Supplementary Materials and Methods

Immunohistochemistry

Tumor tissue microarrays containing paired primary lung tumors and corresponding lymph nodes from 40 patients were purchased from US Biomax (LC814a, US Biomax). Immunohistochemistry (IHC) was carried out with recombinant rabbit monoclonal anti-AXL antibody (Abcam) on VENTANA BenchMark ULTRA automated platform (Roche Diagnostics) (1). A semiquantitative analysis of the cytoplasmic expression of AXL protein was performed in 300– 500 cells using the Allred scoring system based on staining intensity (0–3) and extent (0–5). Scores of 0–2 were regarded as negative, and scores of 3–8 were considered positive (2).

In silico analyses

Clinical information and RNA-seq data of The Cancer Genome Atlas (TCGA) samples were downloaded from the Center for Molecular Oncology at Memorial Sloan-Kettering Browser (http://www.cbioportal.org). High gene expression was defined as a *Z* score >1 (*AXL*) of the lung cancer cohort (3,4). Kaplan–Meier curves were created in the R software package to determine overall and disease-free survival outcomes for patients with lung adenocarcinoma.

In vitro phenotypic assay

A549 and H2009 cells were treated with a range of TP-0903 does over the course of 72 hr. Proliferation and migration curves were generated using IncuCyte ZOOM (Essen BioScience) with images acquired every 3 hr over a 72 hr timeframe. Images were captured per well for each time point. Data were normalized to controls, and values for 50% inhibitory concentration were calculated using Prism V8.0 (GraphPad software).

Xenograft study of TP-0903 treatment

Animal study procedures and experimental design were reviewed and approved for ethical consideration by an internal review committee at Tolero Pharmaceuticals, Inc. Mouse xenografts were implanted subcutaneously in the hind flank of the athymic nude mice. Tumor volumes were grown to a medium size (~100 mm³) before stratification and dose initiation. General health, tumor volumes, and bodyweights were followed over the course of the study. Treatment of oral TP-0903 doses was administered to mice at two dosing levels: 80 mg/kg daily and 120 mg/kg twice weekly dosing over 21 days.

Capillary Western immunoassay (WES)

Protein lysates of A549 and H2009 cells were prepared in radio-immunoprecipitation assay buffer (Thermo Fisher Scientific). Proteins were then analyzed in 12-230 and 66-440 kDa WES separation module of quantitative capillary Western immunoassay system (Protein Simple). The following antibodies were used: 1) AXL, AKT, JNK, p38 MAPK, MEK1/2, P42/44 MAPK, and GAPDH (Cell Signaling Technology); and 2) p-AXL and YAP1 (R&D Systems). Protein expression levels were normalized with GAPDH as loading controls.

RNA-seq

RNA was extracted from TP-0903 treated and untreated cells or from sh*AXL* knockdown and vehicle control cells in two biological replicates by using the PureLink RNA Mini Kit (Thermo Fisher Scientific). Sequencing of cDNAs was performed with Illumina HiSeq3000 as per manufacturer's instructions. Paired-end FASTQ files were generated and aligned with the human reference genome GRCh38 by using STAR alignment software (5). The RSEM software was applied to quantify expression levels, and fragments per kilo base of transcript per million (FPKM) mapped reads were calculated. Differential expression levels of genes were compared between control and treatment groups by RSEM(6). After filtering genes with low FPKM values (<10), candidate

genes were divided into upregulated (\geq 1.5-fold) and downregulated (\geq 1.2-fold) groups. Both sets were used to perform pathway enrichment analysis on Gene Ontology Consortium (http://geneontology.org/) by using Reactome pathway databases in PANTHER (7,8). Heat maps were generated by using Z score, normalized fragments per kilo base million (FPKM) value. The EMT gene set was derived from dbEMT2 (http://dbemt.bioinfo-minzhao.org/) and the cancer stemness gene set from CSCdb (http://bioinformatics.ustc.edu.cn/cscdb/) (9,10).

Data availability

RNA-seq for this study is available through the Gene Expression Omnibus (GEO) under accession number GSE128417.

Analysis of peripheral blood mononuclear cells (PBMCs)

Peripheral blood were collected before surgery and within 2 hours of lung tumor resection. PBMCs of patient #006 was isolated using prewarm Ficoll-Paque[™] PLUS (GE healthcare Life Science) according to the manufacturer's protocol. After centrifugation, PBMCs were transferred into 8 ml advance DMEM, and cells were spun down (200g for 5 minutes). Supernatant removed and PBMCs collected for CyTOF analysis. Circulating tumor cells were identified by gating CD45⁻ /CK8/18⁺/EpCAM⁺ subpopulation from PBMCs (Supplementary Fig. S16A).

Western blot analysis

A549 and H2009 were cultured and treated with TP-0903 and/or ruxolitinib over 72 hr. Cell lysates were harvested using RIPA buffer. The concentration of protein lysates was determined by Pierce[™] BCA Protein Assay Kit (Thermo fisher). Forty micrograms of the total protein extracts were separated by NuPAGE[™] 4-12% Bis-Tris Protein Gels (Thermo fisher) and transferred to PVDF membrane. The membrane was then blocked with 5 % of Blotting-Grade Blocker (BioRad) in TBST and probed using primary antibodies including: 1) oncogenic pathways: JAK1, pSTAT3, STAT3, pAKT and pERK1/2 (Cell Signaling Technology; 3344S, 9131S, 9139T, 4060, 4377S); 2) cancer stemness markers: CD133 and ALDH1A1 (Cell Signaling Technology; 64326S and 54135S); and 3) EMT markers: Vimentin (Novus; NBP1-92687), N-cadherin, EpCAM (Abcam; ab71916) and CK8/18 (Novus; NBP2-44930); 4) loading control: GAPDH (Cell Signaling Technology; 2118S). Membrane was incubated in HRP-linked secondary antibodies following dilution with TBST (1:5000) at room temperature for one hour. Blots were developed using Western Lightning Plus-ECL Chemiluminescent Reagents (Perkin Elmer, Waltham, MA) and Syngene G:BOX Imaging System.

Statistical analysis

Software for RNA-seq analysis included R (version 3.6.0), downloaded from the official R website (https://www.r-project.org/) and program implemented in R studio (Version 1.2.1335) downloaded from R studio website (https://www.rstudio.com/). Multi-group statistical significance was tested by using Duncan multiple range test comparing pre- and post-treated cell lines, with statistical significance as identified.

Supplementary Figures

Supplementary Figure S1.

AXL expression in lung cancer cell lines, primary tumors, and xenografts. A, AXL expression pattern was examined in primary tumors and lymph nodes (left panel) and quantified using IHC scores (right panel). B, AXL expression levels of 506 samples from The Cancer Genome Atlas (TCGA) cohort according to clinical stages (I, II, III, and IV) (left panel). Normalized AXL expression levels in the TCGA cohort were grouped by four clinical stages (right panel). C, Kaplan-Meier curves of overall survival probability and disease-free survival probability were compared between high (Z score > 1) and low (Z score < 1) expression levels of AXL. D, Fiftypercent maximal inhibitory concentration (IC₅₀) of TP-0903 was generated from proliferation curves of A549 and H2009 cells. IC_{50} values of A549 and H2009 cells were calculated as 31.65 nmol/L and 35.53 nmol/L respectively. E, Anti-proliferative effect of TP-0903 on A549 cells at concentrations ranging from 0.1 to 100 nmol/L (three biological repeats). Quantitative analysis of cell growth over 72 hr period following drug treatment (Duncan multiple range test; *, p < 0.05; ***, p < 0.001). F, Proliferation curve of AXL knockdown in A549 cells over 48 hr (Duncan multiple range test; ***, p < 0.001). **G**, Tumor volume curves based on two dosing regimens of TP-0903 (120 mg/kg bi-weekly and 80 mg/kg daily dosing for 21 days) and vehicle control (left panel) in A549 mouse xenograft models. Body weight curve for xenograft models over 30-day treatment course of TP-0903 and vehicle control (right panel).

Supplementary Figure S2.

Alterations of TGF-β, JAK1-STAT3, cancer stemness, and EMT programs in lung cancer cells treated with TP-0903. **A**, Capillary Western immunoassay (WES) of total AXL and phosphorylated AXL in A549 and H2009 cells treated with or without 40 nmol/L TP-0903 or in sh*AXL* knockdown A549 cells and vehicle control. **B**, Schematic illustration of transcriptomic analysis procedures. **C**,

Expression heat maps and Venn diagrams of down- and up- regulated genes in cells treated with TP-0903 and in *AXL* knockdown cells. **D**, Reactome pathway enrichment analysis (PANTHER) of downregulated genes intersected in TP-0903-treated and *AXL* knockdown cells, categorized in oncogenic pathway, cell cycle and DNA repair, and cellular function. False discovery rate (FDR): p < 0.05. **E**, PANTHER of upregulated genes intersected in TP-0903-treated and *AXL* knockdown cells, categorized in oncogenic pathway, extracellular matrix, cell-cell interaction, and cellular function. FDR: p < 0.05. **F & G**, Expression heat maps of genes related to epithelial-mesenchymal transition (EMT) and cancer stemness.

Supplementary Figure S3.

Capillary Western immunoassay (WES) of proteins associated with TGF-β, PI3K/AKT/mTOR, JNK/p38 MAPK and Ras/RAF/MEK pathways.

Supplementary Figure S4.

Raw data of capillary Western immunoassay represented in supplementary Fig.S2A and Fig.S3

Supplementary Figure S5-14.

Cytometry by Time-of-Flight (CyTOF) analysis of oncogenic signaling components, cancer stemness, and epithelial-mesenchymal transition (EMT) markers in Patient 004, 006, 007, 008, 009, 010, 012, 014, 016, and 017 (see Fig. 1H-L for Patient 002). **A**, t-distributed stochastic neighbor embedding (*t*-SNE) scatter plot of subpopulations. *t*-SNE scatter plots of expression intensity of markers for oncogenic signaling (**B**), cancer stemness (**C**), and EMT (**D**) among different cell populations sets.

Supplementary Figure S15.

Western blots of proteins associated with oncogenic pathways, cancer stemness, and epithelialto-mesenchymal transition (EMT) in TP-0903 and/or ruxolitinib. Two isoforms of EpCAM in A549 were detected similar to those of a previous study (11).

Supplementary Figure S16.

Cytometry by Time-of-Flight (CyTOF) analysis of oncogenic signaling components, cancer stemness, and epithelial-mesenchymal transition (EMT) markers in tumor cells and circulating tumor cells (CTCs) of Pt 006. **A**, CTCs were identified as CD45⁻/CK8⁺/18⁺/EpCAM⁺ subpopulations from peripheral blood mononuclear cells. **B**, t-distributed stochastic neighbor embedding (*t*-SNE) scatter plot displaying 15 subpopulations derived from primary tumors and CTCs (arrow) from Pt 006. *t*-SNE scatter plots of expression intensity of markers for oncogenic signaling (**C**), cancer stemness (**D**), and EMT (**E**) among these subpopulations.

Patient ID	Age	Gender	Smoking status	Lung cancer type and specimen	Subtype	Differentiation	TNM classification	Stage	Max tumor size	EGFR	ALK	ROS1	Organoid culture
Pt 002	80	F	Former smoker, quit 25 years ago	Adenocarcinoma (lymph node metastasis)			T1cN2M0	IIIA	3 cm				-
Pt 004	74	F	Former smoker, 45 pack year	Invasive adenosquamous carcinoma (separate nodule)			T3N2M0	IIIB	2.1 cm				-
Pt 006	54	F	Nonsmoker	Pleomorphic carcinoma with adenocarcinoma		Poor	T1cN1M0	IIB	2.1 cm	Exon 19 deletion	Negative	Negative	-
Pt 007	68	М	Current 75 pack years	Adenocarcinoma	Acinar pattern		T2aN0M0	IB	3 cm	Negative	Negative	Negative	-
Pt 008	79	М	Current 100 pack years	Invasive adenocarcinoma	Papillary and hepatoid		T2aN0M0	IB	3 cm				+
Pt 009	82	F	Former smoker, 50 pack years	Invasive adenocarcinoma	Lepidic, solid and glandular	Moderate	T1cN2M0	IIIA	3.6 cm			Negative	-
Pt 010	57	F	Current, 45 pack years	Adenocarcinoma	Micropapillary, papillary and acinar	Moderate	T1bN0M0	IA	3.2cm				+
Pt 012	82	F	Former smoker, 60 pack years	Invasive adenocarcinoma	Acinar predominant with micropapillary pattern and colloid features		T1aN0M0	IA	2.1 cm	Negative	Negative	Negative	+
Pt 014	75	F	Nonsmoker	Invasive adenocarcinoma	Acinar predominant		T1bN0M0	IA	2 cm	Exon 19 deletion			+
Pt 016	73	М	Former smoker, 40 pack years	Invasive adenocarcinoma	Papillary predominant		T2aN0M0	IB	1 cm				+
Pt 017	74	F	Nonsmoker	Invasive adenocarcinoma (pleural metastatic tumor)		Well to moderate	T2bN0M1b	IV	4.1cm	Exon 19 deletion	Negative	Negative	+

Supplementary Table S1. Clinicopathological information of lung cancer patients

Plasmid	Sequence
shAXL #1	CCGGCTTTAGGTTCTTTGCTGCATTCTCGAGAATGCAGCAAAGAACCTAAAGTTTTT
shAXL #2	CCGGGCGGTCTGCATGAAGGAATTTCTCGAGAAATTCCTTCATGCAGACCGCTTTTT

Supplementary Table S2. Sequence of shAXL #1 and #2

Supplementary Table S3. Organoid medium supplements

Additive	Vender	Cat. No.	Working concentration
EGF	PeproTech	AF-100-15	50 ng/ml
Noggin	PeproTech	120-10C	100 ng/ml
R-Spondin 1	PeproTech	120-44	500 ng/ml
FGF-10	PeproTech	100-26	10 ng/ml
FGF-basic	PeproTech	100-18B	10 ng/ml
Prostaglandin E2	Tocris Bioscience	2296	1 µM
Y-27632	Sigma-Aldrich	Y0503	10 µM
Nicotinamide	Sigma-Aldrich	N0636	4 mM
A83-01	Tocris Bioscience	2939	0.5 µM
SB202190	Sigma-Aldrich	S7067	5 µM
HGF	PeproTech	100-39	20 ng/ml

Metal tag	Antigen	Clone	Vender	Cat. No.	Marker type
89Yb	CD45	H130	Fluidigm	3089003B	Immune marker
141Pr	CD3	UCHT1	Fluidigm	3141019B	Immune marker
142Nd	CD19	HIB19	Fluidigm	3142001B	Immune marker
143Nd	N-Cadherin		R&D systems	AF6426	EMT
144Nd	ALDH1A1	703410	R&D Systems	MAB5869	Stemness
145Nd	CD163	GHI/61	Fluidigm	3145010B	Immune marker
146Nd	ZO-2	3E8D9	ThermoFisher Scientific	374700	EMT
148Nd	CD16	3G8	Fluidigm	3148004B	Immune marker
149Sm	CD200	OX104	Fluidigm	3149007B	Stromal marker
150Ne	CD86	IT2.2	Fluidigm	3150020B	Immune marker
151Eu	CD133	170411	R&D Systems	MAB11331-100	Stemness
152Sm	SMAD2	31H15L4	ThermoFisher Scientific	700048	Signaling
153Eu	JAK1	413104	R&D Systems	MAB4260	Signaling
155Gd	Fibronectin	2F4	ThermoFisher Scientific	MA517075	EMT
156Gd	Vimentin		R&D systems	MAB2105	EMT
158Gd	pSTAT3	4/p-stat3	Fluidigm	3158005A	Signaling
159Tb	CD90	5E10	Fluidigm	3159007B	Stromal marker
160Gd	OCT3/4	240408	R&D Systems	MAB1759	Stemness
161Dy	AXL		R&D systems	AF154	Signaling
162Dy	CD66b	80H3	Fluidigm	3162023B	Immune marker
163Dy	CD105	43A3	Fluidigm	3163005B	Endothelial marker
164Dy	SMAD4	253343	R&D Systems	MAB2097	Signaling
165Ho	TGFBR2		R&D Systems	AF-241	Signaling
166Er	SNAI1		Sigma	SAB 2108482	EMT
167Er	TWIST1	927403	R&D systems	MAB6230	EMT
168Er	β-catenin	196624	R&D systems	MAB13292	Signaling
169Tm	Nanog	N31355	Fluidigm	3169014A	Stemness
170Er	STRO-1	STRO-1	R&D Systems	MAB1038	Stromal marker
171Yb	CD44	IM7	Fluidigm	3171003B	Stemness
172Yb	PECAM	HEC7	ThermoFisher Scientific	MA3100	EMT, endothelial marker
173Yb	EPCAM		R&D systems	AF960	EMT, epithelial marker
174Yb	Keratin 8/18	C51	Fluidigm	3174014A	EMT, epithelial marker
175Lu	CD14	M5E2	Fluidigm	3175015B	Immune marker
176Yb	CD56	CMSSB	Fluidigm	3176003B	Immune marker

Supplementary Table S4. Antibody panel of cytometry time-of-flight (CyTOF)

Supplementary References

- 1. Smith J RM, Acosta K, Vennapusa B, Mistry A, Martin G, Yates A, Hnatyszyn HJ. Quantitative and qualitative characterization of Two PD-L1 clones: SP263 and E1L3N. Diagn Pathol **2016**;11
- 2. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc **1998**;11:155-68
- 3. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, *et al.* Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal **2013**;6:pl1
- 4. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, *et al.* The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery **2012**;2:401-4
- 5. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, *et al.* STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) **2013**;29:15-21
- 6. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics **2011**;12:323
- 7. Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, *et al.* Reactome pathway analysis: a high-performance in-memory approach. BMC bioinformatics **2017**;18:142
- 8. Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic acids research **2016**;44:D336-42
- 9. Zhao M, Kong L, Liu Y, Qu H. dbEMT: an epithelial-mesenchymal transition associated gene resource. Sci Rep **2015**;5:11459
- 10. Shen Y, Yao H, Li A, Wang M. CSCdb: a cancer stem cells portal for markers, related genes and functional information. Database (Oxford) **2016**;2016
- 11. Martowicz A, Spizzo G, Gastl G, Untergasser G. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC Cancer **2012**;12:501

Supplementary Fig. S4 - continue

