
ELECTRONIC SUPPLEMENTARY MATERIAL

How migratory populations become resident

Tiago de Zoeten and Francisco Pulido

Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid,

28040 Madrid, Spain

Corresponding author: fpulido@ucm.es

Contents:

 Detailed description of simulation model

 Input parameter choice

 Additional references (References 53 and 54)

 Figures S1-S5

 Tables S1-S5

 R code for simulation model

DETAILED DESCRIPTION OF SIMULATION MODEL

Initialisation

Sampling of initial allelic values

The initial number of alleles per locus was set to be slightly higher than observed at

equilibrium under stabilising selection. Therefore, for simulations with 200 loci, 3 possible

allelic values were sampled per locus, and for 10 loci, 10 potential allelic values were sampled.

For each locus, possible allelic values were sampled from a normal distribution with mean µು

ଶ

and variance 2.5 σα (see table S1 for a summary of the key parameters in the simulation

model). These parameters, which determine the initial distribution of allele effects, were

chosen to speed up the time to reach equilibrium under stabilising selection (see below) by

ensuring that the mean migratory activity is close to the desired one and that there is an

excess of genetic variance. Each of the n loci of each of the N individuals was then randomly

assigned one of these possible allelic values. This generated an initial excess of genetic

variation which then evolved to an equilibrium under stabilizing selection. Note that the

characteristics of the population at equilibrium were independent of the starting genetic

variance and number of alleles per locus and that these values were simply chosen to reduce

the time to equilibrium.

Stabilizing selection

After sampling allelic values, populations were allowed to evolve under stabilizing selection

for a total of 15000 generations. Stabilizing selection was implemented through the standard

Gaussian model of phenotypic stabilizing selection [53,54].

𝑤 = 𝑓(𝑙) = 𝑒𝑥𝑝 ቈ
−(𝑙 − 𝜃)ଶ

2𝜔ଶ

, where 𝑤 is the fitness, 𝑙 a given liability value, 𝜃 the optimal liability value. The strength of

stabilizing selection of genotypic values, standardised by the environmental variance is given

by:

𝑉𝑠 =
𝜎ଶ

ா + 𝜔ଶ

𝜎ଶ
ா

Where smaller values of Vs are associated with stronger stabilizing selection. Since the

environmental variance 𝜎ଶ
ா is kept constant throughout the simulations, the strength of

stabilizing selection is manipulated by adjusting the value of 𝜔ଶ. The strength of stabilizing

selection required to obtain an equilibrium heritability of 0.432 was determined to be

approximately 𝑉𝑠 = 150 with 10 loci and 𝑉𝑠 = 75 with 200 loci.

For either genetic architecture (10 or 200 loci) a single population was created and allowed

to evolve to equilibrium for 13000 generations (see, figure S4). The resulting populations were

used as the starting point of 20 independent simulations of 2000 generations to obtain a

sample of populations that is representative of equilibrium conditions. The result of this

process were 20 populations for each of the 2 genetic architectures with the desired mean

(µ), standard deviation (𝛔𝑷) and heritability (ℎ𝟎
ଶ) for migratory activity and with the allele

frequencies that emerge as a result of selection under stabilizing selection.

Simulation model

Selection

After the initialisation, selection starts taking place through the chosen fitness function that

relates an individual’s liability with its survival probability. Individuals with a liability below

the threshold all have the same fitness, while those with a liability greater than the threshold

have their fitness determined by one of the following equations that relate their liability

values with fitness.

Linear:

𝑤 = 𝑓(𝑙) = −𝑏 𝑙 + 𝑐 (6)

Exponential:

𝑤 = 𝑓(𝑙) = 𝛼𝑒ି𝝀 (7)

Logistic:

𝑤 = 𝑓(𝑙) = 𝑞 −
𝑞

1 + 𝑒ି𝒌(ି𝜷)
(8)

, where 𝑤 is the fitness, 𝑙 the liability value and the remaining are parameters which are

manipulated to define the relationship between fitness and liability values. Fitness functions

return individual fitness values which are converted into relative fitness by dividing them by

the maximum individual fitness value observed in the population at the current generation.

The fraction of the population that survives to breed, of size ଶே

, is sampled from the entire

population with sampling probabilities given by these relative fitness values.

Random mating

To simulate random mating, the ଶே

 selected individuals are paired at random and each pair

produces 𝑓 offspring, such that the population size 𝑁 remains constant. Genotypes are

obtained by randomly sampling alleles from either parent. Therefore, to obtain the alleles of

a new offspring, individual 𝑖, at locus 𝑣:

𝑍,௩,ଵ, is randomly sampled from discrete uniform distribution: { 𝑍భ,௩,ଵ,ିଵ , 𝑍భ,௩,ଶ,ିଵ }

𝑍,௩,ଶ, is randomly sampled from discrete uniform distribution: ൛ 𝑍మ,௩,ଵ,ିଵ , 𝑍మ,௩,ଶ,ିଵ ൟ

(9)

, where 𝑝ଵ and 𝑝ଶ correspond to the indices of the parents of individual 𝑖 in generation 𝑔 −

1.

Assortative mating

To simulate assortative mating, we incorporate the folded normal distribution mating

preference function proposed by Carvajal-Rodriguez and Rolán-Alvarez [24] which estimates

the mating probability of two individuals as:

ିమమ

ೞమವೌೣ
మ (10)

, where 𝐷 is the difference between the liability values of two individuals, 𝐷௫ is the

maximum value of 𝐷, and both 𝐶 and 𝑠 are parameters which are used to control the strength

of assortative mating. This formulation is particularly useful for incorporating empirical data

because it is scale-invariant, i.e. the strength of assortative mating does not depend on the

phenotypic scale being used. After selection and before reproduction, a matrix of pairwise

differences in migratory activity between all selected individuals is computed (liability values

below the threshold are assigned a value of 0). The mating preference function is then applied

to each value of 𝐷 to generate a matrix of pairwise mating probabilities. ே

 pairs of individuals

are then sampled from all possible pairs with the sampling probabilities given by this mating

probability matrix. Each mating pair produces 𝑓 offspring whose genotype at any given locus

is obtained by randomly sampling an allele from each of its parents at this locus.

Mutation

Mutation followed an incremental continuum-of-alleles model where the effect of an allele

after mutation equals its effect before mutation plus a random deviate with mean zero:

𝑍∗
௩ = ቊ

𝑍௩, 𝑖𝑓 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, µ) = 0

𝑍௩ + 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ఈ), 𝑖𝑓 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, µ) = 1
 (11)

, where 𝑍∗
௩ is the allelic value after mutation, 𝑍௩ is the allelic value before mutation and

𝜎ఈ is the standard deviation of the distribution of effects of new mutations on the previous

allelic value.

Computing genetic values and liabilities

An individual’s genetic value for the liability corresponds to the sum of the effects of all its

alleles.

𝐴 = 𝑍௩

ଶ

ୀଵ

௩ୀଵ

 (12)

, where 𝐴 is the genetic value of individual 𝑖 at generation 𝑔.

Individual environmental effects on the liability are sampled from a normal distribution:

𝐸 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ா) (13)

Individual liability values are the sum of the genetic values and the environmental deviates.

𝑙 = 𝐴 + 𝐸 (14)

Threshold variance

To explore the effect of variance in threshold values, we introduce a step in the simulation

process where individuals are randomly assigned a threshold value which is sampled from a

normal distribution:

𝑇 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎்) (15)

, where 𝑇 is the threshold value and 𝜎் the standard deviation in threshold values. Note that

we did not model a genetic contribution to threshold values, and that this algorithm assumes

threshold values are environmentally determined. When the threshold is variable, the

selection algorithm is modified to incorporate the individual threshold values and these

values are stored as output so that individual phenotypes can be determined after running

the simulations.

INPUT PARAMETER CHOICE

Genetic and environmental variance for migratory activity

From the phenotypic variance reported for the blackcap population in 1988 (VP = 3872) and

the heritability for migratory activity in this population (h2 = 0.432) we estimated the genetic

variance as

𝑉 = ℎଶ 𝑉 (1)

 , where 𝑉 is the additive genetic variance ℎଶ the heritability and 𝑉 the phenotypic variance

for the liability. We then estimated the standard deviation in environmental effects as:

𝜎ா = ඨ൬
𝑉

ℎଶ
൰ − 𝑉 (2)

While environmental variance remains constant over the course of a simulation, genetic

variance is initially set to match the estimated value but then evolves as a stochastic property

of the population.

Strength of assortative mating

To test the effect of assortative mating, we simulated scenarios where the correlation

coefficient for the migratory activity of parents was 0.25 or 0.70. To find the parameters of

the mating preference function which would lead to these correlation coefficient values, we

ran simulations with the same initialisation and fixed parameters as for other simulations (see

table S2) but fixed the value of 𝑠 of the mating preference function at 0.1 and varied the value

of 𝐶 within a range of 0.001 and 0.9. For each value of 𝐶 we ran 100 simulations and recorded

the correlation coefficient at the second generation of every simulation. Figure S3 shows the

resulting curve which relates de value of C with the correlation coefficient generated by

simulation. A loess lines of best fit for this relationship was computed using the loess function

in R [23], and the resulting model was used to obtain the values of 𝐶 that would lead to the

desired values of 𝑟. Thus, 𝐶 should equal 0.194 to get a correlation coefficient of 𝑟 = 0.25 and

0.433 to get 𝑟 = 0.70.

With this approach, we manipulated the initial correlation coefficient but within a simulation

the actual correlation coefficient could fluctuate. Importantly, as more individuals become

resident there is less variation in migratory activity such that the value of 𝑟 is reduced (see,

figure S3). This is to be expected since assortative mating based on the amount of migratory

activity is expected to be weaker when there is limited phenotypic variation for this trait.

ADDITIONAL REFERENCES

53. Haldane, J. B. S. 1954 The measurement of natural selection. Proc. IX Internal. Cong.
Genet. 1, 480–487.

54. Weldon,W. F. R. 1895. An attempt to measure the death rate due to the selective
destruction of Carcinus moenas with respect to a particular dimension. Proc. Roy.
Soc. Lond. 57, 360–379.

Figure S1: Overview of the process schedule used in the simulation model.

Figure S2: Relationship between the C parameter of the folded normal distribution mating-

preference-function (see equation 10 in the assortative mating section above) and the

correlation coefficient for the migratory activity of parents (𝑟). Each point represents the

average value of 𝑟 of 100 simulations. The blue line shows the line of best fit that we used to

calculate the value of C.

Figure S3: Relationship between the strength of assortative mating and the proportion of
resident individuals in a population.

Figure S4 : Evolution of the heritability, mean migratory activity and number of alleles per
locus under stabilising selection during the initialisation process for simulations with 10 or
200 loci.

Figure S5: Smoothed density distribution for migratory activity under the 5 fitness functions

after 25 and 100 generations of selection. Each curve represents the smoothed density of

migratory activity in the population within a single simulation. The results from different

fitness functions are distinguished by colour as shown in figure 1 of the main text.

Table S1: Input parameters used by the simulation model with the values used here to apply

it to migratory behaviour in a blackcap population.

*given in number of half-hour intervals with activity

Parameter Value

(i) Derived from previous studies

 Initial mean liability (µ𝑷) 1045*
 Initial standard deviation in liability (𝛔𝑷) 376*
 Initial heritability (𝒉𝟎

𝟐) 0.432
 Number of offspring per mating (𝒇) 5
 Population size (𝑵) 1000
 Mutational heritability (𝒉𝒎

𝟐) 0.00184

(ii) Influence on simulation outcomes tested

Genetic architecture
10 loci: σα = 86* and µ = 10-3 or
200 loci: σα = 61* and µ = 10-4

Fitness function

Exponential: 0.5𝑒ି𝟎.𝟎𝟎𝟑

Linear: 2𝑒ିସ𝑙 + 0.5

Logistic: 0.5 −

.ହ

ଵାష𝟎.𝟎𝟏(ష𝟏𝟑𝟎𝟎)

Discrete1: 0.160

Discrete2: 0.375

Discrete3: 0.465

Environmental effect on threshold positions

0, 100 or 300 *

Table S2: Mean fitness of migrants obtained with the exponential, linear and logistic fitness

functions with either 10 or 200 loci compared to the values expected from their

corresponding discrete functions. The observed values are summarised by the median and

interquartile range based on the 20 simulations.

Fitness function Expected Observed with 200 loci Observed with 10 loci

Exponential 0.160 0.161 (0.158 - 0.163) 0.166 (0.162 - 0.170)

Linear 0.375 0.375 (0.374 - 0.378) 0.377 (0.373 - 0.380)

Logistic 0.465 0.465 (0.463 - 0.467) 0.467 (0.464 - 0.468)

Table S3: Mean absolute error (MAE) and variance explained by cross validation (VECV) for

the comparison of mean migratory activity predicted by simulations using different

combinations of parameters and the data observed between 1988 and 2002 for the German

blackcap population.

 Fitness function Number of loci MAE VECV

Exponential 10 65 80

Exponential 200 69 74

Linear 10 269 -151

Linear 200 293 -200

Logistic 10 242 -107

Logistic 200 262 -141

Discrete1 10 380 -423

Discrete1 200 397 -471

Discrete2 10 384 -434

Discrete2 200 400 -479

Discrete3 10 388 -446

Discrete3 200 401 -482

Table S4: Number of generations until populations become more than 5 or 95% resident and

proportion of initial genetic variance maintained after 100 generations of selection for

different fitness functions and number of loci. The values represent the median of 20

simulations and within brackets are the upper and lower 95% confidence intervals calculated

through bootstrapping for 20000 iterations.

Fitness
function

Number of
loci

Generations
until

> 5% resident

Generations
until

> 95% resident

Proportion of initial
genetic variance

Exponential 10 6 (5-8) 42 (36-46)
0.57 (0.35 – 0.73)

Exponential 200 8 (5-7) 37 (32-37) 1.00 (0.85 – 1.16)

Linear 10 16 (11-19) 73 (70-81)
0.58 (0.48 – 0.68)

Linear 200 23 (12-18) 68 (54-72)
0.99 (0.83 – 1.26)

Logistic 10 18 (12-22) 84 (76-94) 0.71 (0.53 – 0.80)

Logistic 200 24 (12 – 20) 79 (63-83) 1.09 (0.90 – 1.19)

Table S5: Description of the R objects used in the code that runs the simulation model.

Object name in R
code

Description

 start.a
Matrix with half of the allele effects for every individual in starting

population

 start.b
Matrix with other half of the allele effects for every individual in

starting population

start.ma
Matrix with the migratory activity of every individual in starting

population

mu.eff
Standard deviation of the distribution of effects of new mutations

on the previous allelic value.

C
C parameter of folded normal distribution mating preference

function

sd.ma Standard deviation of genetic values for initial population

env.deviates Environmental deviates per individual

fitness Form of the fitness function i.e: linear, exponential or logistic)

gens Number of generations to simulate

h2 Initial heritability

infl Fitness function parameter

k Fitness function parameter

mE Mean of the distribution of environmental effects

mu Mutation rate

mut.a Mutation matrix for one gene copy per individual

mut.b Mutation matrix for the other gene copy per individual

N Population size

n.loci Number of loci governing liability trait

offspring* Matrix with genetic values per individual

offspring* Matrix with liability values per individual

op Number of offspring per pair

P.a Matrix with a gene copy per individual

P.b Matrix with the other gene copy per individual

s
s parameter of folded normal distribution mating preference

function

sdE Standard deviation of the distribution of allele effects

slope Fitness function parameter

w.mean.m Fitness function parameter

t Fitness function parameter

Tr Position of the threshold

Tr.mean Mean position of the threshold

*In the R code, offspring refers to the genetic values and then to the phenotypic values
after adding the environmental deviates.

Tr.sd Standard deviation in position of the threshold

VA Initial additive genetic variance

VP Initial phenotypic variance

w Relative fitness

R CODE FOR SIMULATION MODEL

The genetic simulation model is implemented as an R function [4] called

threshold_model_endpoint_seq. This function takes data from a starting population and

several model parameters, runs the desired number of simulations and saves the data for

further analysis. To make the code more readable, Table S5 (above) gives a short description

of the key R objects within it.

threshold_model_endpoint_seq<-function(
 name, # name to give to simulation
 simulation, # number of simulations
 save.every, # number of generations after which data is saved be
fore continuing simulation
 N, # population size
 start.a, # allele effects matrix for intial population
 start.b, # other allele effects matrix for initial population
 start.ma, # matrix of individual migratory activity values of ini
tial population
 mE, # Mean of the distribution of environmental effects
 n.loci, # number of loci
 w.mean.ma, # fitness function parameter
 w2, # fitness function parameter
 sd.ma, # Standard deviation of genetic values for initial populat
ion
 Tr.mean, # Average threshold value
 Tr.sd, # Standard deviation in threshold values
 gen, # number of generations to run
 mu, # mutation probability
 mu.eff, # Standard deviation of the distribution of effects of ne
w mutations
 h2, # inital heritability
 fitness, # fitness function parameter
 t, # fitness function parameter
 slope, # fitness function parameter
 lambda, # fitness function parameter
 k, # fitness function parameter
 infl, # fitness function parameter
 wmax, # fitness function parameter
 wres, # fitness function parameter
 assort, # weather to simulate assortative mating
 C, # C parameter of FND assortative mating function
 s, # s parameter of FND assortaative mating function
 op # number of offspring per pairing
){
 require(reshape2)
 require(plyr)

 ###### Calculate (initial) genetic and (constant) environmental variance

 VP<-sd.ma^2

 VA<-h2*VP
 sdE<-sqrt((VA/h2)-VA)
 npairs<-N/op

 ###### Creating fitness function

 if(fitness=="linear"){
 wfunc<-function(ma,slope,t,Tr){
 if(ma<Tr){
 w<-wres
 }else{
 w<-t-slope*(ma-Tr)
 if(w<0){
 w<-0.0001
 }
 }
 return(w)
 }

 } else if(fitness=="ex"){
 wfunc<-function(ma,lambda,Tr,c){
 if(ma<Tr){
 w<-wres
 }else{
 w<-c*(lambda*exp(-lambda*(ma)))
 if(w<0){
 w<-0.0001
 }
 }
 return(w)
 }
 c<-t/lambda

 } else if(fitness=="logistic"){
 wfunc<-function(ma,k,infl,Tr,wmax,wres){
 if(ma<Tr){
 w<-wres
 }else{
 w<-wmax-(wmax/(1+exp(-k*(ma-infl))))
 }
 if(w<0){
 w<-0.0001
 }
 return(w)
 }
 }else if(fitness=="stabilizing"){
 wfunc<-function(ma,w2,w.mean.ma){
 w <- exp((-(ma-w.mean.ma)^2)/(2*w2))
 return(w)
 }
 }

 ###### Creating mating function

 mating<-function(parent,a,b,n){
 sub.a<-sample(x = c(T,F),size = n,replace = T)
 sub.a<-rbind(sub.a,!sub.a)

 sub.b<-sample(x = c(T,F),size = n,replace = T)
 sub.b<-rbind(sub.b,!sub.b)

 aa<-rbind(a[parent[1],],b[parent[1],])[sub.a]
 bb<-rbind(a[parent[2],],b[parent[2],])[sub.b]
 return(rbind(aa,bb))
 }

Running for multiple generations

 all.a<-all.b <-list(length=save.every)
 all.a[[1]]<-start.a
 all.b[[1]]<-start.b

 ma<- Trm<-matrix(nrow = N,ncol=save.every)

 ma[,1] <- start.ma
 Trm[,1] <- Tr.mean
 assort.plots <- NULL
 r <- NULL
 save.points<-seq(save.every,gen,save.every)
 n.save.points<-gen/save.every

determine maximum difference in migratory activity between 2 individuals
in parental generation, this will be used as Dmax in the following generat
ions of assortative mating

 if(isTRUE(assort)){

Folded Normal distribution function for the calculation of mating probab
ilities

 FND <- function(D,Dmax,C,s){
 p <- exp(((-C^2) * (D^2)) / ((s^2) * (Dmax^2)))
 return(p)
 }

 # Compute matrix of individual pairwise differences in migratory activity
(NB residents with -ma must be set to have ma = 0)
 ma.pos <- ma
 ma.pos[which(ma<0)] <- 0
 Pdist <- as.matrix(abs(dist(ma.pos[,1])))

Dmax is the maxmimum possible absolute phneotypic diference between two
individuals.

 Dmax <- max(Pdist)
 }

-------------- START OF LOOP FOR MULTIPLE GENERATIONS ------ #

 for(sv in 1:n.save.points){
 for(g in 2:(save.every+1)){

 # Determine individual fitness

 Tr <- round(rnorm(N,Tr.mean,Tr.sd)) # environemental variance in
threshold
 if(fitness=="linear"){
 w<-mapply(wfunc,ma[,g-1],Tr=Tr,slope=slope,t=t)
 }else if(fitness=="ex"){
 w<-mapply(wfunc,ma[,g-1],Tr=Tr,lambda=lambda,c=c)
 } else if(fitness=="logistic"){
 w<-mapply(wfunc,ma[,g-1],Tr=Tr,k=k,infl=infl,wmax=wmax,wres=wres
)
 }else if(fitness=="stabilizing"){
 w<-mapply(wfunc,ma[,g-1],w2=w2,w.mean.ma=w.mean.ma)
 }
 w<-w/max(w)

Alleles in next generation are sampled from those of previous generation
with probability given by fitness w

 selected<-sample(x = 1:N,size = 2*npairs,replace = F,prob = w)

 if(isTRUE(assort)){
 ma.pos <- ma
 ma.pos[which(ma<0)] <- 0
 Pdist <- as.matrix(abs(dist(ma.pos[selected,g-1])))

Calculate mating probabilities using FND function
 matprobs <- FND(D=Pdist,Dmax,C=C,s=s)
Set diagonal to 0 such that self mating does not occur
 diag(matprobs) <- 0

remaining is a vector with the selected individuals from which to iterat
ively remove the individuals
that have already been paired.
 remaining <- selected
 P1<-NULL # vector contining ids of parent 1
 P2<-NULL # corresponding vector containing ids of parent 2
 for(i in 1:(npairs)){
1 Parent is randomly chosen from the "selected" population
 P1[i] <- sample(remaining,1)
The parent with which this individual will mate is sampled from the sele
cted population using the mating probabilities corresponding to this indiv
idual and all its potential pairs
 P2 [i] <- sample(x = selected ,size = 1,replace = F,prob = matpr
obs[,which(selected==P1[i])])
Paired individuals are removed from the remaining vector to ensure sampl
ing without replacement
 remaining <- remaining[-c(which(remaining==P1[i]),which(remainin
g==P2[i]))]
The probability of mating with an individual that has already paired = 0

 matprobs[,c(which(selected==P1[i]),which(selected==P2[i]))] <- m
atprobs[c(which(selected==P1[i]),which(selected==P2[i])),] <- 0
 }

Organise pairs into a list which facilitates use in mating function bell
ow
 pairs <- cbind(P1,P2)
 pairs<-rep(split(pairs, 1:npairs),each=op)

 pairs<-cbind(selected[1:npairs],selected[(npairs+1):(2*npairs)])
 pairs<-split(pairs, rep(1:nrow(pairs), each = ncol(pairs)))
 pairs<-pairs[sample(x = rep(1:npairs,each=op),size = N,replace = F
)]

 alleles<-lapply(pairs,mating,a=all.a[[g-1]],b=all.b[[g-1]],n=n.loc
i)
 alleles<-do.call("rbind",alleles)
 a<-alleles.a<-alleles[c(TRUE,FALSE),] # get odd rows. these are a
alelleles
 b<-alleles.b<-alleles[c(FALSE,TRUE),] # get even rows. these are b
alleles

MUTATION

Determine which alleles will undergo mutation:
 mut.a<-matrix(data = sample(x = c(1,0),size = N*n.loci,replace = T,p
rob = c(mu,1-mu)),nrow = N,ncol = n.loci)
 mut.b<-matrix(data = sample(x = c(1,0),size = N*n.loci,replace = T,p
rob = c(mu,1-mu)),nrow = N,ncol = n.loci)

Mutate those alleles by sampling from allele effects distribution
 while(any(a[mut.a==1]==alleles.a[mut.a==1])){ # while ensures no mut
ation to same value
 a[mut.a==1]<- a[mut.a==1] + round(rnorm(sum(mut.a),0,mu.eff))
 b[mut.b==1]<- b[mut.b==1] + round(rnorm(sum(mut.b),0,mu.eff))
 }

GENOTYPE -> PHENOTYPE

 offspring<-apply(a+b,1,sum) # the value of each offspring is the sum
of alleles a and b summed over all loci
 env.deviates<-rnorm(n = N,mean = mE,sd = sdE)
 offspring<-offspring+env.deviates

If the generation at which a file should be saved has been reached, save
file and assign current the data of current generation as the first elemen
t of the follwing one
 if(g==save.every+1){
 print(i)
 saving.name<-paste0(save.points[sv]-save.every,"_",save.points[sv]
,"_","simulation","_",simulation,"_",name,".rda")
 print(saving.name)
 saveRDS(object = list(ma=ma,allele.a=all.a,allele.b=all.b,threshol

d=Trm),
 file=saving.name)

the first element of every object becomes the current one (i.e save gen+
1 becomes g==1 of next file)

 all.a[[1]]<-a
 all.b[[1]]<-b
 ma[,1]<-offspring
 Trm[,1]<-Tr

 }else{

Otherwise save the data and proceed to the next generation

 all.a[[g]]<-a
 all.b[[g]]<-b
 ma[,g]<-offspring
 Trm[,g] <- Tr
 print(g)
 }
 }
 }
}
}

