YMTHE, Volume 28

Supplemental Information

Type 1 Interferon Responses Underlie

Tumor-Selective Replication of Oncolytic

Measles Virus

Sarah Aref, Anna Z. Castleton, Katharine Bailey, Richard Burt, Aditi Dey, Daniel Leongamornlert, Rachel J. Mitchell, Dina Okasha, and Adele K. Fielding

Figure S1 Schematic diagram of construction of MSV-IFITM1-IRES-mRFP. LTR= long terminal repeat; Ampr= ampicillin resistance; MSCV= murine stem cell virus; IRES=internal ribosome entry site; mRFP= monomeric red fluorescent protein; IK6= ikarus gene. BamH1 and XhoI are restriction sites.

Figure S2 MSC MV receptor expression profiles. (A) Representative flow cytometry histograms showing the percentage of cell surface expression of MV receptors CD46, CD150/SLAM and nectin-4 in transformed MSCs. Isotype-stained cells were used as negative controls. **(B)** Cumulative CD46 expression data and **(C)** corresponding mean fluorescent intensities (MFIs) for MSCs. Raji cells were used as a positive control for CD46 expression. Data shown is the mean SEM for 5 independent experiments.

Magnitude of log2(Fold Change)

-7.818 0 7.818

Layout	01	02	03	04	05	06	07	08	09	10	11	12
A	ADAR -1.34	BAG3 1.21	BST2 2.11	CASP1 2.54 A	CAV1 2.66	CCL2 -5.34 B	CCL5 -5.39	CD70 1.79 A	CD80 -5.35 A	CD86 -2.65 B	CDKN1B 1.95	CIITA -2.34
В	CRP -2.43 B	CXCL10 -1.02 B	DDX58 -2.36	EIF2AK2 -2.33	GBP1 -1.70	HLA-A -4.09	HLA-B -2.56	HLA-E -1.45	HLA-G -2.23	IFI16 -1.54	IFI27 -2.79	IFI30 -5.10
с	IFI6 -9.24	IFIH1 -10.23	IFIT1 -13.80	IFIT2 -6.90	IFIT3 -9.65	IFITM1 -225.62	IFITM2 -2.06	IFITM3 -3.41	IFNA1 -10.35	IFNA2 -3.14 B	IFNA4 -1.56 B	IFNAR1 -1.71
D	IFNAR2 -1.34	IFNB1 -3.36 B	IFNE -4.49	IFNW1 -1.86 C	IL10 -3.62 B	IL15 -1.63	IL6 1.01	IRF1 -1.28	IRF2 1.02	IRF3 2.24	IRF5 -2.61 B	IRF7 -2.16 B
E	IRF9 -2.32	ISG15 -43.19	ISG20 1.04	JAK1 -1.19	JAK2 -1.05	MAL -3.11 B	MET -2.19	MNDA -2.62	MX1 -15.76 A	MX2 -38.09 A	MYD88 -4.17	NMI -3.68
F	NOS2 -1.66 B	OAS1 -8.92	OAS2 -13.46 A	PML -1.07	PRKCZ -2.18 B	PSME2 1.18	SH2D1A -2.22 B	SHB -1.00	SOCS1 1.40	STAT1 -7.46	STAT2 -2.24	STAT3 -1.14
G	TAP1 -3.80	TICAM1 -1.22	TIMP1 -8.29	TLR3 1.17 B	TLR7 -2.42 B	TLR8 -2.39 B	TLR9 -2.77 B	TMEM173 -1.92	TNFSF10 -5.57 A	TRAF3 1.25	ТҮК2 1.76 А	VEGFA -2.02

Figure S3 Heat map of genes differentially expressed between hTERT and 5H MSCs. After being normalized against house-keeping genes, the average delta Ct values of target genes were compared between hTERT and 5H cells at baseline (n=3) and presented as fold regulation. This heat map shows the range of the fold regulations. Data were analysed using RT² profiler PCR array data analysis.

Position	Gene Symbol	Fold Regulation	p-Value
C06	IFITM1	-225.62	0.044523
E10	MX2	-38.09	0.002336
E09	MX1	-15.76	0.049148
F03	OAS2	-13.46	0.036223
C09	IFNA1	-10.35	0.014486
C05	IFIT3	-9.65	0.038361
F02	OAS1	-8.92	0.004198
G03	TIMP1	-8.29	0.005028
F10	STAT1	-7.46	0.006393
C04	IFIT2	-6.90	0.036567
G09	TNFSF10	-5.57	0.001976
D03	IFNE	-4.49	0.017604
H02	B2M	-4.11	0.009224
C08	IFITM3	-3.41	0.029079
E08	MNDA	-2.62	0.036293
A12	CIITA	-2.34	0.031149
B04	EIF2AK2	-2.33	0.039561
B09	HLA-G	-2.23	0.036003

Table S1 Genes significantly downregulated in 5H MSC compared to hTERT MSCs. List of genes significantly downregulated in 5H cells compared to hTERT cells (p<0.05). Data were analysed using RT^2 profiler PCR array data analysis.