Supplemental Information

Fig. S1. *Arx*^{(GCG)10+7} mutants do not exhibit differences in CC3 distribution or neocortical size compared to WT littermates at P7. (A) Distribution of CC3+ density in Arx mutants and WT littermates in 6 laminar bins (1 most superficial, 6 most deep bin). There was no difference between genotypes (F(1,96)=1.681, P=0.1979), a significant effect of bin (F(5,96)=13.81, P<0.0001), but no interaction between bin and genotype (F(5,96)=0.7028, P=0.6226) (Two Way ANOVA). N=10 WT, 8 Arx. Mean and SEM are displayed. (B) Area (μ m²) of WT and *Arx*^{(GCG)10+7} mutant sagittal slices (P=0.5812, Unpaired t test). (C-D) Depth (μ m) of two different cortical regions showing no difference between genotypes: (C) RSA cortex (P=0.4316, Unpaired t test) and (D) Motor cortex (P=0.4321, Unpaired t test) cortex. N=8 WT, 8 Arx. Mean and SEM are displayed.

Fig. S2. Neonatal ACTH(1-24) treatment modifies cellular pathology but has no effect on neonatal spasms and electrographic phenotypes in adult *Arx*^{(GCG)10+7}. Effect of daily P3-10 ACTH(1-24) treatment at (A-C) 2IU/kg/day and (D-H) 4IU/kg/day compared to saline vehicle (Veh) control injections. (A) Average cumulative P7-11 spasms (p=0.6253, Unpaired T Test). (B&D) Average daily seizure frequency (seizures/24hr) from weekly P45-72 (average of 89 hours of total recording per mouse) video EEG recordings following neonatal 2IU/kg/day or 4IU/kg/day ACTH(1-24) treatment. (B) 2IU/kg/day ACTH(1-24) treatment (p=0.3287, Mann Whitney Test) (N=6 Veh, 8 ACTH(1-24)). (D) 4IU/kg/day ACTH(1-24) treatment (p=0.8701, Mann Whitney Test) (N=6 Veh, 6 ACTH(1-24)). (C&E) Average interictal spike frequency (interictal spikes/hr) following neonatal 2IU/kg/day or 4IU/kg/day ACTH(1-24) treatment. (C)

2IU/kg/day ACTH(1-24) treatment (p= 0.4908, Mann Whitney Test). (E) 4IU/kg/day ACTH(1-24) treatment (p= 0.3939, Mann Whitney Test). (**F-H**) Effect of P3-7 4IU/kg/day ACTH(1-24) treatment compared to vehicle (Veh) treatment (saline) on CC3+ cell counts and Arx+ cell density in $Arx^{(GCG)10+7}$ at P7. (**F**) Mean CC3+ counts in neocortex with ACTH(1-24) treatment (p= 0.0166, Unpaired T Test) (**G-H**) Mean Arx+ cell density (Arx+ cells/mm²) with ACTH(1-24) treatment in (G) retrosplenial agranular (RSA) region (p=0.0673, Unpaired T Test) and (H) motor cortex (p=0.0117, Unpaired T Test). Mean and SEM are displayed. With the exception of B&D, all Ns are displayed on graph.

Fig. S3. Validation of Nanostring candidates using qPCR did not reveal mRNA expression changes in *Fgf2, Itga5, Ngfr, Sh3tc2,* and *Shox2* but did reveal changes in *Arx* and *Npy* expression in *Arx*^{(GCG)10+7} P7 cortex compared to WT littermates. (A-G) Average expression $(2^{-\Delta\Delta Ct})$ of each mRNA candidate is displayed. (A) *Fgf2* (p=0.1330, Mann Whitney Test) (B) *Itga5* (p=0.4385, Mann Whitney Test) (C) *Ngfr* (p=0.3316, Mann Whitney Test) (D) *Sh3tc2* (p=0.3653, Mann Whitney Test) (E) *Arx* (p=0.0400, Mann Whitney Test) (F) *Shox2* (p=0.6842, Mann Whitney Test) (G) *Npy* (p=0.0019, Mann Whitney Test). Mean and SEMs are displayed. Ns are displayed on graph.

Ccl12	Cx3cr1	Fasl	ll4ra	Prl
Ccl5	Cxcl10	Flt1	116	Tgfb1
Ccr2	Cxcl11	Flt4	ll6ra	Tgfbr2
Ccr5	Cxcl12	Hgf	Inhbb	Tnf
Cd40	Cxcl16	ll10	Lif	Tnfrsf10b
Cntf	Cxcr4	ll10ra	Ltbr	Tnfrsf11b
Csf1	Egf	ll13ra1	Ngfr	Tnfrsf12a
Csf1r	Egfr	ll15ra	Osmr	Tnfrsf1a
Csf2rb	Epo	ll1b	Pdgfrb	Tnfrsf1b
Cx3cl1	Fas	ll1r1	Plekho2	Vegfa

Table S1.

List of 50 cytokines and cytokine-related mRNA's from NCounter mouse Neuropathology panel used in Nanostring pathway analysis (See Fig. 5A).

mRNA	Correction Set	Uncorrected	Corrected	Log2 fold	Linear fold
		P-value	P-Value	change	change
Ngfr-mRNA	Overlapping	0.00138	1	-1.110	0.465
Sh3tc2-mRNA	Overlapping	0.00707	1	-0.628	0.647
Fgf2-mRNA	Litter Correction	0.00454	1	-0.325	0.798
Itga5-mRNA	Overlapping	0.00205	1	-0.319	0.801
Hdac7-mRNA	Overlapping	0.00135	1	-0.173	0.887
Npy-mRNA	Batch Correction	0.00462	1	-0.171	0.888
Sirt1-mRNA	Batch Correction	0.00681	1	-0.162	0.894
Vegfa-mRNA	Overlapping	0.00583	1	-0.141	0.907
Atf4-mRNA	Overlapping	0.00878	1	-0.118	0.921
Htr1a-mRNA	Batch Correction	0.00797	1	-0.115	0.923
Acaa1a-	Batch Correction	0.00493	1	-0.093	0.937
mRNA					
Pnkd-mRNA	Batch Correction	0.00945	1	-0.094	0.937
Ran-mRNA	Overlapping	0.00594	1	-0.092	0.938
Ap4s1-mRNA	Overlapping	0.00354	1	-0.081	0.945
Ikbkb-mRNA	Batch Correction	0.00959	1	0.080	1.06

Table S2. Differentially expressed mRNA candidates between WT and *Arx*^{(GCG)10+7} **using Nanostring**. Data was corrected for batch and litter effects and 15 differentially expressed candidates were chosen based on uncorrected P-value less than 0.01. Highlighted candidates were chosen for validation by qRT-PCR.

Mef2c	NM_001170	TTCTACTACTAAAGGTATCAATGGAACATGAAGACG
	537.1	AGTATTTAGGCAGAAGCAAAACAGGAAACCATCCTT
		ACAAACATGCTTACCTGCACATCTGTTT
Msx2	NM_013601.	CTACCCCTTCCATAGACCTGTGCTCCCCATCCCGC
	2	CTGTTGGACTCTATGCCACGCCGGTTGGATATGGC
		ATGTACCATCTATCCTAAGGAAGACCAGAT
Myt1I	NM_001093	ATCAGTGACAGAAGTTATGCTGAGGGGATGTCACA
-	775.1	GCAGGACAGTAGAAATATGAACTATGTCATGCTAG
		GGAAGCCCATGAACAATGGACTCATGGAGA
Ndufa1	NM_023312.	CAGATTCTCCGGGAAAACCTGGAGGAGGAAGCCAT
3	2	CATCATGAAGGATGTGCCCAACTGGAAGGTGGGC
		GAGTCTGTGTTCCATACCACACGATGGGTGC
Pcdhg	NM_033588.	CAGTACTTTCGAGCACCGTCCATATCAGCGTGACC
a5	4	GTTCTTGATGCAAACGATAACGCACCCTTGTTTACC
		CAAAGCGAATATAGGGTGAGTGTTCCGGA
Pde3a	NM_018779.	ATATAGGAAGAAAATGTGGCCGTATTCTGAGCCAG
	1	GTATCATACAGACTGTTTGAAGACATGGGGCTCTTT
		GAAGCCTTTAAAATCCCGGTTAGGGAGTT
Perp	NM_022032.	CTTCACGATAACCCTGCTGTTAATTACATCTATAAC
	4	TGGGCCTATGGCTTCGGATGGGCGGCCACCATCAT
		CTTGATTGGTTGTTCCTTCTTCTTGCT
Prdx5	NM_012021.	AAAGAAGGTGAACTTGGCAGAGCTGTTCAAGGGCA
	2	AGAAAGGTGTTTTGTTTGGAGTCCCTGGGGCATTT
		ACACCTGGCTGTTCTAAGACCCACCTGCCT
Samd5	NM_177271.	GATGAGATGCGGAAGACTGGAAAGGGGCGTATTTA
	3	GGACCTTCTTTCACAAAGGGAACTGGATGGTGACT
		CTGCAAACACTTATCAGCTTAACGTTTTCT
Sfn	NM_018754.	AATCTGATTTGGTAATCCAAGACGCTCCTGCAATGC
	2	AGCCAGCCCTGAACTGCAGGGGGGCAGTCTGGAGC
		CGAAAGGTGCCTTTGCAGGTGGGACCTGCG
Shox2	NM_013665.	ATTTTACCCTGGAACAACTCAACGAGCTGGAGAGG
	1	CTTTTCGATGAGACCCACTATCCAGACGCTTTCATG
		CGCGAGGAATTGAGCCAGCGACTGGGGCT
Twist1	NM_011658.	AATGGACAGTCTAGAGACTCTGGAGCTGGATAACT
	2	AAAAATAAATCTATATGACAAAGATTTTCATGGAAAT
		TAGAAGAGCAGAGACCAAATTCACAAGA
Zfp369	NM_178364.	GTTACAAGGTTCATCTGCACAAAATCACCAGATGG
	5	GGTCTAGGGCAGGAAGAGCCAGGGACAACAGCAT
		CTTAACACATGTAAAAATTCACCAGAAAGGC

Table S3

List of 29 additional mRNA probes added to the Nanostring Mouse Neuropathology panel.

Probe	TaqMan™ Assay ID	Use
Lars	Mm00506560_m1	Normalizer/Housekeeping
Tnf	Mm00443258_m1	Target
116	Mm00446190_m1	Target
ll1b	Mm00434228_m1	Target
Fgf2	Mm00433287_m1	Target
ltga5	Mm00439797_m1	Target
Ngfr	Mm00446294_m1	Target
Sh3tc2	Mm01261770_m1	Target
Arx	Mm00545903_m1	Target
Shox2	Mm00443183_m1	Target
Npy	Mm00445771_m1	Target

Table S4

TaqMan[™] Gene Expression Assay ID's used for qPCR validation. *Lars* mRNA expression was used as a normalization/housekeeping gene as it was computationally identified by Nanostring assay as having adequate expression and low variability between samples.