
Alexander-Bloch et al., PNAS, 2020  
 

1 of 22 

SI Appendix for “Imaging local genetic influences on cortical folding”: 
Supplemental Methods, Results and Figures 
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Supplemental Methods 
 
I. Image acquisition and processing 
 
For the Genetics of Brain Structure and Function (GOBS) dataset (1,443 individuals), 
high resolution structural MRI was acquired on a Siemens 3T TIM Trio, using multiple 
T1-weighted 3D turbo-flash sequences with an adiabatic inversion contrast pulse (0.8-
mm isotropic voxels, TE 3 ms, TR 2100 ms, TI 785 ms, flip angle 13°, FOV 200 mm). 
For the Human Connectome Project (HCP) dataset (1,113 individuals), structural scans 
were acquired on a Simens 3T Skyra. T1-weighted and T2-weighted structural images 
were acquired on a 3T Siemens Skyra employing a 32-channel head coil. T1 scans 
used a magnetization prepared rapid gradient echo sequence (0.7-mm isotropic voxels, 
TE 2.14 ms, TR 2240 ms, TI 1000 ms, flip angle 8°, ES 7.6 ms, GRAPPA 2). T2 scans 
used a variable flip angle turbo spin-echo sequence (0.7-mm isotropic voxels, TE 565 
ms, TR 3200 ms, BW 744 Hz per pixel, no fat suppression pulse, GRAPPA 2). 

FreeSurfer (version 5.3) was used for image processing as described previously 
(1, 2). Briefly, after normalization and skull stripping, white matter voxels were identified 
based on intensity and covered in a topologically corrected, tessellated mesh. This 
gray-white surface was then expanded to fit the pial surface. Surfaces were examined 
manually and edited if necessary. Cortical thickness was calculated as the distance 
between the gray-white surface and the pial surface at each vertex. Cortical curvature 
was used to register surfaces to an average surface containing 10,242 vertices per 
hemisphere (fsaverage5 surface). Mean curvature, a measure of cortical folding, was 
defined as the average of the principal curvatures at each vertex (3). By convention, the 
inward curvature of sulci is defined as positive, while the outward curvature of gyri is 
defined as negative. 

For comparison, the Montreal Neurological Institute CIVET pipeline (version 
1.1.10) was also used to calculate cortical thickness on the HCP sample, as previously 
described (4). Briefly, after registration and normalization, the inner and outer cortical 
surfaces for each hemisphere were constructed using a triangular mesh generated from 
a constrained Laplacian algorithm. Cortical thickness was calculated as the distance 
between the gray-white surface and the pial surface. For fidelity of comparison to 
FreeSurfer surfaces, the CIVET mesh containing 40,962 vertices was down-sampled to 
9,895 uniform cortical regions by merging triangular faces into single regions (where the 
thickness of each region was the average of the thickness of the vertices within the 
region).  

To increase the signal-to-noise ratio and the accuracy of registration to average 
templates, FreeSurfer surface data were smoothed with a 25-mm full-width at half-
maximum (FWHM) smoothing kernel unless otherwise stated. Analyses were also 
performed with a 10-mm kernel to show robustness to this preprocessing step.  CIVET 
data were smoothed using a 40-mm FWHM kernel, which is the default for the CIVET 
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pipeline, so robustness to CIVET preprocessing also shows further robustness to the 
degree of smoothness. 
 
 
Supplemental Methods II. Estimation of genetic correlations 
 
Technical details of the variance decomposition and maximum likelihood estimation 
performed by SOLAR have been described previously (5). In the univariate case for a 
trait, x, across 𝑛 subjects, the 𝑛 × 𝑛 covariance matrix (Ω) was modelled as  
 

Ωx = 2Φ𝜎𝑥𝑎
2 + 𝐼𝑛𝜎𝑥𝑒

2 ,                    (1) 

 
where Φ is the kinship matrix of genetic relationships between subjects, 𝜎𝑥𝑒

2  is the 

variance in x due to environmental effects, 𝜎𝑥𝑎

2  is the variance in x due to additive 

genetic effects, and 𝐼 is the identity matrix. After maximum likelihood estimation of these 

parameters, the heritability (ℎ2) of a trait is defined as ℎ2 = 𝜎𝑎
2 (𝜎𝑎

2 + 𝜎𝑒
2)⁄ .  

In the bivariate case, for traits x and y, the 2𝑛 × 2𝑛 covariance matrix can be partitioned 

as Ωz = (
Ωx Ωxy

Ωyx Ωy
), where Ωx and Ωy are defined as per Equation (1), and the cross-

covariance matrix is Ωxy = Ωyx = 2Φ𝜎𝑥𝑦𝑎

2 + 𝐼𝜎𝑥𝑦𝑒

2 . An alternative parametrization in terms 

of correlations rather than covariances is 𝜎𝑥𝑦
2  = 𝜎𝑥𝜎𝑦𝜌, where 𝜌 is the correlation 

between x and y. Then Ωz can be written as Ωz =  2Φ ⨂ 𝑨 + 𝐼𝑛 ⨂ 𝑬, where ⨂ is the 
Kronecker product, and the matrices A and E are the genetic and environmental 
components of  
the variance, respectively: 
 

A=(
𝜎𝑥𝑎

2 𝜎𝑥𝑎
𝜎𝑦𝑎

𝜌𝐺

𝜎𝑥𝑎
𝜎𝑦𝑎

𝜌𝐺 𝜎𝑦𝑎
2  

)  and  E=(
𝜎𝑥𝑒

2 𝜎𝑥𝑒
𝜎𝑦𝑒

𝜌𝐸

𝜎𝑥𝑒
𝜎𝑦𝑒

𝜌𝐸 𝜎𝑦𝑒
2  

).    

 
Here, 𝜌𝐺 is the correlation of the genetic components of the two traits, and 𝜌𝐸  is the 
correlation of the environmental components of the two traits. The total phenotypic 
correlation, 𝜌, can be expressed in the terms estimated by the model as follows:   
 

𝜌 = √ℎ𝑥
2ℎ𝑦

2𝜌𝐺 +  √(1 − ℎ𝑥
2)(1 − ℎ𝑦

2)𝜌𝐸 .                   (2) 

 
The correlation between an individual vertex and each of its neighbors was averaged to 
yield L𝜌. 

In the HCP data, the same variance-decomposition approach was used to 
calculate genetic correlations, leveraging the large number of twin pairs (243, 94 
monozygotic) to generate the kinship matrix. However, reported phenotypic correlations 
were calculated directly by selecting one member of each family at random to generate 
a dataset of 457 unrelated individuals. In this case, the phenotypic correlation is 
estimated identically to “structural covariance” as described in numerous prior studies. 
We note that this more computationally efficient approach is not possible with the GOBS 
data because of the extended pedigree structure. 
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Supplemental Methods III. Estimation of orientation relative to sulcal-gyral axis 
 

The sulcal-gyral axis (SGA) was calculated based on the difference in sulcal 
depth between each vertex, v, and v’s neighbors. Using a vertex randomly chosen from 
among the neighbors as the reference vertex, r, we calculated the angle between the 
arcs defined by v-r and v-n for all neighboring vertices, n. This calculation was based on 
the spherical law of cosines, which we operationalized using the normalized spherical 
projection of the FreeSurfer average cortical surface: 

 

cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝐶, 
 

where a, b, and c are the arc lengths of the 3 sides of a spherical triangle on a unit 
sphere, and C is the angle opposite c. We then interpolated the expected change in 
sulcal depth at every angle from 0 to 360 degrees (relative to v-r), using a bilinear 
interpolation from the closest flanking vertices. SGA was defined as the axis of the 
smallest change in sulcal depth.  

The same interpolation procedure was used to generate an estimate of the 
expected correlation at every angle (relative to SGA), and O𝜌 was the difference 
between the correlations parallel to or close-to-parallel to SGA (average of 0o +/- 30o 
and 180o +/- 30o) and the correlations perpendicular to or close-to-perpendicular to SGA 
(average of 90o +/- 30o and 270o +/- 30o): 

 

O𝜌 = (𝐿𝜌𝑎𝑥𝑖𝑎𝑙 −  𝐿𝜌𝑡𝑎𝑛)/𝑆𝐷(𝐿𝜌),  
 

where 𝑆𝐷(𝐿𝜌) is the standard deviation of all of the vertex’s correlations (Supplemental 
Figure 11).  Normalizing by the standard deviation of the vertex’s correlations mitigates 
the effect of overall variability in the vertex’s correlation (as opposed to the axial-
transverse difference per se), but for comparison we also calculated orientation without 
this normalization step (Supplemental Figure 11).  Note that both the axial and 
tangential directions are orthogonal to the radial direction, which points towards deeper 
white matter.  

Note also that since O𝜌 is expressed relative to SGA, it does not depend on the 
choice of the reference vertex, r, which is chosen from among v’s neighbors; however, 
to increase robustness to any numerical issues related to the interpolation of angles 
from v-r, we iteratively calculated O𝜌 for every choice of r and took the median of these 
iterations as the reported estimate of O𝜌. Code to calculate the orientation of local 
correlations is available at https://github.com/aaronab. Note that all estimates of 
orientation were based on phenotypic correlations. 

 
 
Supplemental Methods IV. The spin test 
 
See Supplemental Figure 3 for a schematic of the spin test.  

An important methodological hurdle for this test is how to account for the medial 
wall (non-cortical areas in the FreeSurfer and CIVET surfaces). When maps are re-
aligned at random, cortical areas become aligned with the medial wall. Our principal 
approach to this issue is to calculate the correspondence statistic (e.g. Pearson’s 
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correlation coefficient, r) for the randomized alignments after excluding any vertices that 
were aligned with the medial wall. In general, the correspondence under random 
alignment (rR) was compared to the observed correspondence statistic (rO) to generate 
a P value. However, we also confirmed the results using an approach where rR was 
compared to r'O – the observed correspondence statistic after excluding any vertices 
that were aligned with the medial wall in the random alignment. In other words, r'O 
differs from rO in that it is re-calculated for each random alignment only using the 
vertices that were not excluded when calculating rR.  

The statistical significance of local correspondence between two maps was 
quantified using a cluster-based version of the spin test. As described in the main text, 
local correspondence was defined at each vertex as the Pearson’s correlation 
coefficient, r, between two maps including only vertices within a 10-mm geodesic 
distance of that vertex. Clusters of vertices (connected components on the mesh) were 
found that exceeded a nominal, moderate threshold for local correspondence (r>0.3 or 
r<–0.3). For each random alignment, the size of the largest such cluster (sum of the 
local correspondence at all vertices in the cluster, after r-to-z transformation) was used 
to generate a null distribution for comparison with the size of the clusters in the actual 
data. P values were empirically calculated for each cluster, c, as: (1 + number of 
random alignments in which largest cluster exceeded size of c)/(total number of random 
alignments tested). Note that this procedure provides control for multiple comparisons 
analogously to cluster-based Monte Carlo tests (6).  

For these cluster-based comparisons, we weighted the size of the maximum 
cluster to account for the number of excluded vertices; that is, the size of the maximum 
cluster under each random alignment was: 
 

𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡
′ = 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡  × 

𝑉𝑡𝑜𝑡𝑎𝑙

𝑉𝑡𝑜𝑡𝑎𝑙 − 𝑉𝑒𝑥𝑙𝑢𝑑𝑒𝑑
  

 

where 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡  is the size of the maximum cluster for that random alignment; 𝑉𝑡𝑜𝑡𝑎𝑙 is 

the total number of cortical vertices under the anatomical (real) alignment; 𝑉𝑒𝑥𝑙𝑢𝑑𝑒𝑑 is the 
total number of cortical vertices excluded based on being aligned with medial wall 
vertices for that rotation; and 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡

′  is the weighted version of 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡  used for the 

statistical comparison. Note that 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡
′ ≥ 𝑆𝑚𝑎𝑥𝑐𝑙𝑢𝑠𝑡  for all random alignments, so this 

step increases the conservativeness of the cluster-based test. 
 In this manuscript we have adjusted the terminology used in our description of 
the spin test to emphasize that the test is not a permutation test in the usual sense. In 
the original manuscript (7), we used the terminology “spatial permutation test” while 
demonstrating that the test did not meet the ordinary assumptions of a permutation test, 
namely exchangeability at the vertex-level (i.e., spatial invariance of the vertex-vertex 
covariance structure under the null hypothesis). The theoretical basis for the test is in 
fact quite different from that of a classical permutation procedure. The “spin test” tests 
whether random alignment between the two maps could plausibly explain the degree of 
correspondence observed in the anatomical (real) alignment between the maps. In the 
formal sense, the test is conditioned on the two maps; it does not allow inference about 
dataset-to-dataset variability beyond the two maps. In an attempt to clarify this issue 
here, we use the terminology “randomization test of correspondence” rather than 
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“spatial permutation test of correspondence”, although the algorithmic and theoretical 
basis of the test is identical to that described in the original publication. 
Supplemental Methods V. Visualization 
 
For visualization, we projected results onto the fsaverage5 inflated cortical surface as 
well as the flattened surface (8). On the flattened surface, the correlation of each vertex 
with each of its neighbors was visualized individually as an edge on the mesh. For 
consistency, the average CIVET surface was interpolated onto the fsaverage5 surface 
using nearest-neighbor interpolation, for purposes of visualizing CIVET results. 
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Supplemental Results 
 
I. Relationship between phenotypic and genetic correlations 

 
Although not previously demonstrated for brain morphology to our knowledge, the 
correspondence between phenotypic and genetic L𝜌 is predicted by prior studies in 
other disciplines. The argument that phenotypic correlations (𝜌) can be used as a proxy 

for genetic correlations (𝜌𝐺) has been called Cheverud’s conjecture (9). Theoretically, 
both genetic and environmental causes of covariation are hypothesized to influence the 
growth and development of traits in the same direction and via the same pathways. 
Regardless of its theoretical basis, empirical support for the practical implementation of 
the conjecture is strong, with high correlations between 𝜌 and 𝜌𝐺 – and between 𝜌𝐺 and 

the environmental correlation (𝜌𝐸) – reported across pairs of morphological traits (10). 
Note that according to Supplemental Equation (2), a high correlation between 𝜌𝐺  and 𝜌𝐸  
is mathematically unsurprising in the context of a high correlation between 𝜌𝐺 and 𝜌 
across traits, assuming that all traits are moderately heritable as is cortical thickness in 
different cortical areas (h2=0.3-0.5). (This statement is limited to the case of moderate 
heritability, because when ℎ2 → 1 the phenotypic correlation is determined entirely by 
the genetic correlation and the influence of the environmental correlation is negligible.) 
For completeness, in our data we also assessed the relationship between genetic and 
environmental Lρ, and observed a significant correlation (r=0.29, Pspin=0.001, 
Supplemental Figure 2). We do caution against a strong biological interpretation of 𝜌𝐸 , 
however, as the “environmental” component captures all of the variance not due to 
additive genetics in the statistical model (see Supplemental Methods II). In future 
investigations, it might be helpful to explicitly model specific aspects of the environment 
such as household effects. 
 
 
Supplemental Results II. The effect of spatial proximity on local correlations 

 

In all cases, downstream analyses of phenotypic or genetic correlations were performed 
as calculated after “regressing out” the global (non-linear) effect of distance on inter-
regional correlations, whereby vertices that are closer together are also expected to be 
more strongly correlated. Without this regression step, the smoothing of the vertices 
(which is necessary for inter-subject registration) will artificially inflate measures of 
correlation. Moreover, the distance between neighboring vertices on the cortical mesh is 
not uniform on the cortical surface – and in fact has a non-trivial relationship with 
cortical curvature – which could be an artifactual cause of spatial variation in the 
average correlation between a vertex and its neighbors (Supplemental Figure 13A). 
This variability in the distance between neighboring distances is addressed by using the 
residuals after controlling for the relationship with distance (Supplemental Figure 13B). 
Note that more highly smoothed data is less biased by a distance effect. Also note that 
regressing out distance is expected to remove only spatially invariant (“global”) effects 
of distance as the statistical model includes all neighboring vertices across the cortex. In 
other words, the signal of interest, which pertains to spatial variability in local 
correlations, is not removed by the regression step. The effect of distance was 
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calculated separately for phenotypic and genetic correlations, as well as for each of the 
alternative methods for determining a vertex’s local neighborhood. It is worth pointing 
out that sulcal fundi tend to have shorter distances to their neighbors on average, but 
we find that they tend to have lower average correlations – the opposite effect of what 
would be expected if the effect were due to a distance confound. 

As a supplement to this approach of dealing with the potential confounds of 
anatomical distance and smoothing, we also implemented a “center-ring” alternative to 
smoothing. Starting with non-smoothed data, for each vertex we calculated i) the mean 
thickness of all vertices within a 5-mm geodesic distance (the “center”), and ii) the mean 
thickness of all vertices in between a 5-mm and 7-mm distance (the “ring”). Across 
individuals, we estimated the correlation between the thickness in the center and the 
thickness in the ring to obtain an alternative measure of Lρ. Note that with this 
approach, the distance between the traits does not vary across vertices. This approach 
also decreases the spatial scale of smoothing relative to the spatial scale of interest, 
and minimizes the likelihood that results are dependent on spatial blurring across 
neighboring vertices.  Importantly, the main result of association with mean curvature is 

replicated using this approach (r=−0.30, Pspin=0.001, Supplemental Figure 7). 
 
 
Supplemental Results III. Consistency across methodological choices 
 
As described in the main text, the baseline pattern of local correlations was tested for 
robustness against multiple methodological perturbations (see Supplemental Figure 4). 
Unless stated otherwise, results in the main text are reported for phenotypic 𝐿𝜌 
calculated with the HCP data, a 25-mm FWHM smoothing kernel, FreeSurfer 
processing and a 10-mm geodesic distance on the cortical mesh as the local 
neighborhood. (Note that this geodesic distance was calculated on the mid-gray cortical 
surface, equidistant between pial surface and the cortical white matter.) In the HCP 
dataset, phenotypic 𝐿𝜌 was easily calculated from a subset of unrelated individuals (in 
contrast to the extended pedigree structure of GOBS, which is optimized for genetic 
analyses). Compared to decomposing phenotypic correlations into genetic and 
environmental components, this step reduces computation time by a factor greater than 
100; without this step, the set of analyses conducted in this paper would be 
computationally intractable. The simplifying assumption to focus on phenotypic 
correlations (also known as “structural covariance”) is justified by prior precedent in the 
literature (see Supplemental Results I) and by the observed correspondence between 
phenotypic and genetic Lρ in our data (see Main Figure 1). 
 The choice to focus on the 10-mm geodesic neighborhood for the comparisons 
with cortical folding was motivated in particular by the larger amount of data available 
for the interpolation step in the calculation of the orientation of local correlations (O𝜌), 

which is expected to increase signal-to-noise. Indeed, the pattern of O𝜌 appeared much 
less noisy when vertices within a 10-mm geodesic were considered neighbors 
(Supplemental Figure 9) as opposed to when only the 6 adjacent vertices on the cortical 
mesh were considered neighbors (Supplemental Figure 12). The correspondence 
between maps of O𝜌 calculated using these different definitions of the local 
neighborhoods was small in magnitude though statistically significant (r=0.08, 
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Pspin<0.001). In contrast, the correspondence between maps of L𝜌 using these different 
definitions of neighborhood was higher (r=0.68, Pspin<0.001), which likely reflects the 
fact that in this calculation the correlations (between a vertex and its 6 adjacent 
neighbors) were averaged rather than used as a basis for interpolation. 

As an additional control, we replaced total brain volume with mean total cortical 
thickness as a covariate in the calculation of inter-vertex correlation and L𝜌.  The 
correspondence with maps calculated using total brain volume as a regressor was high 

(r=0.87, Pspin<0.001), and the correspondence with folding was preserved (r=−0.29, 
Pspin<0.001), implying that the pattern of L𝜌 was not driven by global inter-individual 

differences in cortical thickness. 
 
 
Supplemental Results IV. Childhood Sample 
 
An important issue for the set of analyses is the appropriateness of developmental 
inferences based on adult neuroimaging samples. To complement the adult samples 
(GOBS and HCP) we performed an analysis using the Philadelphia 
Neurodevelopmental Cohort (PNC), specifically using 8-9-year-olds available in the 
study (n=98, with 32 scanned at age 8 and 66 scanned at age 9; 48 female and 50 male 
subjects). Briefly and as described previously (11), data were acquired using a single 
Siemens Tim Trio (Erlangen, Germany) 3T scanner using a 3D inversion-recovery, 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence (TI/TR/TE 
1100/1810/3.51 ms, flip angle 9°, matrix 256×192, FOV 240×180mm, voxel resolution 
0.93×0.93×1.0 mm3 . FreeSurfer (version 5.3) was used to generate maps of cortical 
thickness as described above. For this supplemental analysis, we focused on 25-mm 
FWHM smoothed data using the 10-mm geodesic neighborhood for the calculation of 
phenotypic L𝜌. 

The childhood data corroborated the principal findings in the adult datasets. We 
observed a strong correlation between the L𝜌 PNC and the L𝜌 HCP using the same 

methodological procedures (r=0.67, Pspin<0.001). Further, there was significant 
correspondence between L𝜌 PNC and folding as measured by mean curvature 

(r=−0.32, Pspin<0.001). See Supplemental Figure 5. 
 
 
Supplemental Results V. Heritability of curvature 
 
It is important to clarify the distinction between our main analyses and an analysis of the 
heritability of thickness or curvature per se. Although genetic correlations are not 
interpretable for traits that are not heritable, the degree of correlation is independent of 
the magnitude of heritability. Genetic L𝜌 is a measure of the overlap between genetic 

factors that influence thickness in neighboring vertices, which can be high even if most 
of the inter-individual variance in thickness is due to non-genetic factors. Moreover, and 
consistent with prior studies (12), supplemental analysis in the GOBS dataset shows a 
heterogenous map of vertex-level heritability of curvature, which is markedly lower 
overall than the heritability of thickness. The map of curvature heritability does not 

correspond spatially to the map of mean curvature (r=−0.01, Pspin=0.73, Supplemental 
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Figure 10), meaning that there is no consistent difference in the heritability of curvature 
in gyri versus sulci. The heritability of curvature does appear to be higher in the vicinity 
of primary sulci including primary motor cortex which is broadly consistent with our 
results. However, the lack of a straightforward correlation between mean curvature and 
the heritability of curvature implies that spatial gradients in L𝜌 track a different 
phenomenon than the heritability of curvature. Curvature may also be a noisier 
measurement than thickness, limiting the interpretability of the magnitude of heritability 
at the vertex level. Importantly though, our results do not imply that folding is under 
genetic control only in a subset of sulci. Rather, while folding appears to be related to 
local thickness co-variance in a subset of sulci, it is expected that other genetic factors 
influence inter-individual variation in curvature in a regionally heterogenous fashion. A 
full account of these other factors is beyond the scope of the present study. 
 
 
Supplemental Results VI. Does thickness drive local thickness co-variance? 
 
Given that gyral crowns tend to be thicker than sulcal fundi, and that we find that L𝜌 
tends to be lowest in sulcal fundi, it is possible that differences in thickness itself drive 
the observed difference in genetic L𝜌. Such a correspondence could be due to non-
biological factors differentially increasing noise in thinner areas of cortex, which could in 
turn decrease inter-vertex correlation. To test this notion, we undertook a supplemental 
analysis to directly assess the correspondence between thickness and phenotypic L𝜌. 

The correspondence between these maps is low and not statistically significant (r=0.02, 
Pspin=0.91), which makes it unlikely that gross differences in thickness drive the 
observed spatial variability in L𝜌. 
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Supplemental Figures 
 

  
Supplemental Figure 1. Genetic influence on cortical thickness. From left to right, 
mean cortical thickness, variance of cortical thickness and heritability of cortical 
thickness. Calculated on GOBS data with FreeSurfer using 25-mm full-width at half-
maximum (FWHM) smoothing kernel. The dashed red lines mark boundaries between 
the gyral regions in Freeserfer’s Desikan atlas, such that that the dashed lines generally 
occur within sulcal fundi. 
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Supplemental Figure 2: Correlated genetic and environmental local influences on 
cortical thickness. Analogous to Main Figure 2 but showing A) the genetic component of 
the average local correlation (Lρ) compared to B) the environmental component of the 
Lρ. 
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Supplemental Figure 3. Schematic of spin test. To test the significance of the 
anatomical correspondence between maps, we generate an empirical null distribution 
for the correspondence statistic (Pearson’s correlation coefficient, r) using an alignment 
randomization based on random rotations of a spherical projection of the cortical 
surface (the “spin test”), where the correlation was recalculated after the maps were 
rotated relative to one another. The P value was calculated based on the number of 
times the correlation from the randomly-aligned data equaled or exceeded the 
correlation the data in their observed alignment. Here, the two maps are phenotypic and 
genetic Lρ (r=0.6, Pspin <0.001). 
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Supplemental Figure 4: Robustness to methodological perturbation, for the estimation 
of phenotypic local correlation (Lρ). The map to the far left was generated using data 
from the Human Connectome Project (HCP); processed using FreeSurfer with a 10-mm 
full-width at half-maximum (FWHM); and with each vertex’s local neighborhood defined 
as the set of (in general six) adjacent vertices on the cortical mesh. From left to right, 
one aspect of the methodological pipeline was perturbed and the map of phenotypic 
local correlation (Lρ) was re-estimated: using data from the Genetics of Brain Structure 
and Function Study (GOBS); using a 10-mm FWHM smoothing kernel; using the CIVET 
preprocessing pipeline; defining each vertex’s local neighborhood (from which the mean 
local correlation is averaged) within 1 cm (geodesic distance). In the panel, both the 
redness and the size of the circles is proportional to the correspondence between the 
maps (Pearson’s r) and the statistical significance is calculated based on the spin test 
illustrated in Supplemental Figure 3. 
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Supplemental Figure 5:  Replication in a childhood sample of 98 children aged 8-9 
from the Philadelphia Neurodevelopmental Cohort (PNC). Here we show the 
organization of mean phenotypic local correlation (Lρ) and its relationship with gyral-
sulcal organization as measured by mean curvature, analogous to Main Figure 4 but 
using a childhood sample. A) Map of mean curvature. Sulci are positively curved, while 
gyri are negatively curved. B) Map of Lρ.  
 
 
 

 
Supplemental Figure 6: The left-right symmetry of local correlations in cortical 
thickness (Lρ). Map of local correspondence between left hemisphere Lρ and right 
hemisphere Lρ, visualized on the left hemisphere surface. 
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Supplemental Figure 7: Alternative center-ring approach to calculating phenotypic 
local correlation (Lρ) and its relationship with gyral-sulcal organization as measured by 
mean curvature. A) Schematic of center-ring approach. For each vertex, V, the 
thickness of all vertices within a 0- to 5-mm radius are averaged to yield V’s center; the 
thickness of all vertices within a 5- to 7-mm radius were averaged to yield V’s ring. B) 
Map of Lρ, calculated as Pearson’s correlation, r, between Vcenter and Vring across 
individuals for all V. C) Map of mean curvature. Sulci are positively curved, whereas gyri 
are negatively curved. 
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Supplemental Figure 8: Mean phenotypic local correlation (Lρ) and its relationship with 
gyral-sulcal organization as measured by mean curvature, analogous to Main Figure 4 
but showing both cerebral hemisphers. A) Map of mean curvature. Sulci are positively 
curved, while gyri are negatively curved. B) Map of Lρ. C) Map of local correspondence 
between mean curvature and Lρ. D) Significant clusters of local correspondence based 
on the spin test. 
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Supplemental Figure 9. Orientation of local correlations (Oρ) and its relationship with 
gyral-sulcal organization as measured by mean curvatures. A) Map of mean curvature. 
Sulci are positively curved, while gyri are negatively curved. B) Map of Oρ. C) Map of 
local correspondence between mean curvature and Oρ. D) Significant clusters of local 
correspondence based on the spin test.  
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Supplemental Figure 10: The relationship between the population average of mean 
curvature and the heritability of mean curvature across vertices. A) Map of mean 
curvature. Sulci are positively curved, while gyri are negatively curved. B) Map of the 
heritability of mean curvature. 
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Supplemental Figure 11: The component maps used in the calculation of the 
orientation of local correlations. Distinct maps for the axial (A) and tangential (B) 
components of local correlation (see Supplemental Methods III). Oρ is defined as the 
axial component minus the tangential component (C), divided by the standard deviation 
of the local correlation at each vertex (D). Supplemental Figure 9 shows the map of Oρ 
and its relationship with folding. 
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Supplemental Figure 12: Orientation of local correlations (Oρ) with an alternative 
definition of a vertex’s local neighborhood. Here, neighborhood was defined as adjacent 
vertices on the cortical mesh, as opposed to all vertices within a 1cm geodesic distance, 
as in Supplemental Figure 9. 
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Supplemental Figure 13: Distance effects on local correlation measures. A) The map 
of average distance between a vertex and its direct neighbors on the cortical mesh. B) 
Plots of the relationship between phenotypic correlation and distance across pairs of 
neighboring vertices. 
 

 

 

 
 
 
 
 
 
 


