Supplementary Tables and Figures

Title

Blood flow-restricted resistance exercise alters the surface profile, miRNA cargo and functional impact of circulating extracellular vesicles

Authors

Jesper Just¹* Yan Yan²* Jean Farup^{4,5} Peter Sieljacks³ Mette Sloth¹ Morten Venø² Tingting Gu¹ Frank Vincenzo de Paoli⁶ Jens Randel Nyengaard⁷ Rikke Bæk⁸ Malene Møller Jørgensen⁸ Jørgen Kjems^{2, 2a} Kristian Vissing³ Kim Ryun Drasbek^{1*}

Supplementary Table S1: EVarray antibodies

Antibody target	Clone (if available)	Supplier	
CD11a	HI111	Ab biotec, CA, USA	
EGFR		Antibodies-online.com, Germany	
CD146	P1H12	Abcam, UK	
Hsp90	IGF1	Abcam, UK	
p53	pAb240	Abcam, UK	
Flotillin-1		Abcam, UK	
LRP-1		Abcam, UK	
N-Cadherin	8C119	Abcam, UK	
CD63		AbD serotec /Bio-Rad, CA, USA	
CD9		Ancell, MN, USA	
CD81		Ancell, MN, USA	
CD3	Hit3a	BD Biosciences, CA, USA	
CD28	L293	BD Biosciences, CA, USA	
CD49d	L25	BD Biosciences, CA, USA	
CD56	3G8	BD Biosciences, CA, USA	
CD25	M-A251	BD Biosciences, CA, USA	
TGFβ1		BD Biosciences, CA, USA	
Alix	3A9	Biolegend, CA, USA	
VEGFR2	7D4-6	Biolegend, CA, USA	
HER2	29D8	Cell Signalling, MA, USA	
ICAM-1	R6.5	eBioscience, CA, USA	
Annexin V		R&D Systems, MN, USA	
CD19	4G7-2E3	R&D Systems, MN, USA	
CD4	34930	R&D Systems, MN, USA	
LAMP1		R&D Systems, MN, USA	
LAMP2	H4A3	R&D Systems, MN, USA	
CD82	423524	R&D Systems, MN, USA	
CD106	HAE-2Z	R&D Systems, MN, USA	
Thrombospondin		R&D Systems, MN, USA	
CD31		R&D Systems, MN, USA	
CD42b		R&D Systems, MN, USA	
CD235a		R&D Systems, MN, USA	
PD-L1	130021	R&D Systems, MN, USA	
Hsp70	242707	R&D Systems, MN, USA	
CD13	498001	R&D Systems, MN, USA	
CD142	323514	R&D Systems, MN, USA	
TNF RI		R&D Systems, MN, USA	
TNF RII		R&D Systems, MN, USA	
EpCam	0.N.277	Santa Cruz Biotechnologies, TX, USA	
c-MET	016	Sino Biological Inc., China	

List of antibodies included in the EVarray

Supplementary Figure S1. Fluorescence minus one (FMO) controls.

To ensure specific gating of FAPs and MuSCs from a single cell suspension of skeletal muscle tissue, all gates were verified using a series of staining patterns that lacks just one of the fluorescent antibodies used for selection: CD34-APC (a), CD90-PE (b), and CD56-BV421 (c).

Supplementary Figure S2. Haemolysis levels of plasma samples.

The level of haemolysis in the BFRE plasma samples was assessed by measuring the absorbance of free haemoglobin at 414 nm. If OD414 exceeded 0.2, the plasma sample was considered to be affected by haemolysis.

EV elution profile for a qEV size exclusion column when 1 ml plasma was loaded and fractions of 0.5 ml were collected. All pre and post BFRE plasma samples were analysed. A qNano Gold equipped with a NP100 Nanopore was used to determine size and concentration of EVs in the fractions eluted by SEC. EV samples were analysed under identical settings - the same diluent, stretch (45mm), pressure (10Pa) and voltage (0.7mV) as used for CPC100 calibration particles. To analyse protein contaminants, OD280 was measured on a nanodrop 2000. EVs devoid of protein contamination were present in fraction 6-9.

Supplementary Figure S4. Differentially expressed miRNAs prevalence in blood cell types.

The expression of the five up-regulated differentially expressed BFRE EV miRNAs in seven types of human peripheral blood cells. The plot was created using the interactive web tool:

http://134.245.63.235/ikmb-tools/bloodmiRs. Most of the up-regulated miRNAs, especially miR-182-5p and miR-451a, were enriched in CD235a positive cells, while miR-16-5p was expressed in all cell types.

Supplementary Table S2. Gene targets of the differentially expressed EV miRNAs.

Gene target	Gene	Gene target	Gene	Gene target	Gene
	targeting		targeting		targeting
	miRNAs		miRNAs		miRNAs
NUFIP2	8	HSPA1B	4	WEE1	4
CCND2	6	HSPA8	4	SOCS3	4
E2F3	6	LBR	4	SOCS5	4
IGF1R	6	PRIM1	4	MORF4L1	4
MYC	6	MAPK1	4	ABHD2	4
hsa-mir-451a	5	SP1	4	SF3B3	4
CDK6	5	THBS1	4	RACGAP1	4
CDKN1A	5	TIAM1	4	TMEM138	4
SKI	5	TRAPPC10	4	MRPS10	4
SON	5	ZNF207	4	GPAM	4
BTG2	5	SOCS1	4	ZMAT3	4
NCOA3	5	WASL	4	WNK3	4
TNFRSF10B	5	MAP7	4	ATP13A3	4
ZNF460	5	ZNF264	4	ORAI2	4
TNRC6B	5	QKI	4	DCTN5	4
DICER1	5	ZBTB5	4	ACBD5	4
CBX5	5	LPGAT1	4	ARHGAP12	4
KPNA6	5	CDIPT	4	RAB3IP	4
SZRD1	5	TGOLN2	4	PTPDC1	4
YOD1	5	RNF44	4	CXorf38	4
LZIC	5	CPEB3	4	DYNC1LI2	4
SLC30A7	5	TMEM2	4	MBNL1	4
BCL2	5	TES	4	MDM2	4
TP53	5	AGO2	4	MMP2	4
RECK	5	SLC38A2	4	PKNOX1	4
TMEM245	5	TXLNG	4	RAB5B	4
PDCD4	5	RAP2C	4	ATXN1	4
KLHL15	5	NUCKS1	4	SOX4	4
CREB1	5	ZNF644	4	ZNF35	4
IPP	5	PPP1R15B	4	DEGS1	4
PTEN	5	YTHDC1	4	CLOCK	4
BCL2L11	5	GRPEL2	4	FRS2	4
SLC7A11	5	ZNF417	4	SGTB	4
MYLIP	5	AGO3	4	USP28	4
ACTB	4	FOXK1	4	GID4	4
AMD1	4	PGM2L1	4	PANK3	4
CCND1	4	CFL2	4	GATAD2B	4
BCL7A	4	DDX3X	4	FOXO3	4
EEF1A1	4	ITPR1	4	GK5	4
EIF4A2	4	TIMP3	4		
HMGB1	4	VEGFA	4		

The differentially expressed EV miRNAs were used as input for the miRnet database that integrate high-quality miRNA-target interaction from several databases. Genes targeted by more than three miRNAs were included in the table.