Supplementary Figures Figure S1

С

 $\frac{X \times 2}{(n=78)}$ $\frac{X \times 2}{(n=92)}$ $\frac{X \times 2}{(n=8)}$ $\frac{X \times 2}{(n=8)}$ $\frac{X \times 2}{(n=8)}$ $\frac{X \times 2}{(n=8)}$

Е

F

В

Biology Open • Supplementary information

Figure S1. Starvation effects on medaka larvae.

(A) The survival rate during starvation treatment from 0-6 dph (0 dph n = 145, 1 dph fed n = 130, 1 dph starved n = 143, 2 dph fed n = 141, 2 dph starved n = 128, 3 dph fed n = 144, 3 dph starved n = 134, 4 dph fed n = 147, 4 dph starved n = 137, 5 dph fed n = 135, 5 dph starved n = 130, 6 dph fed n = 144, 6 dph starved n = 144). dph, day post hatching. The values indicate the average and the bars indicate s.e.m..

(B) Body length during starvation treatment from 0–6 dph. A significant difference appears at 3 dph (0 dph n = 45, 1 dph fed n = 30, 1 dph starved n = 43, 2 dph fed n = 41, 2 dph starved n = 28, 3 dph fed n = 44, 3 dph starved n = 34, 4 dph fed n = 47, 4 dph starved n = 37, 5 dph fed n = 35, 5 dph starved n = 30). The values indicate the average and the bars indicate s.e.m.. Student's t-test was used as statistical analysis. **P*-value < 0.05.

(C) The presence of the yolk ball during starvation treatment from 0-5 dph. The yolk ball disappears until 2 dph under normal feeding conditions (0 dph n = 148, 1 dph fed n = 150, 1 dph starved n = 150, 2 dph fed n = 151, 2 dph starved n = 145, 3 dph fed n = 151, 3 dph starved n = 149, 4 dph fed n = 151, 4 dph starved n = 147, 5 dph fed n = 146, 5 dph starved n = 150). The values indicate the average.

(D) The appearance of dorsal and anal fins and gonads in the medaka d-rR strain. Sex-reversed individual indicates a male type of dorsal and anal fins with normal testis. The genotyping result is shown in Table 1. Scale bars: 1 mm.

(E) Principal component analysis based on metabolomic analysis (IC-FTMS and LC-MS/MS, 250 metabolites). Both XX and XY show different metabolic profiles depending on feeding conditions (fed XX n = 5, fed XY n = 4, starved XX n = 5, starved XY n = 5). Principal component, PC

(F) Loading plot of principal component analysis. A point indicates metabolite. Pantothenate shows a high contribution to the positive side of principal component 1. Principal component, PC

Figure S2

Figure S2. Analysis of medaka pank genes.

(A) Synteny analysis for *pank1* gene. *pank1b* is not found in the syntenic region in the medaka LG19.
(B) Synteny analysis for *pank3* gene. *pank3* is not found in the syntenic region in the medaka LG10.
(C-F) *pank1a* expression was examined by whole mount *in situ* hybridization at 5 dph. Strong signals are detected in the gut and liver of both sexes (C, D). *pank1a* transcripts are not detected in the gonad (E, F). Black dashed lines indicate the outlines of the gonads. White arrowheads indicate germ cells with negative signals. g, gut; l, liver; n, nephric duct. Scale bars: 40 μm (C, D), 10 μm (E, F).

Figure S3. Pank inhibitor treatment does not affect larval growth but causes pantothenate accumulation.

(A) The amount of pantothenate after 5 days of Pank inhibitor treatment. XX larvae treated with Pank inhibitor indicate the increase of pantothenate (XX DMSO n = 8, XX inhibitor n = 8, XY DMSO n = 8, XY inhibitor n = 8). The vertical axis indicates the peak area of pantothenate in the spectrogram of IC-FTMS analysis. The values indicate the average and the bars indicate s.e.m.. A two-way ANOVA followed by Dunnett test was used as statistical analysis. *: *P-value* < 0.05 in Dunnett test.

(B) Body length at 5 dph under Pank inhibitor (50 μ M) treatment. Treated larvae show normal body length (XX DMSO n = 24, XX inhibitor n = 26, XY DMSO n = 15, XY inhibitor n = 21). The values indicate the average and the bars indicate s.e.m.. A two-way ANOVA followed by Dunnett test was used as statistical analysis.

(C) Body weight after 5 days of Pank inhibitor treatment. The weight of a single larva was calculated from the results of measurement using 4-6 larvae. (DMSO = 8 times, inhibitor = 9 times). Larvae treated with Pank inhibitor show normal body weight. The values indicate the average and the bars indicate s.e.m.. Student's t-test was used as statistical analysis.

(D) Principal component analysis based on metabolomic analysis (IC-FTMS, 141 metabolites). Pank inhibitor (PI, 50 μ M)-treated larvae show a starved-like metabolic profile (fed XX n = 4, fed XY n = 5, starved XX n = 5, starved XY n = 5, PI XX n = 5, PI XY n = 5). One dot indicates a data set of a single larva.

(E) Loading plot of principal component analysis. A point indicates metabolite. Pantothenate shows a high contribution to the positive side of principal component 1. Principal component, PC

Figure S4

А

С

Biology Open • Supplementary information

Figure S4. The effects of C75 (FAS inhibitor) treatment.

(A) Synteny analysis for *fasn* gene on medaka genome. The paralogue for *fasn* is not found on the medaka LG8.

(B) Body length at 5 dph under C75 treatment (20 μ g/mL). Treated larvae show normal body length (DMSO n = 19, C75 n = 17). The values indicate the average and the bars indicate s.e.m.. Student's t-test was used as statistical analysis.

(C) Principal component analysis based on metabolic analysis (ICFTMS, LC-MS/MS, 250 metabolites). C75 (20 μ g/mL)-treated larvae do not show a starved-like metabolic profile (fed XX n = 5, fed XY n = 4, starved XX n = 5, starved XY n = 5, C75 XX n = 3, C75 XY n = 5).

(D) Loading plot of principal component analysis. A point indicates metabolite. Pantothenate shows a high contribution to the positive side of principal component 1. Principal component, PC

(E) Gonad from C75-treated fish (most right). Sex-reversed individuals have normal testis. Scale bars:1 mm.

Biology Open (2020): doi:10.1242/bio.050054: Supplementary information

Figure S5

GCCTGCTCCTCCAGCCTGCTGGCGTTGGATAACG....ACCACTGTGACGCTGCTCTGGTGGGTGGGGTCAAC

Figure S5. fasn disruption by CRISPR/Cas9 system.

(A) Design of gRNAs for disruption of fasn gene. The two different gRNAs were designed based on exon 4 of the fasn gene.

(B) The body appearance of G0 adult medaka. The G0 adult medaka show a short body length with a swollen belly.

Figure S6. Design of TALEN for dmrt1 disruption.

(A) The location of left and right TALEN arms on the dmrt1 gene. TALEN was designed based on exon 1 of the dmrt1 gene.

- (B) The sequence of dmrt1 in Δ 13 line.
- (C) The expected amino acid sequence of dmrt1 in Δ 13 line. *: stop codon.

Table S1. Primers and TaqMan probes used in this study.

Experiment	primer name	sequence (5'-3')
	tq-dmy-F	CGGTAAAATTGACGCACAGCAT
	tq-dmy-R	GGTGATTACTTGTGTTTCCACATTT
	dmy-FAM (TaqMan probe)	TGGCTTCACCGTTGGA
genotyping	tq-cyp19a-F	TGGCACAGCCAGCAACTATTA
	tq-cyp19a-R	TCCGTTGATCCACACTCGAA
	cyp19a-VIC (TaqMan probe)	ACAACAAATATGGAGACTT
	dmrt1-typing-F1	TCCTGTACAAGTGACCCCGC
	dmrt1-typing-R1	TTCAGCGGAGACACGAAGCC
	fasn probe F	TGGAGATCGGGAAGTACGAC
In situ	fasn probe R	GGCCAGTGAATTGTAATACGACTCACTATAGGGAACTGGTCCAACACCTCCAG
hybridizatior	n pank1a probe F	CGTCCACTTGGAGCTGAGAA
	pank1a probe R	GGCCAGTGAATTGTAATACGACTCACTATAGGGTCACGAGTCATCTGTTGTC
fasn KO	fasn gRNA1 F	TAATACGACTCACTATAGGCCTCCAGCCTGCTGGCGT
	fasn gRNA1 R	TTCTAGCTCTAAAACACGCCAGCAGGCTGGAGG
	fasn gRNA2 F	TAATACGACTCACTATAGGACGCTGCTCTGGTGGGTG
	fasn gRNA2 R	TTCTAGCTCTAAAACCACCCACCAGAGCAGCGT
	80nt-crRNA-F	GTTTTAGAGCTAGAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT
	80nt-crRNA-R	AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC
	T7-F	TAATACGACTCACTATAG
	crRNA-R	AAAAGCACCGACTCGGTG
	fasn check F	CCAGAGGAACGGTTGTTTTC
	fasn check R	TGAGCATGCCCAGTTTCAT
RT-qPCR	b-actin F	TGGCGCTTGACTCAGGATTT
	b-actin R	GCAGATGCCTGGGGTGTTTA
	cyp19a1a F	CGCACAGAGTTCTTCCACAAAG
	cyp19a1a R	AACGGCTGGAAATAACGACGA
	foxl2 F	CACGCTGTCTGGCATCTACC
	foxl2 R	TCGTTGAGGCTCAGGTTGTG
	dmrt1 F	AGGGCCCGGCTCCGGCTCCA
	dmrt1 R	TTCAGCGGAGACACGAAGCC
	gsdf F	TCCATGGCCACCGAGGTCTT
	gsdf R	CCGAGGAATTGCAGAGAGCAC
	pank1a F	GCTTTGGAAATGGCCAGTAA
	pank1a R	CATGTGACCAAAGCTGGATG
	pank2 F	CACCCTCTCCATGAAGCTGT
	pank2 R	GATGCAGCAACTCAAGCAAG
	pank4 F	TCACCGTCAGGAGTCTGTTG
	pank4 R	TCGTTCTCCCTCTGCTTGAT