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Figure S1: Illustration of a taxonomic database and LTU assignment, related to

Figure 1. (a) Example of taxonomic database (S, T ). The LTU between 1 and 3 is 5; the

LTU between 0 and 4 is 6; (b) Generalized suffix tree of S annotated for LTU queries on T .

Non-terminal nodes are round while terminal nodes are squares. LTU annotations are shown

inside pentagons. The LTU of pattern a is 6 while the LTU of aa is 4. (c) Generalized suffix

array of S annotated for LTU queries on T . Pattern agtg corresponds to a singleton with

interval [2, 3) and its LTU is id[2] = 0. Pattern a corresponds to a leftmost node with interval

[0, 6) and its LTU is tax[5] = 6. Pattern at is not on a singleton nor on a leftmost node,

its interval is [3, 6) and its LTU is tax[3] = 5; and, (d) Generalized bidirectional BWT of S

annotated for LTU queries on T . Note that here we are showing the terminating character $

for illustrative purposes, while in practice we are not using it.



Figure S2: Visualization of the functional hierarchy level assignments, related to

Figure 1. Distribution of OMXWare database sequence content, and of PRROMenade assign-

ments of simulated reads with 0% to 30% errors representing divergence from the refrence,

on the functional hierarchy tree from root to leaf level. In addition, metatranscriptomic read

assignments are shown.

Transparent Methods

Lowest taxonomic unit problem

In the following, we describe how sequence database indexing with asso-

ciated taxonomic labeling is performed using a generalized Burrows-Wheeler

transform (GBWT) (Burrows and Wheeler, 1994). Here taxonomy refers to a

microbial naming hierarchy or a functional hierarchy, organized as a tree. The

database may contain either nucleotide or amino acid sequences, in the method

description below we show an example using the four-letter nucleotide alphabet,

for convenience.

Consider a taxonomic database (S, T ) consisting of a collection of strings

S = {s0, s1, . . . , sm−1} of total length n over the ordered alphabet Σ = {a, c, g, t}

and a taxonomic tree T , i.e., a rooted tree with m leaves labeled by the indexes

of strings in S and internal nodes referring to taxonomic units. Given a pattern

string p over Σ, the problem is to retrieve the lowest taxonomic unit (LTU) in T

where p occurs. Figure S1(a)shows an illustration. We denote lowest taxonomic



unit (LTU) similarly to the definition of lowest common ancestor of nodes u and

v in T by lcaT (u, v) and the iterated LCA as:

lcaT (u, . . . , y, z) = lcaT (u, lcaT (. . . , lcaT (y, z))). (1)

We define ids(v) = {k : (k, l) ∈ suf(v)}. The LTU of node v with cld(v) =

{w0, w1, . . . , wk−1} is:

ltuT (v) = lcaT (ids(v), ltuT (w0), ltuT (w1), . . . , ltuT (wk−1)). (2)

We conceptualize taxonomic annotation on generalized suffix trees (Gusfield,

1997) and then show how to annotate generalized suffix arrays and bidirectional

BWTs.

Generalized suffix tree

We first explain our LTU annotation algorithm on a conceptual level using

generalized suffix trees. Description of practical implementations using gen-

eralized suffix arrays and generalized Burrows-Wheeler transforms follow. We

adopt a practical definition of generalized suffix tree (GST) that is based on

terminal nodes in addition to leaves and branching internal nodes, opposed to

what traditionally done in (Gusfield, 1997). Our definition is analogous to that

in (Cazaux et al., 2014) and allows us to work on arbitrary collections of strings

without introducing sentinel characters, e.g., $. In what follows, we denote the

l-th suffix of string sk as S(k,l) := sk[l] . . . sk[|sk| − 1] where |sk| is the length of

string sk.

The generalized suffix tree of S, abbreviated as GST(S), is a lexicographi-

cally ordered tree data structure having one node designated as the root. Each

node v of GST(S) provides the following operations: cld(v) returns the nodes

children of v; suf(v) returns a list of pairs air (k, l) refers to suffix S(k,l);

label(v) returns a string over Σ or the empty string if v is the root; the rep-

resentative of a node v, repr(v) returns repr(u) · label(v) where u is the

parent of v or the empty string if v is the root. We say that node v is a leaf



if |cld(v)| = 0 and internal otherwise; node v is terminal if |suf(v)| ≥ 1 and

non-terminal otherwise.

The GST(S) has the following properties: (i) for each (k, l) in suf(v),

repr(v) spells exactly S(k,l); (ii) each leaf is terminal; (iii) each non-terminal

node v is branching, i.e., |cld(v)| ≥ 2, and label(w) for all w ∈ cld(v) begin

with distinct characters.

As each suffix in S is associated with one terminal node, GST(S) has at most n

terminal nodes. Also, because of the branching property, GST(S) has at most

n−1 non-terminal nodes. Therefore, we have to annotate at most 2n−1 nodes.

We now describe a conceptual annotation of GST(S) in order to answer

lowest taxonomic unit (LTU) queries in constant time given node v. Intuitively,

the LTU can be defined as the lowest common ancestor Gusfield (1997) between

any two units on the taxonomic tree. Before annotating GST(S), we preprocess

T to answer LTU queries in constant time. In practice, we reduce LTU queries

to range minimum queries (Bender and Farach-Colton, 2000). Subsequently, we

compute the LTU for all nodes of GST(S) in a single post-order traversal. The

annotation of GST(S) thus takes O(n) time. Figure S1(b) shows an example of

annotated GST.

Generalized suffix array

The generalized suffix array (GSA) (Manber and Myers, 1990; Shi, 1996) of

S is a pair (id, pos) := gsa of tables of length n where id[i] = k, pos[i] = l and

gsa[i] = (k, l). Table gsa represents a permutation of all pairs (k, l) referring to

suffixes S(k,l) in S. Pairs in gsa are ordered Sgsa[i−1] <lex Sgsa[i] for all i ∈ [1, n).

In fact, table gsa corresponds to the pre-order concatenation of suf(v)

for all terminal nodes v in GST(S). Each node v of GST(S) is univocally

identified by an half-open interval [lb(v),rb(v)) on table gsa. lb(v) is de-

fined as the smallest index l of GSA for which Sgsa[l] starts with repr(v).

rb(v) is defined as the greatest index r > l for which Sgsa[r − 1] starts with

repr(v). Each node v of GST(S) can be determined by binary searching

repr(v) on gsa. GST(S) corresponds to a recursive partitioning of gsa: the



root node corresponds to interval [0, n); if v is an internal node with cld(v) =

{w0, w1, . . . , wk−1} then its children intervals are [lb(v) + |suf(v)| ,rb(w0)),

[rb(w0),rb(w1)), . . . , [rb(wk−1),rb(v)).

GSA(S) can be traversed in linear-time, bottom-up using the additional lcp

table (Kasai et al., 2001) and top-down using lcp and child tables (Abouelhoda

et al., 2004). If top-down traversal is bounded to relatively short patterns,

binary search on table gsa is a practical alternative. GSA(S) supports pattern

search in time O(|p| log n) using only table gsa, O(|p| + log n) using table lcp

and O(|p|) using lcp (Manber and Myers, 1990) and child tables (Abouelhoda

et al., 2004).

We now describe our method to store and retrieve LTUs in constant time

once we reach a node v. Traversal on GST(S) to compute LTUs is readily trans-

lated onto GSA(S). The problem is how to store and retrieve annotations in

GSA(S). We say that leaf v is singleton if lb(v) = rb(v)− 1. Furthermore, we

say that a node v with parent u is leftmost if lb(u) = lb(v); we determine this

condition in constant time by remembering the parent u of v while traversing

GSA(S) top-down. Note that we define the root to be non-leftmost. We intro-

duce a table tax of size n to store the annotations of all non-singleton nodes.

We annotate the LTU of node v as:

ltuT (v) =


id[lb(v)] if v is singleton,

tax[rb(v)− 1] if v is leftmost,

tax[lb(v)] otherwise.

(3)

Figure S1(c) shows an example of annotated GSA.

If v is singleton, its LTU is already annotated in table id at position lb(v).

We show by induction on GST(S) that each non-singleton node v is annotated

at an available slot in tax. Prior to annotation both tax[lb(v)] and tax[rb(v)−1]

are available; after annotation one of these two slots remains available.

1. If v is a leaf. All slots in tax within interval [lb(v),rb(v)) are available and

lb(v) < rb(v)− 1 as v is non-singleton. Hence, if v is leftmost tax[lb(v)]

remains available, otherwise tax[rb(v)− 1] remains available.



2. If v is an internal node with children cld(v) = {w0, w1, . . . , wk−1}. Node

wk−1 is not leftmost and tax[rb(wk−1)− 1] is supposed to be available by

induction. As rb(wk−1) = rb(v) then tax[rb(v)− 1] is available.

(a) If v is non-terminal. We have |suf(v)| = 0, lb(w0) = lb(v) and w0

is leftmost. By induction tax[lb(w0)] that is tax[lb(v)] is supposed

to be available.

(b) If v is terminal. All slots in tax within interval [lb(v), lb(v) + suf(v))

are available and suf(v) ≥ 1, so tax[lb(v)] is available.

After annotation, if v is leftmost tax[lb(v)] remains available, otherwise

tax[rb(v)− 1] remains available.

Our annotation method is more convenient than that one proposed by Abouel-

hoda et al. (2004) with the purpose of encoding suffix links on the enhanced

suffix array. Essentially, Abouelhoda et al. (2004) annotate each non-singleton

node v at position rb(w0)− 1. However determining the interval of w0 requires

either binary search on gsa or access to lcp and child tables.

Generalized BWT

We denote by s = s[|s| − 1] . . . s[1]s[0] the reversed string s and by S the

collection S with all strings reversed. We consider the ordered alphabet Σ$ =

{$1, . . . , $m}∪Σ and append $i to each string si ∈ S. This is to insure that S is

primitive, i.e., that no string in S is a power of some other string (Crochemore

et al., 2005).

The generalized Burrows-Wheeler transform (GBWT) (Burrows and Wheeler,

1994) of S is a table gbwt of length n with:

gbwt[i] =

 sid[i][pos[i]− 1] if pos[i] > 0,

$id[i] otherwise.
(4)

Function rank(c, i) counts the number of occurrences of character c ∈ Σ$ in

the half-open interval [0, i) of gbwt and lf as:

lf(c, i) =
∑
a<c

rank(a, n) + rank(c, i). (5)



Similarly to GSA(S), each node v of GST(S) is univocally identified on

GBWT(S) by an half-open interval [lb(v),rb(v)). This interval is now de-

termined by searching repr(v) backwards on gbwt using lf (Ferragina and

Manzini, 2000). For any two nodes u, v of GBWT(S) with repr(v) = crepr(u)

and c ∈ Σ, it holds:

lb(v) = lf(c, lb(u) + m)−m, (6)

rb(v) = lf(c,rb(u) + m)−m. (7)

We adjust the boundaries by m since we have introduced m characters $ in S.

Function lf is answered in O(1) time using o(n |Σ| log |Σ|) extra bits on top of

gbwt Reinert et al. (2017). Pattern p is searched backwards in O(|p|) time.

The bidirectional GBWT (Schnattinger et al., 2012) consists of GBWT(S)

and GBWT(S) and allows searching simultaneously a pattern p backwards on

GBWT(S) and its reverse p on GBWT(S). Function lt counts the number of

characters lexicographically smaller than c ∈ Σ$ in gbwt within interval [i, j):

lt(c, i, j) =
∑
a<c

rank(a, j)−
∑
a<c

rank(a, i). (8)

If u is a node on GBWT(S), u is its corresponding node on GBWT(S) repr(u)

= repr(u). Furthermore, if v is with repr(v) = crepr(u), the interval of node

v with repr(v) = repr(u) c is determined as:

lb(v) = lb(u) + lt(c, lb(u) + m,rb(u) + m), (9)

rb(v) = lb(v) + rb(v)− lb(v). (10)

We construct an unidirectional BWT to answer LTU queries using only table

gbwt of GBWT(S) plus tables id and tax of GBWT(S). If we search pattern p

backwards on GBWT(S) and arrive on a node v with repr(v) = p, then node

v corresponds to the node reached by searching p backwards on GBWT(S) or

forward on GSA(S). Therefore we can still access the annotation at node v using

Eq. 3. To fill tables id and tax, we traverse top-down GBWT(S) backwards and

annotate nodes on GBWT(S) forward. Top-down traversal is O(n2) in the



worst case but feasible in practice if it is bounded to relatively short patterns.

Figure S1(d) shows an example of annotated BWT. We remark that table id

can be obtained as a byproduct of certain BWT construction algorithms (Egidi

and Manzini, 2017) instead of slicing table gsa. Furthermore, tables id and tax

can be sparsified when the annotation is bounded to relatively short patterns.

Read classification

In this study we employed the approach of searching for maximal exact

matches (MEM) per read in an amino acid (AA) database, as does Kaiju (Menzel

et al., 2016), though other approaches could be applied. Reads with MEMs

shorter than 5 AA were considered unclassified. When using nucleotide reads,

the read and its reverse complement are translated, obtaining in total six AA

sequences corresponding to all possible reading frames. The longest of the six

MEMs is used to classify the read, in case of ties the LTU of the (at most

six) alternative MEMs is chosen. The MEM is used to classify the read to the

corresponding LTU node in the annotation hierarchy, and the read count for

that node is incremented by one.

Paired-end sequencing typically employs fragment sizes of 500 nucleotides

(167 AA). However, the median domain length in the OMXWare functional

database is only 283 AA and 25% of the domains are shorter than 167 AA.

Therefore, for paired-end reads we first processed each read file separately and

then combined the results by summing the counts per node (for PRROMenade

as well as for our experiments with Kaiju).

Functional profiling

The functional profiles (counts per node) were post-processed with a “push

down” approach as in (Huson et al., 2016) to summarize the counts at various

fixed levels of the hierarchy, by also including the contribution of counts assigned

at higher hierarchy levels. Pairwise Spearman distances were calculated, as

suggested previously (David et al., 2014) (nodes assigned < 0.1% of total counts



in each sample were first discarded) and weighted linkage hierarchical clustering

applied.

Functional profiles were analyzed with RoDEO (Haiminen et al., 2014) (P=10,

I=100, R = 107), using a two-sample Kolmogorov-Smirnov test to identify top

differentially abundant functions. Thirty functional codes with the lowest p-

values were selected for average linkage clustering with correlation distance,

and for pathway inference by mapping to functional pathways. Enriched path-

ways were defined as those overlapping at least two more of the top 30 functional

codes for one vs. the other diet (e.g. ec00230, Purine metabolism, overlaps 0

top functional codes enriched in plant-based diet and 3 top functional codes

enriched in animal-based diet).

Functional hierarchy and reference database

We used the KEGG Enzyme Nomenclature codes (EC) reference hierar-

chy (Kanehisa et al., 2017) as the functional annotation tree. EC numbers

define a four-level hierarchy with seven top-level categories that we denote as

child nodes of the root. For example, 2.4.1 is a third level code (2 = “Trans-

ferases”, 2.4 = “Glycosyltransferases”, 2.4.1 = “Hexosyltransferases”). We used

the OMXWare database of bacterial protein domains (Seabolt et al., 2019),

assembled and annotated from public repositories. A subset of 11.9 million

OMXWare domains (of length ≥ 5 AA) had associated EC annotations, provid-

ing a collection of 3.7 billion total AA representing 1,130 EC identifiers. When

a domain was annotated with multiple EC numbers (4% of domains), it was in-

stead labeled with their LTU. Median protein domain length is 283 AA (mean

312 AA). PRROMenade could also be applied on, e.g., metagenome-assembled

reference genomes (Pasolli et al., 2019) and other protein database such as

UniProt (The Uniprot Consortium, 2018). Indeed we also applied PRROMe-

nade on the smaller GS database of mi-faser (Zhu et al., 2018) with 1.1 million

AA from 2,810 proteins.



Read simulation

Sequencing reads were simulated uniformly at random from sequences in the

OMXWare and GS databases, respectively. The protein sequences were reverse

translated to DNA sequences using EMBOSS backtranseq (Chojnacki et al.,

2017) and sequencing reads were simulated using SAMtools WGSIM(v. 0.3.1-

r13) (Li, 2011). We generated paired-end sequencing reads of length 125bp

(fragment size 250nt as many database sequences were short, i.e., 25% were

shorter than 500nt) with an error rate of 5% (-e 0.05) and a mutation rate of

0.1% (-r 0.001). For the OMXWare and GS databases we generated 95,614,845

and 50,009 read pairs, respectively. For OMXWare this corresponds to 1x

coverage of the database sequences and inclusion of 89.5% of them (5.8% of the

sequences were skipped due to having a length shorter than 150bp or 50AA),

while for the smaller GS database the process resulted in 2x read coverage and

inclusion of all but one database sequence.

Metatranscriptomic data

Metatranscriptomic sequencing data of fecal microbial communities during

plant- and animal-based diets (David et al., 2014) was analyzed for functional

read classification. A total of 59 samples from 11 subjects, one of them a life-

long vegetarian (subject S6), were downloaded from the Gene Expression Om-

nibus (Edgar et al., 2002) (accession GSE46761). Trim Galore (Krueger, 2019)

with options –length 50 –trim-n –max n 10 was used to trim the 100 nt long

paired reads. After trimming, 1.7M to 45.3M (mean 18.5M) reads per sample

were retained. We filtered out potential human RNA content of up to 6.80%

per sample (min 0.02%, mean 0.77%, median 0.20%), with bowtie2 (Langdon,

2015) mapping with local mode to their pre-built GRCh38 with 1K Genomes

major SNPs index. All 59 samples (21 plant-based diet, 13 animal-based diet,

25 during diet transitions) were used for the match length and taxonomic level

analysis, while only the 34 samples (21 plant-based, 13 animal-based) taken

during the controlled diet periods (days 1–4) were used for downstream analysis

shown in Figure 1.



Evaluation details

For simulated reads, if and only if the read was assigned somewhere on the

path from its originating node to the root, it was recorded as correctly classified.

Timing (elapsed wall clock) was recorded on an IBM SoftLayer cloud with 72

cores Intel R© Xeon R© Gold 6140 CPU @ 2.30GHz and 1.5TB of RAM running

Ubuntu 16.04-64. Read classification was run with 72 threads. A Kaiju (Menzel

et al., 2016) (v1.7.2) index was built on the OMXWare database with KEGG

taxonomy, classification parameters were -a mem -m 5 -X -z 72. mi-faser (Zhu

et al., 2018) (v1.52) was compared with PRROMenade on their GS database,

using paired-end reads, 12 threads, and otherwise default settings (utilizing all

available CPUs per thread). Classification speed is reported as the number of

reads per experiment divided by total classification time (reads/min).
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