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DETAILED DESCRIPTION OF SIMULATION MODEL 

 

Initialisation 

Sampling of initial allelic values 

The initial number of alleles per locus was set to be slightly higher than observed at 

equilibrium under stabilising selection. Therefore, for simulations with 200 loci, 3 possible 

allelic values were sampled per locus, and for 10 loci, 10 potential allelic values were sampled. 

For each locus, possible allelic values were sampled from a normal distribution with mean µು

ଶ௡
  

and variance 2.5 σα (see table S1 for a summary of the key parameters in the simulation 

model). These parameters, which determine the initial distribution of allele effects, were 

chosen to speed up the time to reach equilibrium under stabilising selection (see below) by 

ensuring that the mean migratory activity is close to the desired one and that there is an 

excess of genetic variance. Each of the n loci of each of the N individuals was then randomly 

assigned one of these possible allelic values. This generated an initial excess of genetic 

variation which then evolved to an equilibrium under stabilizing selection. Note that the 

characteristics of the population at equilibrium were independent of the starting genetic 

variance and number of alleles per locus and that these values were simply chosen to reduce 

the time to equilibrium.  

Stabilizing selection 

After sampling allelic values, populations were allowed to evolve under stabilizing selection 

for a total of 15000 generations. Stabilizing selection was implemented through the standard 

Gaussian model of phenotypic stabilizing selection [53,54].  

𝑤 = 𝑓(𝑙) = 𝑒𝑥𝑝 ቈ
−(𝑙 −  𝜃)ଶ

2𝜔ଶ
቉ 

, where 𝑤 is the fitness, 𝑙 a given liability value, 𝜃 the optimal liability value. The strength of 

stabilizing selection of genotypic values, standardised by the environmental variance is given 

by:  



𝑉𝑠 =  
𝜎ଶ

ா + 𝜔ଶ

𝜎ଶ
ா

 

Where smaller values of Vs are associated with stronger stabilizing selection. Since the 

environmental variance 𝜎ଶ
ா  is kept constant throughout the simulations, the strength of 

stabilizing selection is manipulated by adjusting the value of 𝜔ଶ. The strength of stabilizing 

selection required to obtain an equilibrium heritability of 0.432 was determined to be 

approximately 𝑉𝑠 = 150  with 10 loci and 𝑉𝑠 = 75 with 200 loci.   

For either genetic architecture (10 or 200 loci) a single population was created and allowed 

to evolve to equilibrium for 13000 generations (see, figure S4). The resulting populations were 

used as the starting point of 20 independent simulations of 2000 generations to obtain a 

sample of populations that is representative of equilibrium conditions. The result of this 

process were 20 populations for each of the 2 genetic architectures with the desired mean 

(µ௉), standard deviation (𝛔𝑷) and heritability (ℎ𝟎
ଶ) for migratory activity and with the allele 

frequencies that emerge as a result of selection under stabilizing selection.   

 

Simulation model 

Selection 

After the initialisation, selection starts taking place through the chosen fitness function that 

relates an individual’s liability with its survival probability. Individuals with a liability below 

the threshold all have the same fitness, while those with a liability greater than the threshold 

have their fitness determined by one of the following equations that relate their liability 

values with fitness.   

Linear: 

𝑤 = 𝑓(𝑙) = −𝑏 𝑙 + 𝑐 (6)  

Exponential: 

𝑤 = 𝑓(𝑙) = 𝛼𝑒ି𝝀 ௟ (7) 

Logistic: 



𝑤 = 𝑓(𝑙) = 𝑞 −
𝑞

1 + 𝑒ି𝒌(௟ି𝜷)    
(8) 

 

, where 𝑤 is the fitness, 𝑙 the liability value and the remaining are parameters which are 

manipulated to define the relationship between fitness and liability values. Fitness functions 

return individual fitness values which are converted into relative fitness by dividing them by 

the maximum individual fitness value observed in the population at the current generation. 

The fraction of the population that survives to breed, of size ଶே

௙
, is sampled from the entire 

population with sampling probabilities given by these relative fitness values.  

Random mating  

To simulate random mating, the ଶே

௙
 selected individuals are paired at random and each pair 

produces 𝑓 offspring, such that the population size 𝑁 remains constant. Genotypes are 

obtained by randomly sampling alleles from either parent. Therefore, to obtain the alleles of 

a new offspring, individual 𝑖, at locus 𝑣: 

𝑍௜,௩,ଵ,௚ is randomly sampled from discrete uniform distribution: { 𝑍௣భ,௩,ଵ,௚ିଵ , 𝑍௣భ,௩,ଶ,௚ିଵ }  

𝑍௜,௩,ଶ,௚ is randomly sampled from discrete uniform distribution: ൛ 𝑍௣మ,௩,ଵ,௚ିଵ , 𝑍௣మ,௩,ଶ,௚ିଵ ൟ        

(9) 

, where 𝑝ଵ and 𝑝ଶ correspond to the indices of the parents of individual 𝑖 in generation 𝑔 −

1. 

Assortative mating 

To simulate assortative mating, we incorporate the folded normal distribution mating 

preference function proposed by  Carvajal-Rodriguez and Rolán-Alvarez [24] which estimates 

the mating probability of two individuals as: 

ି஼మ஽మ

௘ೞమವ೘ೌೣ
మ  (10)  

, where 𝐷 is the difference between the liability values of two individuals, 𝐷௠௔௫ is the 

maximum value of 𝐷, and both 𝐶 and 𝑠 are parameters which are used to control the strength 

of assortative mating. This formulation is particularly useful for incorporating empirical data 

because it is scale-invariant, i.e. the strength of assortative mating does not depend on the 



phenotypic scale being used. After selection and before reproduction, a matrix of pairwise 

differences in migratory activity between all selected individuals is computed (liability values 

below the threshold are assigned a value of 0). The mating preference function is then applied 

to each value of 𝐷 to generate a matrix of pairwise mating probabilities.  ே
௙

 pairs of individuals 

are then sampled from all possible pairs with the sampling probabilities given by this mating 

probability matrix.  Each mating pair produces 𝑓 offspring whose genotype at any given locus 

is obtained by randomly sampling an allele from each of its parents at this locus.  

Mutation  

Mutation followed an incremental continuum-of-alleles model where the effect of an allele 

after mutation equals its effect before mutation plus a random deviate with mean zero:  

𝑍∗
௜௩௝௚ = ቊ

𝑍௜௩௝௚,                                       𝑖𝑓 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, µ) = 0

𝑍௜௩௝௚ + 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ఈ),    𝑖𝑓 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, µ) = 1 
       (11) 

, where 𝑍∗
௜௩௝௚ is the allelic value after mutation, 𝑍௜௩௝௚  is the allelic value before mutation and 

𝜎ఈ is the standard deviation of the distribution of effects of new mutations on the previous 

allelic value.  

Computing genetic values and liabilities  

An individual’s genetic value for the liability corresponds to the sum of the effects of all its 

alleles.  

𝐴௜௚ = ෍ ෍ 𝑍௜௩௝௚

ଶ

௝ୀଵ

௡

௩ୀଵ

 (12) 

 

, where 𝐴௜௚ is the genetic value of individual 𝑖 at generation 𝑔.  

Individual environmental effects on the liability are sampled from a normal distribution: 

𝐸 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ா) (13) 

 

Individual liability values are the sum of the genetic values and the environmental deviates. 

𝑙௜௚ =  𝐴௜௚ + 𝐸௜௚          (14) 



Threshold variance 

To explore the effect of variance in threshold values, we introduce a step in the simulation 

process where individuals are randomly assigned a threshold value which is sampled from a 

normal distribution: 

𝑇 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎்) (15) 

, where 𝑇 is the threshold value and 𝜎் the standard deviation in threshold values. Note that 

we did not model a genetic contribution to threshold values, and that this algorithm assumes 

threshold values are environmentally determined.  When the threshold is variable, the 

selection algorithm is modified to incorporate the individual threshold values and these 

values are stored as output so that individual phenotypes can be determined after running 

the simulations.  

 

 

INPUT PARAMETER CHOICE 

Genetic and environmental variance for migratory activity  

From the phenotypic variance reported for the blackcap population in 1988 (VP = 3872) and 

the heritability for migratory activity in this population (h2 = 0.432) we estimated the genetic 

variance as  

𝑉஺ =  ℎଶ 𝑉௉ (1) 

 , where 𝑉஺  is the additive genetic variance ℎଶ the heritability and 𝑉௉ the phenotypic variance 

for the liability. We then estimated the standard deviation in environmental effects as: 

𝜎ா = ඨ൬
𝑉஺

ℎଶ
൰ − 𝑉஺ (2) 

While environmental variance remains constant over the course of a simulation, genetic 

variance is initially set to match the estimated value but then evolves as a stochastic property 

of the population.   

 



Strength of assortative mating 

To test the effect of assortative mating, we simulated scenarios where the correlation 

coefficient for the migratory activity of parents was 0.25 or 0.70. To find the parameters of 

the mating preference function which would lead to these correlation coefficient values, we 

ran simulations with the same initialisation and fixed parameters as for other simulations (see 

table S2) but fixed the value of 𝑠 of the mating preference function at 0.1 and varied the value 

of 𝐶 within a range of 0.001 and 0.9. For each value of 𝐶 we ran 100 simulations and recorded 

the correlation coefficient at the second generation of every simulation. Figure S3 shows the 

resulting curve which relates de value of C with the correlation coefficient generated by 

simulation. A loess lines of best fit for this relationship was computed using the loess function 

in R [23], and the resulting model was used to obtain the values of 𝐶 that would lead to the 

desired values of 𝑟. Thus, 𝐶 should equal 0.194 to get a correlation coefficient of 𝑟 = 0.25 and 

0.433 to get 𝑟 = 0.70.  

With this approach, we manipulated the initial correlation coefficient but within a simulation 

the actual correlation coefficient could fluctuate. Importantly, as more individuals become 

resident there is less variation in migratory activity such that the value of 𝑟 is reduced (see, 

figure S3). This is to be expected since assortative mating based on the amount of migratory 

activity is expected to be weaker when there is limited phenotypic variation for this trait. 
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Figure S1: Overview of the process schedule used in the simulation model. 
  



 

 

 

 

 

 

 

 

 

 

 

Figure S2:  Relationship between the C parameter of the folded normal distribution mating- 

preference-function (see equation 10 in the assortative mating section above) and the 

correlation coefficient for the migratory activity of parents (𝑟). Each point represents the 

average value of 𝑟 of 100 simulations. The blue line shows the line of best fit that we used to 

calculate the value of C.  

 

  



 

 

Figure S3: Relationship between the strength of assortative mating and the proportion of 
resident individuals in a population.  

  



 

 

 

Figure S4 : Evolution of the heritability, mean migratory activity and number of alleles per 
locus under stabilising selection during the initialisation process for simulations with 10 or 
200 loci.  
 



 

Figure S5: Smoothed density distribution for migratory activity under the 5 fitness functions 

after 25 and 100 generations of selection. Each curve represents the smoothed density of 

migratory activity in the population within a single simulation. The results from different 

fitness functions are distinguished by colour as shown in figure 1 of the main text. 



 

Table S1: Input parameters used by the simulation model with the values used here to apply 

it to migratory behaviour in a blackcap population.  

 

 

*given in number of half-hour intervals with activity 

 

 

Parameter Value  
 

(i) Derived from previous studies 
 

 

    Initial mean liability   (µ𝑷) 1045* 
    Initial standard deviation in liability (𝛔𝑷) 376* 
    Initial heritability  (𝒉𝟎

𝟐) 0.432 
    Number of offspring per mating  (𝒇) 5 
    Population size    (𝑵) 1000 
    Mutational heritability  (𝒉𝒎

𝟐 ) 0.00184 
 

(ii) Influence on simulation outcomes tested 
 

 

Genetic architecture 
10 loci: σα = 86* and µ = 10-3 or 
200 loci: σα = 61* and µ = 10-4 

 

Fitness function 

Exponential:  0.5𝑒ି𝟎.𝟎𝟎𝟑 ௟ 
 
Linear: 2𝑒ିସ𝑙 + 0.5 
 
Logistic:  0.5 −

଴.ହ

ଵା௘ష𝟎.𝟎𝟏(೗ష𝟏𝟑𝟎𝟎)    
 

 
Discrete1: 0.160 
 
Discrete2: 0.375 
 
Discrete3: 0.465 

 
 
Environmental effect on threshold positions  
 

0, 100 or 300 * 



 

Table S2: Mean fitness of migrants obtained with the exponential, linear and logistic fitness 

functions with either 10 or 200 loci compared to the values expected from their 

corresponding discrete functions.  The observed values are summarised by the median and 

interquartile range based on the 20 simulations.  

 

Fitness function Expected  Observed with 200 loci Observed with 10 loci 

Exponential 0.160 0.161 (0.158 - 0.163) 0.166 (0.162 - 0.170) 

Linear 0.375 0.375 (0.374 - 0.378) 0.377 (0.373 - 0.380) 

Logistic  0.465 0.465 (0.463 - 0.467) 0.467 (0.464 - 0.468) 

 
 
 

 

 

 

 

 

  



Table S3:  Mean absolute error (MAE) and variance explained by cross validation (VECV) for 

the comparison of mean migratory activity predicted by simulations using different 

combinations of parameters and the data observed between 1988 and 2002 for the German 

blackcap population.   

 

  Fitness function Number of loci MAE VECV 

Exponential  10 65 80 

Exponential  200 69 74 

Linear 10 269 -151 

Linear 200 293 -200 

Logistic 10 242 -107 

Logistic 200 262 -141 

Discrete1 10 380 -423 

Discrete1 200 397 -471 

Discrete2 10 384 -434 

Discrete2 200 400 -479 

Discrete3 10 388 -446 

Discrete3 200 401 -482 



Table S4: Number of generations until populations become more than 5 or 95% resident and 

proportion of initial genetic variance maintained after 100 generations of selection for 

different fitness functions and number of loci. The values represent the median of 20 

simulations and within brackets are the upper and lower 95% confidence intervals calculated 

through bootstrapping for 20000 iterations. 

 

Fitness 
function 

Number of 
loci 

Generations 
until 

> 5% resident 

Generations 
until 

> 95% resident 

Proportion of initial 
genetic variance  

Exponential 10 6 (5-8) 42 (36-46) 
0.57 (0.35 – 0.73) 

Exponential 200 8 (5-7) 37 (32-37) 1.00 (0.85 – 1.16) 

Linear 10 16 (11-19) 73 (70-81) 
0.58 (0.48 – 0.68) 

Linear 200 23 (12-18) 68 (54-72) 
0.99 (0.83 – 1.26) 

Logistic 10 18 (12-22) 84 (76-94) 0.71 (0.53 – 0.80) 

Logistic 200 24 (12 – 20) 79 (63-83) 1.09 (0.90 – 1.19) 

 

  



Table S5: Description of the R objects used in the code that runs the simulation model. 

Object name in R 
code 

Description 

   start.a  
Matrix with half of the allele effects for every individual in starting 

population 

   start.b  
Matrix with other half of the allele effects for every individual in 

starting population 

start.ma 
Matrix with the migratory activity of every individual in starting 

population 

mu.eff  
Standard deviation of the distribution of effects of new mutations 

on the previous allelic value. 
 

C 
C parameter of folded normal distribution mating preference 

function 

sd.ma Standard deviation of genetic values for initial population 

env.deviates Environmental deviates per individual  

fitness Form of the fitness function i.e: linear, exponential or logistic) 

gens Number of generations to simulate  

h2 Initial heritability  

infl Fitness function parameter  

k Fitness function parameter  

mE Mean of the distribution of environmental effects  

mu Mutation rate  

mut.a Mutation matrix for one gene copy per individual 

mut.b Mutation matrix for the other gene copy per individual 

N Population size 

n.loci Number of loci governing liability trait 

offspring* Matrix with genetic values per individual  

offspring* Matrix with liability values per individual 

op Number of offspring per pair 

P.a Matrix with a gene copy per individual  

P.b  Matrix with the other gene copy per individual 

s 
s parameter of folded normal distribution mating preference 

function 

sdE Standard deviation of the distribution of allele effects  

slope Fitness function parameter  

w.mean.m Fitness function parameter 

t Fitness function parameter  

Tr Position of the threshold 

Tr.mean Mean position of the threshold  



*In the R code, offspring refers to the genetic values and then to the phenotypic values 
after adding the environmental deviates.   

Tr.sd Standard deviation in position of the threshold 

VA Initial additive genetic variance 

VP Initial phenotypic variance  

w Relative fitness 



R CODE FOR SIMULATION MODEL  

The genetic simulation model is implemented as an R function [4] called 

threshold_model_endpoint_seq. This function takes data from a starting population and 

several model parameters, runs the desired number of simulations and saves the data for 

further analysis. To make the code more readable, Table S5 (above) gives a short description 

of the key R objects within it.  

threshold_model_endpoint_seq<-function( 
          name,  # name to give to simulation 
          simulation, # number of simulations 
          save.every, # number of generations after which data is saved be
fore continuing simulation  
          N, # population size 
         start.a, # allele effects matrix for intial population 
         start.b, # other allele effects matrix for initial population  
         start.ma, # matrix of individual migratory activity values of ini
tial population 
         mE, # Mean of the distribution of environmental effects  
         n.loci,  # number of loci  
         w.mean.ma,  # fitness function parameter 
         w2, # fitness function parameter 
         sd.ma, # Standard deviation of genetic values for initial populat
ion  
         Tr.mean, # Average threshold value 
         Tr.sd,  # Standard deviation in threshold values 
         gen,  # number of generations to run  
         mu,   # mutation probability 
         mu.eff, # Standard deviation of the distribution of effects of ne
w mutations 
         h2, # inital heritability 
         fitness, # fitness function parameter 
         t,  # fitness function parameter 
         slope, # fitness function parameter 
         lambda,  # fitness function parameter 
         k,  # fitness function parameter 
         infl,  # fitness function parameter 
         wmax,  # fitness function parameter 
         wres, # fitness function parameter 
         assort, # weather to simulate assortative mating 
         C, #  C parameter of FND assortative mating function 
         s, # s parameter of FND assortaative mating function  
        op # number of offspring per pairing  
){ 
  require(reshape2) 
  require(plyr) 
   
 ###### Calculate (initial) genetic and (constant) environmental variance 
  
  VP<-sd.ma^2 



  VA<-h2*VP 
  sdE<-sqrt((VA/h2)-VA) 
  npairs<-N/op 
     
 ###### Creating fitness function 
   
  if(fitness=="linear"){ 
    wfunc<-function(ma,slope,t,Tr){ 
      if(ma<Tr){ 
        w<-wres  
      }else{ 
        w<-t-slope*(ma-Tr) 
        if(w<0){ 
          w<-0.0001 
        } 
      } 
      return(w) 
    }  
     
  } else if(fitness=="ex"){ 
    wfunc<-function(ma,lambda,Tr,c){ 
      if(ma<Tr){ 
        w<-wres  
      }else{ 
        w<-c*(lambda*exp(-lambda*(ma))) 
        if(w<0){ 
          w<-0.0001 
        } 
      } 
      return(w) 
    }  
    c<-t/lambda 
     
  } else if(fitness=="logistic"){ 
    wfunc<-function(ma,k,infl,Tr,wmax,wres){ 
      if(ma<Tr){ 
        w<-wres  
      }else{ 
        w<-wmax-(wmax/(1+exp(-k*(ma-infl)))) 
      } 
      if(w<0){ 
        w<-0.0001 
      } 
      return(w) 
    }  
  }else if(fitness=="stabilizing"){ 
    wfunc<-function(ma,w2,w.mean.ma){ 
      w <- exp((-(ma-w.mean.ma)^2)/(2*w2)) 
      return(w) 
    } 
  } 
  
 ###### Creating mating function  
   



  mating<-function(parent,a,b,n){ 
    sub.a<-sample(x = c(T,F),size = n,replace = T) 
    sub.a<-rbind(sub.a,!sub.a) 
     
    sub.b<-sample(x = c(T,F),size = n,replace = T) 
    sub.b<-rbind(sub.b,!sub.b) 
     
    aa<-rbind(a[parent[1],],b[parent[1],])[sub.a] 
    bb<-rbind(a[parent[2],],b[parent[2],])[sub.b] 
    return(rbind(aa,bb)) 
  } 
   
###### Running for multiple generations  
   
  all.a<-all.b <-list(length=save.every) 
  all.a[[1]]<-start.a 
  all.b[[1]]<-start.b 
   
  ma<- Trm<-matrix(nrow = N,ncol=save.every) 
   
  ma[,1] <- start.ma 
  Trm[,1] <- Tr.mean 
  assort.plots <- NULL 
  r <- NULL 
  save.points<-seq(save.every,gen,save.every) 
  n.save.points<-gen/save.every 
   
# determine maximum difference in migratory activity between 2 individuals 
in parental generation, this will be used as Dmax in the following generat
ions of assortative mating 
   
  if(isTRUE(assort)){ 
     
# Folded Normal distribution function for the calculation of mating probab
ilities  
     
    FND <- function(D,Dmax,C,s){ 
      p <- exp(( (-C^2) * (D^2) ) / ( (s^2) * (Dmax^2) )) 
      return(p) 
    } 
     
 # Compute matrix of individual pairwise differences in migratory activity 
(NB residents with -ma must be set to have ma = 0) 
    ma.pos <- ma 
    ma.pos[which(ma<0)] <- 0  
    Pdist <- as.matrix(abs(dist(ma.pos[,1])))  
     
# Dmax is the maxmimum possible absolute phneotypic diference between two 
individuals. 
     
    Dmax <- max(Pdist) 
  } 
   
# -------------- START OF LOOP FOR MULTIPLE GENERATIONS ------ #  



 
  for(sv in 1:n.save.points){ 
  for(g in 2:(save.every+1)){ 
       
 # Determine individual fitness 
 
        Tr <- round(rnorm(N,Tr.mean,Tr.sd))  # environemental variance in 
threshold  
        if(fitness=="linear"){ 
          w<-mapply(wfunc,ma[,g-1],Tr=Tr,slope=slope,t=t) 
        }else if(fitness=="ex"){ 
          w<-mapply(wfunc,ma[,g-1],Tr=Tr,lambda=lambda,c=c) 
        } else if(fitness=="logistic"){ 
          w<-mapply(wfunc,ma[,g-1],Tr=Tr,k=k,infl=infl,wmax=wmax,wres=wres
) 
        }else if(fitness=="stabilizing"){ 
          w<-mapply(wfunc,ma[,g-1],w2=w2,w.mean.ma=w.mean.ma) 
        } 
          w<-w/max(w) 
       
# Alleles in next generation are sampled from those of previous generation 
with probability given by fitness w 
       
      selected<-sample(x = 1:N,size = 2*npairs,replace = F,prob = w) 
       
      if(isTRUE(assort)){ 
        ma.pos <- ma 
        ma.pos[which(ma<0)] <- 0  
        Pdist <- as.matrix(abs(dist(ma.pos[selected,g-1]))) 
         
# Calculate mating probabilities using FND function 
        matprobs <- FND(D=Pdist,Dmax,C=C,s=s) 
# Set diagonal to 0 such that self mating does not occur  
        diag(matprobs) <- 0  
         
# remaining is a vector with the selected individuals from which to iterat
ively remove the individuals  
# that have already been paired.  
        remaining <- selected  
        P1<-NULL # vector contining ids of parent 1  
        P2<-NULL # corresponding vector containing ids of parent 2  
        for(i in 1:(npairs)){ 
# 1 Parent is randomly chosen from the "selected" population  
          P1[i] <- sample(remaining,1) 
# The parent with which this individual will mate is sampled from the sele
cted population using the mating probabilities corresponding to this indiv
idual and all its potential pairs  
          P2 [i] <- sample(x = selected ,size = 1,replace = F,prob = matpr
obs[,which(selected==P1[i])]) 
# Paired individuals are removed from the remaining vector to ensure sampl
ing without replacement  
          remaining <- remaining[-c(which(remaining==P1[i]),which(remainin
g==P2[i]))] 
# The probability of mating with an individual that has already paired = 0  



          matprobs[,c(which(selected==P1[i]),which(selected==P2[i]))] <- m
atprobs[c(which(selected==P1[i]),which(selected==P2[i])),] <- 0 
        } 
         
# Organise pairs into a list which facilitates use in mating function bell
ow 
        pairs <- cbind(P1,P2) 
        pairs<-rep(split(pairs, 1:npairs),each=op) 
         
       
        pairs<-cbind(selected[1:npairs],selected[ (npairs+1):(2*npairs)]) 
        pairs<-split(pairs, rep(1:nrow(pairs), each = ncol(pairs))) 
        pairs<-pairs[sample(x = rep(1:npairs,each=op),size = N,replace = F
)] 
    
        alleles<-lapply(pairs,mating,a=all.a[[g-1]],b=all.b[[g-1]],n=n.loc
i) 
        alleles<-do.call("rbind",alleles) 
        a<-alleles.a<-alleles[c(TRUE,FALSE),] # get odd rows. these are a 
alelleles 
        b<-alleles.b<-alleles[c(FALSE,TRUE),] # get even rows. these are b 
alleles 
       
######  MUTATION  
       
# Determine which alleles will undergo mutation:  
      mut.a<-matrix(data = sample(x = c(1,0),size = N*n.loci,replace = T,p
rob = c(mu,1-mu)),nrow = N,ncol = n.loci) 
      mut.b<-matrix(data = sample(x = c(1,0),size = N*n.loci,replace = T,p
rob = c(mu,1-mu)),nrow = N,ncol = n.loci) 
       
# Mutate those alleles by sampling from allele effects distribution  
      while(any(a[mut.a==1]==alleles.a[mut.a==1])){ # while ensures no mut
ation to same value  
        a[mut.a==1]<- a[mut.a==1] + round(rnorm(sum(mut.a),0,mu.eff)) 
        b[mut.b==1]<- b[mut.b==1] + round(rnorm(sum(mut.b),0,mu.eff)) 
      } 
       
###### GENOTYPE -> PHENOTYPE  
       
      offspring<-apply(a+b,1,sum) # the value of each offspring is the sum 
of alleles a and b summed over all loci  
      env.deviates<-rnorm(n = N,mean = mE,sd = sdE)   
      offspring<-offspring+env.deviates 
       
# If the generation at which a file should be saved has been reached, save 
file and assign current the data of current generation as the first elemen
t of the follwing one    
      if(g==save.every+1){ 
        print(i) 
        saving.name<-paste0(save.points[sv]-save.every,"_",save.points[sv]
,"_","simulation","_",simulation,"_",name,".rda") 
        print(saving.name) 
        saveRDS(object = list(ma=ma,allele.a=all.a,allele.b=all.b,threshol



d=Trm), 
                file=saving.name) 
         
# the first element of every object becomes the current one (i.e save gen+
1 becomes g==1 of next file) 
         
        all.a[[1]]<-a 
        all.b[[1]]<-b 
        ma[,1]<-offspring 
        Trm[,1]<-Tr 
         
      }else{ 
         
# Otherwise  save the data and proceed to the next generation  
         
        all.a[[g]]<-a 
        all.b[[g]]<-b 
        ma[,g]<-offspring 
        Trm[,g] <- Tr 
        print(g) 
      } 
    } 
  } 
} 
} 

  

 


