in our 

work. We especially point the reader to the Supplementary Information accompanying [26], 

which contains an excellent introduction to the terminology with clear examples.  

The SDS methodology has been proposed to overcome the analytical difficulty to find limit 

cycles. In 1900, David Hilbert posed his 16th problem, which partially concerns the finding of the 

number of limit cycles of a polynomial differential equation in the plane [28]. The Bendixson-

Dulac theorem and the Poincaré-Bendixson theorem predict the absence or existence, 

respectively, of limit cycles of two-dimensional nonlinear dynamical systems. However, these 

theorems do not help to actually to find the parameter sets that generate limit cycles. 

The SDS methodology has grown out of the Biochemical Systems Theory (BST), in which 

every process (generalized mass-action reaction [29]) is formulated in a simplified way as a 

product of power-law functions [30]. A trade-off exists between (i) the accuracy by which 

system’s complexity is modeled and (ii) the computational cost to analyze a model and the 

complexity of its results. The SDS methodology starts from a system of ordinary differential 

equations (ODEs), described by using generalized mass-action (GMA) kinetics [30]. First, the 

set of all combinatorically possible combinations of single dominant positive and negative terms 

in each ODE is generated. The reduction to dominant processes transforms the ODE system 

into an S-system. S-systems can capture saturable and synergistic (thus the capital S) 

properties of a biochemical system [31], and is then referred to as a phenotype that can be used 
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to approximate the full GMA model [23]. In an S-system, for a particular phenotype, every ODE 

consists of a single dominant positive term and a single dominant negative term. For a given set 

of parameters and concentrations there exists a single dominant positive term, i.e. largest, and 

a single dominant negative term in each differential equation. The dominance of certain positive 

and negative terms gives rise to dominance conditions, i.e. inequalities stating that the dominant 

positive (negative) term is larger than the other positive terms in a specific ODE. Altogether, the 

dominance conditions form a set of inequalities that are either inconsistent, i.e. there is no set of 

parameters and concentrations that satisfies them all, or consistent. When reducing the 

mathematical description of the phenotypes to these dominant processes, a biochemical system 

becomes mathematically tractable, and a consistent set of dominance conditions defines 

boundaries within the parameter space and (reaction) state space within which the dominance 

conditions, and therefore the phenotype, are valid [26,31]. In this way, a phenotype may be 

viewed as a bounded area within the parameter and state space. Subsequently, by transforming 

the equations to logarithmic coordinates, the S-system becomes linear, and an analytical 

solution for the steady states may be obtained [23]. In addition to this analytical solution, 

properties such as the stability of steady states may be determined. This is particularly relevant 

for the identification of limit cycles, since Hopf bifurcations that give rise to limit cycles occur 

when a pair of complex conjugate eigenvalues crosses the imaginary axis. Consequently, a 

fixed point (steady state in the mathematical term) with two complex conjugate eigenvalues with 

positive real parts is a necessary condition for the occurrence of limit cycles after undergoing a 

Hopf bifurcation. Therefore, by using the SDS methodology, phenotypes with unstable steady 

states that have two complex conjugate eigenvalues with positive real parts may suggest 

bounded areas of the parameter space that might generate limit cycles, as highlighted 

previously [26]. This procedure greatly reduces the area of the parameter space to be sampled, 

and allows for the exploration of relatively small areas that might otherwise be overlooked. 
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4.1 Application of the SDS methodology and GMA casting for Design 7 

We start here by deriving the 11 different model designs that we considered in our work. For 

designs 1A, 1B, 1C, 2 and 3, we show (i) transient oscillations using a canonical parameter set 

(see Section 1.3, Supplementary Table 1), an initial parameter set yielding limit cycles, and (ii) 

a sensitivity analysis for all parameters on the period of oscillations. Design 4 through Design 9 

develop on Design 3, and for these we highlight the changes that occur in the equations. 

To implement any design that we considered in our work such that the models work with the 

System Design Space Toolbox, these need to be translated into their GMA (Generalized Mass 

Action) form. In the following, we use Design 7 to illustrate the translation from the Ordinary 

Differential Equations (ODEs) into the Generalized Mass-Action (GMA) form. In the GMA form, 

all equations must consist of sums of products of parameters and concentrations that may be 

raised to a power. For Design 7, the ODEs are written as follows: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥 − 𝛽𝛽𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑧𝑧𝑇𝑇] − 𝜖𝜖(1 − 𝑓𝑓)[𝑥𝑥𝑇𝑇] 
𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

) − 𝛽𝛽𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑦𝑦𝑇𝑇]2 − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑦𝑦𝑇𝑇][𝑧𝑧𝑇𝑇]

− 𝜖𝜖(1 − 𝑓𝑓)[𝑦𝑦𝑇𝑇] 
𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧(
1

1 + 𝑠𝑠𝑇𝑇
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

)− 𝛽𝛽𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑧𝑧𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑧𝑧]2 − 𝜖𝜖(1

− 𝑓𝑓)[𝑧𝑧𝑇𝑇] 
𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠[𝑠𝑠] − �ϵ + δ 𝑓𝑓 ([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇])�(1 − 𝑓𝑓)([𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇]) 

𝑓𝑓([𝑠𝑠]) =
1

1 + [𝑠𝑠]𝐾𝐾𝐴𝐴
 

[𝑠𝑠] = −

1
𝐾𝐾𝐴𝐴

+ [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] − [𝑠𝑠𝑇𝑇]

2
+ ��

1
𝐾𝐾𝐴𝐴

+ [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] − [𝑠𝑠𝑇𝑇]

2
�

2

+
[𝑠𝑠𝑇𝑇]
𝐾𝐾𝐴𝐴
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For the GMA form, we need to get rid of any fractions, i.e. in the equations for f and s, and 

we need to expand brackets, i.e. in the equations for x, y, z and s. For the (1 − 𝑓𝑓) terms, we 

introduce a new variable finv ; for the  [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] terms, we introduce a new variable ClbT. 

In the equations for f and sfree, we introduce several auxiliary variables to satisfy the GMA form. 

Ultimately, the GMA form is written as follows: 

 

𝑑𝑑[𝑥𝑥𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑥𝑥 − 𝛽𝛽𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑥𝑥𝑇𝑇][𝑧𝑧𝑇𝑇] − 𝜖𝜖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖[𝑥𝑥𝑇𝑇] 

𝑑𝑑[𝑦𝑦𝑇𝑇]
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑦𝑦  aux3−1 − 𝛽𝛽𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] − 𝛾𝛾𝑦𝑦𝑦𝑦𝑓𝑓2[𝑦𝑦𝑇𝑇]2 − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑦𝑦𝑇𝑇][𝑧𝑧𝑇𝑇]

− 𝜖𝜖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖[𝑦𝑦𝑇𝑇] 

𝑑𝑑[𝑧𝑧𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑧𝑧 aux3−1 − 𝛽𝛽𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] + 𝛼𝛼𝑥𝑥𝑥𝑥𝑓𝑓[𝑥𝑥𝑇𝑇] + 𝛼𝛼𝑦𝑦𝑦𝑦𝑓𝑓[𝑦𝑦𝑇𝑇] + 𝛼𝛼𝑧𝑧𝑧𝑧𝑓𝑓[𝑧𝑧𝑇𝑇] − 𝛾𝛾𝑧𝑧𝑧𝑧𝑓𝑓2[𝑧𝑧𝑇𝑇]2 − 𝜖𝜖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖[𝑧𝑧𝑇𝑇] 

𝑑𝑑[𝑠𝑠𝑇𝑇]
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑠𝑠 − 𝛽𝛽𝑠𝑠�𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� − (ϵ + δ 𝑓𝑓 𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇)𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇 

𝑓𝑓([𝑠𝑠]) =
1

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + [𝑠𝑠𝑇𝑇]𝐾𝐾𝐴𝐴 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − 𝑓𝑓 

𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇 = [𝑥𝑥𝑇𝑇] + [𝑦𝑦𝑇𝑇] + [𝑧𝑧𝑇𝑇] 

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −
1
2
𝐾𝐾𝐴𝐴−1 +

1
2

[𝑠𝑠𝑇𝑇] −
1
2
𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇 + 𝑎𝑎𝑎𝑎𝑥𝑥1

1
2  

𝑎𝑎𝑎𝑎𝑥𝑥1 = [𝑠𝑠𝑇𝑇] 𝐾𝐾𝐴𝐴−1 −
1
4
𝑎𝑎𝑎𝑎𝑥𝑥22 

𝑎𝑎𝑎𝑎𝑥𝑥2 = 𝐾𝐾𝐴𝐴−1 − [𝑠𝑠] + 𝑐𝑐𝑐𝑐𝑏𝑏𝑇𝑇 

𝑎𝑎𝑎𝑎𝑥𝑥3 = 1 + [𝑠𝑠𝑇𝑇]𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠−1  
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In Python code that is readable by the System Design Space Toolbox, the equations are written 

as follows: 

 

Eq = [ 
'x. = v_x - b_x * f * x - g_yx * f^2 * x * y - g_zx * f^2 * x * z - e * f_inv * x', 
'y. = v_y * aux3^(-1.0) - b_y * f * y + a_xy * f * x + a_yy * f * y - g_yy * f^2 * y^2 - g_zy * f^2 * z * y - e 
* f_inv * y', 
'z. = v_z * aux3^(-1.0) - b_z * f * z + a_xz * f * x + a_yz * f * y + a_zz * f * z - g_zz * f^2 * z^2 - e * 
f_inv * z', 
's. = v_s - b_s * s_free - e * f_inv * clbT - d * f_inv * clbT * f * clbT', 
's_free =  -(1/2.0)*K_A^(-1.0) + (1/2.0)*s - (1/2.0)*clbT + aux1^(1/2.0)', 
'f_inv = 1 - f', 
'f = f_denom^(-1.0)', 
'f_denom = (1+s_free*K_A)', 
'aux1 = s*K_A^(-1.0) + (1/4.0)*aux2^2.0',  
'aux2 = K_A^(-1.0) - s + clbT',  
'clbT = x+y+z',  
'aux3 = 1 + s*K_syz^(-1.0)' 
] 
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5 Experimental evidence of the interactions and regulations in designs 1–9 

The known experimental evidence for the regulations across all designs used in this work are 

listed in Supplementary Table 2. 

 

Supplementary Table 2. Overview of the experimental evidence for the interactions and regulations in 

the model designs considered in this work, along with the associated parameter symbol and relevant 

notes. The symbol -> indicates activations, -| indicates inhibitions, and <-> indicates reversible complex 

formation. For clarity, the relevant references are grouped based on the described interaction/regulation. 

 
Interaction Symbol References Notes 
Sic1 <-> Clb5,3,2 k+/- [1] Fast complex formation is incorporated in Design 

3-9 (Mart Loog, personal communication) 
Clb5 -> Clb3 𝛼𝛼𝑥𝑥𝑥𝑥 [2], [32–35]   

Clb5 -> Clb2 𝛼𝛼𝑥𝑥𝑥𝑥 [32–35], 
[2,36,37]  

 

Clb3 -> Clb3 𝛼𝛼𝑦𝑦𝑦𝑦 [2], [2*]  

Clb3 -> Clb2 𝛼𝛼𝑦𝑦𝑦𝑦 [2,36,37], [2*]  

Clb2 -> Clb2 𝛼𝛼𝑧𝑧𝑧𝑧 [32–35], 
[2,36,37]  

 

Clb2 -| Clb2 𝛾𝛾𝑧𝑧𝑧𝑧 [13], [38] Absent in Design 1A 

Clb2 -| Clb3 𝛾𝛾𝑧𝑧𝑧𝑧 [1], [38] Absent in Design 1A. We hypothesize that Clb3 is 
targeted for degradation by APC-Cdc20 

Clb2 -| Clb5 𝛾𝛾𝑧𝑧𝑧𝑧 [37], [39,40] Absent in Design 1 
Clb3 -| Clb3 𝛾𝛾𝑦𝑦𝑦𝑦 [1] Absent in Design 1A. We hypothesize that Clb3 

may activate APC-Cdc20. We hypothesize that 
Clb3 is targeted for degradation by APC-Cdc20 

Clb3 -| Clb5 𝛾𝛾𝑦𝑦𝑦𝑦 [1], [39,40] Absent in Design 1A. We hypothesize that Clb3 
may activate APC-Cdc20 

Clb5,3,2 -> Sic1-Clb5,3,2 𝛿𝛿 [18,41]  
Clb2 -| Clb5 Kzx [16] Present only in Design 4 
Clb2 -| Sic1 Kzs [19] Present only in Design 5-6 
Clb3,5 -| Sic1 Kcs – Present only in Design 6. We hypothesize that 

Clb3/Cdk1 and Clb5/Cdk1 may inhibit SIC1 
transcription 

Sic1 -| Clb2,3 Ksyz [21] Present only in Design 7-8. We hypothesize that 
Sic1 may inhibit CLB2 and CLB3 transcription 

Sic1 -| Clb5 Ksxyz [21] Present only in Design 8. We hypothesize that 
Sic1 may inhibit CLB5 transcription 

Sic1 -| Sic1 Kss – Present only in Design 9. We hypothesize that 
Sic1 may inhibit SIC1 transcription 
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[1]: Sic1 interacts and co-exists in time with Clb5/Cdk1, Clb3/Cdk1 and Clb2/Cdk1. 
[2]: Fkh2 regulates CLB3 expression. 
[2*]: Clb3,4/Cdk1 play a role in Fkh2 phosphorylation. 
[32–35]: Clb5/Cdk1 and Clb2/Cdk1 interact with, and phosphorylate, Fkh2 to control Clb1,2 accumulation. 
[2, 36,37] CLB1,2 transcription is regulated by Fkh2 during the G2/M phase. 
[38] Phosphorylation of Cdc20 by Clb2/Cdk1 activates APC-Cdc20. 
[13] APC-Cdc20 degrades mitotic cyclins. 
[39,40] APC-Cdc20 targets Clb5 for degradation. 
[18,41] Clbs/Cdk1 phosphorylate Sic1, resulting in the recognition of Sic1 by the protein degradation 
machinery. 
[16] Clb2/Cdk1 interacts with Swi4 and represses transcription of G1 cyclins. This regulation translates to 
an effective inhibition of Clb5/Cdk1, due to the lack of the PFL between Cln2/Cdk1 and SBF/MBF [17] 
and to the lifted inhibition of Sic1 by Cln1,2/Cdk1 [18,40]. 
[19] Inhibition of SIC1 transcription is mediated by Clb2/Cdk1. 
[21] Hypothetical interaction to rationalize the observation that Sic1 oscillations rescue viability of cells 
with low levels of mitotic cyclins (Clb2). 
 

 

6 Parameter correlation analysis in limit cycles 

Within the set of identified limit cycles for each model design, we analyzed whether there were 

correlations present between the parameters as measured by the Pearson correlation 

coefficient. Supplementary Figures 19–25 summarize the correlation coefficients as heatmaps 

between all model parameters across the seven model designs that returned limit cycles. In 

Supplementary Table 3, the set of combinations of two parameters that were highly correlated 

(absolute value of correlation coefficient ≥ 0.5) in three or more of the designs are summarized. 

 

 

 

Supplementary Figures 19–25. Heatmap of Pearson correlation coefficients between all model 

parameters for designs 3–9 across all identified limit cycles. 
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Supplementary Table 3. Set of combinations of two parameters that were highly correlated (absolute 

value of correlation coefficient ≥ 0.5) in three or more of the model designs. 

 
  Designs Positive correlation Negative correlation 

αyy γzy 3, 4, 5, 6, 7, 9 6 0 
αxy αxz 3, 5, 8, 9 4 0 
vs vx 3, 6, 7, 8 4 0 
KA vs 3, 4, 6, 8 0 4 
γzx vx 6, 7, 8, 9 4 0 
αxy βy 3, 5, 6, 7 4 0 
αxz βz 3, 5, 7 3 0 
βz ε 3, 7, 9 0 3 
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7 Spread of identified limit cycles across the parameter space 

To indicate the unlikeliness of the connectivity between the identified parameter sets that result 

in limit cycles, boxplots of the parameter values in these parameter sets for designs 3–9 were 

generated (Supplementary Figure 26). For all designs most parameter values cover multiple 

orders of magnitude. We do note that the logarithmic scales on the lower end, e.g. –3 through –

9, should not be given too much weight, since this may simply indicate that the parameter value 

is so small that would not affect the model output. However, even discounting the lower range, 

the parameter values in the limit cycles still cover a wide range of values. 
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Supplementary Figure 26. Boxplots of the parameter values in the limit cycles identified for designs 3–9 

on log10 scale. The entire allowable range in our parameter sampling [10^3, 10^(-9)] is shown. The box 

edges indicate the 25th and 75th percentile respectively and the black line within the box indicates the 

median of the parameter values. The actually sampled parameter values are indicates by grey dots. 
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8 Limit cycles in designs 3–9 differ in oscillation properties (period and amplitude) 

  

 
 

Supplementary Figure 27. Boxplots of the logarithm of the period of the limit cycles identified for designs 

3–9. The range covers periods from several minutes to several hundred minutes. 

 

 
 

Supplementary Figure 28. Boxplots for designs 3–9 of the “minimum oscillation amplitude”. We defined 

this as the maximum taken across the four model species of the ratio between the minimum and 

maximum concentrations attained within the limit cycle time course. This quantity therefore measures the 

relative amplitude of the oscillations as a fraction of the maximal concentration for each species. Taking 

the maximum across species results into a measure of the “minimum amplitude size” of the individual 

oscillations in the limit cycle. The smaller the value the bigger the oscillations are, relatively. A value of 1 

indicates lack of oscillations, whereas a value of 0 indicates that the concentration of each species 

reaches zero during each cell cycle. We required each limit cycle to have a maximal ratio of 0.9. 
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