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Variable Description
c M -dimensional vector of input signals
cj j-th input signal
D decoder matrix
Dk k-th column of D, or decoding vector of the k-th neuron
Djk element of the D; or contribution of the k-th neuron to the j-th signal
F matrix of feedforward weights
Fi i-th row of F, or vector of feedforward weights of the i-th neuron
Fij element of F, or feedforward weight of j-th signal onto i-th neuron
M number of input signals
N or NE number of excitatory neurons
NI number of inhibitory neurons
o N-dimensional vector of output spike trains
oi output spike train of the i-th neuron
r N-dimensional vector of filtered output spike trains
ri filtered output spike train of the i-th neuron
T N-dimensional vector of voltage thresholds
Ti voltage threshold of the i-th neuron
V N-dimensional vector of voltages
Vi voltage of the i-th neuron
λ leak parameter for voltages and filtering of spike trains
µ parameter for quadratic (L2) cost term
ν parameter for linear (L1) cost term
Ω matrix of recurrent weights
Ωi i-th row of Ω, or vector of recurrent weights of the i-th neuron
Ωik element of Ω, or recurrent weight of k-th neuron onto i-th neuron

Table 1: Mathematical notation.
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1 The efficient coding objective

In this section, we will first define the inputs and outputs of the network in
more detail, develop the exact nature of the linear readout, and then specify
the efficient coding objective, which is the core objective the network will seek
to minimize.

1.1 Inputs and outputs

We consider a recurrent neural network with NE excitatory and NI inhibitory
neurons (compare Figure 1Ai in the main paper). The network receives a set of
time-varying inputs c(t) =

(
c1(t), c2(t), . . . , cM (t)

)
and produces a set of spike

train outputs from the excitatory population, o(t) =
(
o1(t), o2(t), . . . , oNE

(t)
)
.

Each spike train is as a sum of Dirac delta functions, o(t) =
∑
tk
δ(t−tk), where

tk are the spike times.
We furthermore define filtered versions of the input and output signals. First,

the filtered input signal, x(t), is given by

ẋ(t) = −λx(t) + c(t), (S.1)

and the filtered spike trains of the excitatory neurons are given by

ṙ(t) = −λr(t) + o(t). (S.2)

Here, the parameter λ sets the decay rate of the respective variables. We note
that for slowly changing signals, x(t) and c(t) are just scaled versions of each
other. This is the scenario most applicable to our work, and we therefore refer to
both variables as ‘input signals’. Indeed, in the main text we did not distinguish
between c(t) and x(t), but will do so here to be mathematically exact. We
assume that these input signals are distributed according to some distribution
q(x). We will assume that this distribution is ‘white’, i.e., that its covariance
matrix is the identity, an assumption we will relax in Section S10.

Each filtered spike train can be viewed as a sum over postsynaptic potentials.
We will sometimes refer to these filtered spike trains as ‘instantaneous firing
rates’ or simply ‘firing rates’. Note that the variables ri(t) have units of firing
rates scaled by a factor 1/λ, a definition that slightly deviates from [1]. The
spike trains of the inhibitory interneurons are not considered to be part of the
output, and will be ignored for now.

1.2 The linear readout

We will assume that a downstream area will seek to construct an estimate x̂(t) of
the input signal from a simple weighted sum of the filtered output spike trains,1

x̂ = Dr (S.3)

=

NE∑
n=1

Dnrn

1Please note that we will generally drop the explicit notion of time-dependence to stream-
line the presentation, and so we here write x̂ instead of x̂(t) and r instead of r(t).
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where D is an M × NE matrix of decoder weights, and Dn are the columns
of this matrix. The vector Dn summarizes the contribution of neuron n to the
reconstruction of the signal.

We make two observations: First, the equation for the linear readout is
simply the vectorized version of Equation (2) in the main paper. Second, we
can use (S.2) to obtain a differential equation for this readout,

˙̂x = −λx̂ + Do,

which will become useful further below.

1.3 Efficient coding

We can measure the quality of any readout by averaging its performance over
a time interval T . To denote time averages of a quantity z(t), we will use

angular brackets so that 〈z(t)〉t = 1
T

∫ T
0
dt z(t). With this in mind, we define

the following loss function,

L = 〈`(t)〉t
≡
〈
‖x(t)− x̂(t)‖2 + C

(
r(t)

)〉
t
,

which is simply the vectorized version of Equation (3) in the main paper. Here
the first term inside the brackets is a quadratic measure of the reconstruction
error, the second term is a cost term on the firing rates.

If the time interval T over which this loss is averaged is large compared to
the time-scale of the input, then the distribution of inputs c during this interval
is approximately the same as the true input distribution q(c). Hence, for large
T we essentially sample the loss evenly over the distribution q(c) of all possible
inputs c (and hence over the distribution of input signals q(x), since the signals
x are filtered versions of c). To denote expectation values of a quantity z(x)
with respect to the distribution q(x), we will again use angular brackets, writing
〈z(x)〉q(x) =

∫
dxq(x)z(x). Accordingly, we can rewrite (S.4) as an estimate of

the expected loss over the inputs,2

L = 〈`(x)〉q(x)

=
〈
‖x− x̂‖2 + C(r)

〉
q(x)

. (S.4)

For ease of notation we will typically suppress the difference between these two
formulations and simply use angular brackets, 〈z〉, to denote averaging of the
variable z over either time or input signals. Similarly, we will write

` = ‖x− x̂‖2 + C(r) (S.5)

to refer either to the time-dependent loss `(t) or the signal-dependent loss `(x).

2We here assume that the distribution q(x) is white, i.e., its covariance matrix is the
identity. For non-white signals, it is advantageous to modify the definition of the loss, and we
will discuss this more general case in section 12.
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1.4 The cost terms

The cost term, C(r), allows us to assign a ‘cost’ to the representation (in terms
of filtered spike trains) chosen by a particular network. Typical choices for the
cost-term are C(r) =

∑
i r

2
i = ‖r‖2 or C(r) =

∑
i |ri| = ‖r‖1. For concreteness,

we adopt a linear sum of the two, but many results and intuitions directly
generalize to other cost functions. The objective (S.5) then reads

` = ‖x− x̂‖2 + µ ‖r‖2 + ν ‖r‖1 . (S.6)

To understand the influence of the cost terms, we imagine that there are
(many) more neurons than independent inputs, i.e., N > M . In the absence
of costs, and assuming real-valued firing rates r and constant inputs x for a
moment, we see that many possible combinations of firing rates can minimize
the objective, (S.4). Possible solutions are those in which only a few neurons
fire with high rates (sparse regime), and those in which many neurons fire with
fairly low firing rates (dense regime).

The cost term allows us to define which firing rate patterns have a higher
efficiency. The typical choice to enforce sparse population responses is a so-
called L1-cost, C(r) = ‖r‖1 =

∑
n |rn|, and the typical choice to enforce a dense

population code is a so-called L2-cost C(r) = ‖r‖22 =
∑
n r

2
n. Many other costs

such as slowness, group sparsity and others have been extensively discussed in
the literature, especially in the context of regularization. We here adopt a linear
sum of L1- and L2-cost for the rest of this manuscript, but the generalization
to other cost functions is possible with typically few modifications (see also [1]
for a more detailed discussion).

We note that algorithms such as principal component analysis (PCA) and
independent component analysis (ICA [17]) can be formulated as special cases
of this general class of learning problems. In particular, [21] relates ICA with
efficient coding in the presence of a sparsity cost.
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2 Networks of integrate-and-fire neurons

In this section, we will briefly describe the network equations and introduce
their vectorized and integrated versions, which will become important in later
sections.

The dynamics of the membrane voltages is given by Equation (1) in the
main paper. We will rewrite this equation in a slightly more general form by
introducing two modifications. First, we introduce a leak parameter λ which
determines the strength of the voltage leak term, and which is identical to
the parameter used in the definition of the filtered spike trains, (S.2). We
furthermore use the more general input term c(t) = ẋ(t) + λx(t), as explained
in Section S1. For slowly changing inputs, c(t) reduces to λx(t). Using a more
compact vector-notation for the synaptic weights, we obtain

V̇n(t) = −λVn(t) + F>n c(t) + Ω>n o(t).

Here the neuron index n runs from 1 . . . N . The vector of feedforward weights,
Fn, is M -dimensional just as the input signal, and the vector of recurrent
weights, Ωn, is N -dimensional just as the network size. (We note that the
recurrent weights can be both excitatory or inhibitory. The treatment of the
full EI network can be found in section 13.)

We can further compactify the notation by combining the synaptic weights
of the individual neurons into the connectivity matrices of the whole network.
We define the N ×M matrix of feedforward weights as F = [F1,F2, . . . ,FN ]>

and the N ×N matrix of recurrent weights as Ω = [Ω1, . . . ,ΩN ]>.3 With this
notation, we can write the network equations as

V̇ = −λV + Fc + Ωo, (S.7)

where we left out the references to time for brevity.
Finally, we can formally integrate the differential equation, using (S.1) and

(S.2), to obtain
Vn = F>nx + Ω>n r. (S.8)

or
V = Fx + Ωr. (S.9)

Note that this integration does not constitute an explicit solution to the differ-
ential equation, since the instantaneous firing rates, r(t), appear on the r.h.s.
However, the integration highlights the particular relation between the voltages
and the filtered spike trains, which will become useful further below.

3Please note that Fn and Ωn become rows of the respective connectivity matrices. In
contrast, the decoding vector Dn denotes a column of the decoder matrix D. Nonetheless, all
vectors, including these two, are assumed to be column vectors.
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3 Networks that obey ‘error-driven coding’

In this section, we will briefly describe networks whose recurrent connectivity
is given by Ω = −FD, where F is the feedforward weight matrix, and D is an
(a priori) unknown decoder matrix. These considerations will lead us to two
conditions for the learning of the recurrent weights.

To motivate this architecture, we first investigate the scenario in which the
input signal can be properly reconstructed from the network output with some
decoder D. We will simply assume that the network connectivity is in some
state in which some decoder D will properly do the job, in which case the
reconstruction error should be very small, so that x− x̂ ≈ 0.

From the point of view of a single neuron, this reconstruction error is inac-
cessible. Indeed, the n-th neuron only receives a small part of the input signal,
namely the input signal as seen through the lense of its feedforward weights,
F>nx. However, the reconstruction error εn for this part of the input signal
should, of course, likewise be close to zero so that

εn = F>nx− F>n x̂

= F>nx− F>nDr

≈ 0.

Our key insight is now that this latter equation will be identical to the voltage
equation, (S.8), if we assume that εn = Vn ≈ 0 and Ω>n = −F>nD. We note
that these are two necessary conditions for the network to properly represent
the input signals. In matrix notation, we can summarize these two conditions
as

Condition 1: Vn ≈ 0 for all n

Condition 2: Ω = −FD

8



4 Networks optimized for a fixed decoder

As explained in the last two sections, the connectivity Ω = −FD leads to the
voltage equation V = Fx−FDr. To gain a better understanding of this voltage
equation, and gain a condition for the learning of the feedforward weights, we
will here recap the results of [1, 2], in which one assumes a given and fixed
decoder, D, and then derives the best network architecture for that decoder.

Specifically, we will seek to find the set of spike trains, o(t), that minimizes
the loss function

L(o) =
〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
,

where the average in angular brackets is taken over all possible spike trains. To
do so, we will first consider the effect of a spike of neuron n on the instantaneous
loss ` (S.6). The spike will increase the filtered spike train, rn → rn + 1, and
thus update the signal estimate according to x̂→ x̂+Dn, where Dn is the n-th
column of the decoder matrix D. We can therefore rewrite the objective (S.6)
after the firing of the spike as

`(neuron n spiked) = ‖x− x̂−Dn‖2 + µ ‖r + en‖2 + ν ‖r + en‖1 ,

where [en]j = δnj . We adopt a greedy optimization scheme in which a neuron
fires as soon as its spike decreases the loss. Mathematically, this condition yields
the expression `(n spiked) < `(n did not spike), from which we can immediately
derive the spiking condition [2, 1],

D>nx−D>nDr− µrn >
1

2
(‖Dn‖22 + µ+ ν).

Notice that all terms on the l.h.s. are time-dependent while all terms on the
r.h.s. are constant. We will identify the l.h.s. with the (time-varying) voltages
of our neurons, and the r.h.s. with the (constant) thresholds,

Vn(t) = D>nx−D>nDr− µrn, (S.10)

Tn =
1

2
(‖Dn‖2 + µ+ ν). (S.11)

We can now compare this equation to the equation of the integrated network
voltages, (S.8) and (S.9). Accordingly, to be optimal, a network should have
the following connectivity,

F = D>, (S.12)

Ω = −D>D− µI

= −FF> − µI, (S.13)

where IN is the N×N identity matrix.4 These connectivities are similar to those
of optimal rate networks that are designed to minimize the loss function (S.6) [3,

4Note that, since we are now ignoring Dale’s law, all synaptic weights can be both excitatory
and inhibitory. For illustrative purposes, however, it is often useful to consider the case in
which all feedforward weights are excitatory, and hence all lateral weights are inhibitory (in
the optimal network). We will consider this toy scenario throughout the SI.
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4, 5, 6]. They are quite specific in that the recurrent weights are symmetric and,
as shown in the last equation, are directly related to the feedforward weights.

Furthermore, the thresholds are related to the recurrent (and thereby the
feedforward connectivities) via (S.11) so that

T =
1

2

(
diag(D>D) + µ+ ν

)
=

1

2
(−diag(Ω) + ν) ,

where T is simply the N -dimensional vector of all thresholds. This equation
may seem to pose an additional condition on the network architecture. However,
as explained in the next section, this condition can be reformulated as a simple
constraint on the decoder length.

Two important observations follow from this derivation. First, we note that
the spiking condition of a single neuron relies on local information only and does
not require the evaluation or knowledge of the full objective function. Indeed,
rewriting (S.10) by using the definition of x̂, we obtain

Vn(t) = D>n (x− x̂)− µrn, (S.14)

so that the voltage reflects both the part of the reconstruction error, x− x̂, that
is projected onto the decoder weights Dn, as well as the quadratic cost term.
Accordingly, a spike fired by a neuron is designed to decrease this projected
error, and in turn decreases the objective [1]. Biophysically, a depolarization
of the membrane voltage (through excitatory inputs) signals an increase in the
projected error. A repolarization (through inhibitory inputs or the self-reset
after a spike) signals an elimination in the projected error. This ‘balancing’ of
the coding errors is equivalent to the balance of excitation and inhibition.

A second observation is that the optimal architecture deviates from the
error-driven architecture from Section 3, as the feedforward weights F are not
necessarily equal to the transpose of the decoder D>. In turn, we obtain one
further necessary condition for optimality, which is

Condition 3: F = D>

meaning that in the optimal architecture, the feedforward weights have to
become equal to the decoder. Since the decoder is not a priori given for a general
network such as the one in Section 2, we need one additional constraint for the
decoder. The next section will explain how this constraint comes about.

Importantly, even if the feedforward weights, F, deviate from the decoder
weights, D>, the voltages of the neurons will still reflect projections of the
reconstruction error. Furthermore, as long as this deviation is not too large,5,
the spike fired by a neuron will decrease the reconstruction error.

5We consider a ‘large’ deviation one in which the dot product of at least one set of feed-
forward and decoder weights becomes too small or becomes negative, F>

i Di < ε.
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5 The optimal decoder

The loss function (S.4) defines the quality of a particular reconstruction, x̂ = Dr.
A straightforward way to find the best connectivity in the network is therefore
to simply optimize the loss function with respect to the decoder matrix D. In
turn, the connectivity can be computed using the equations (S.12) and (S.13)
derived in the previous section. The key problem with this approach is that it
is not biophysical, since the decoder D does not have a physical basis in the
network. Nonetheless, it will be useful to go through this exercise, as it ties to
some of the efficient coding literature of the past (e.g. [18] and related studies),
and will provide a useful foundation for the derivation of the actual learning
rules.

5.1 Solution for arbitrary networks

In short, we want to determine the best possible decoder D for a given network,
i.e., minimize

L(D) =
〈
‖x−Dr‖2

〉
,

where r is the filtered spike train output of the network. Note that we left out
the cost terms since they do not depend on the decoder and therefore have no
influence on the solution. Taking the derivative of the above loss function with
respect to D, we have

∂L

∂D
= −2

〈
(x− x̂)r>

〉
,

which is a learning rule for the decoder. We can determine the fixed point of
this learning rule by setting it to zero, which yields

D =
〈
xr>

〉 〈
rr>

〉−1
.

(Note that this solution is the well-known solution to the linear regression prob-
lem, where r are the regressors, x are the regressands , and D are the coeffi-
cients.) We can employ this formula to find the respective optimal decoder for
any network, i.e., for arbitrary feedforward or recurrent connectivities. Indeed,
we use this formula in Figure 2 in the main text, where we compare the recon-
structed signal with the input signal both for the unlearnt network and for the
learnt network.

5.2 Solution under length constraints

Section 4 showed that the thresholds, Tn, in the optimal network are intimately
linked to the L2 norm of the decoder weights. If we consider the thresholds as
fixed, then we can re-interpret (S.11) as imposing a constraint on the length of
the (optimal) decoder,

‖Dn‖22 = 2Tn − µ− ν =: an. (S.15)

To phrase the corresponding optimization problem, we can use a set of La-
grangian multipliers λn, and simply add these length constraints to the mean
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square error of the reconstruction to obtain the modified loss function

L =
〈
‖x−Dr‖2

〉
+

NE∑
n=1

λn
(
‖Dn‖2 − an

)
.

Taking the derivative of the loss with respect to Dn (and remembering that
x̂ =

∑
n Dnrn) yields

∂L

∂Dn
= −2 〈(x− x̂)rn〉+ 2λnDn.

In turn, we can set the derivative to zero to find the minimum of the loss
function. An insightful implicit solution is found by writing

Dn =
1

λn
〈(x− x̂)rn〉 , (S.16)

and illustrates that the decoder will generally align with the direction of the
largest reconstruction errors whenever the neuron fires strongly. An explicit
solution can be found as well, corresponding to a penalized least square solution,
and is given by

D =
〈
xr>

〉 〈
rr> + Λ

〉−1
.

where Λ is a diagonal matrix whose entries are the Lagrangian constraints, λn.

5.3 The optimal decoder for the optimal network archi-
tecture

In Section 4, we found the optimal network architecture for a given decoder,
while in this section, we discussed the optimal decoder for a given network
architecture. Ideally, of course, we want to perform both optimizations at the
same time. We therefore require our networks to perform a double-minimization
with respect to both the spike times o as well as with respect to the decoder D,

L∗ = min
o,D

〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
s.t. ‖Dn‖22 = 2Tn − µ− ν, (S.17)

where the constraint on the decoder length arises from (S.11).
This insight leads us to another condition on the learning of the feedforward

and recurrent weights. In condition 1–3, we made use of an (unknown) decoder
matrix D. Our fourth condition states that this matrix, at the end of learning
should converge to

Condition 4: D = D∗ where D∗ realizes the minimum of (S.17)
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6 The four conditions of learning

We will describe two ways of learning the connectivity, one based on a balancing
of input currents (Sections 7 and 8), and one based on minimizing voltage
fluctuations (Sections 9 and 10). To see through these derivations, we will first
explain the overall logic behind the learning of the recurrent and feedforward
weights, which is identical for both derivations. Recapitulating the insights from
Sections 3–5, we obtain four conditions on learning, two for the recurrent and
two for the feedforward weights.

6.1 Condition 1: Spike-by-spike balance

The membrane voltage of each neuron should remain close to zero, i.e., its rest-
ing potential. We can interpret this to mean that the membrane voltage fluc-
tuations should be minimized or bounded as tightly as possible. Accordingly,
any deviation from rest caused by the feedforward inputs must be immediately
eliminated by the recurrent inputs. In other words, the feedforward and recur-
rent inputs into each cell need to balance each other on short time-scales. As a
consequence, any excitatory input into the cells must be quickly canceled by an
inhibitory input of equal size, a condition known as tight EI balance, or other-
wise it would cause a spike and a self-reset of the voltage. Since the recurrent
inputs are given by the spikes of other neurons, we also refer to this balance as
spike-by-spike balance.

6.2 Condition 2: Recurrent weights need to be Ω = −FD

The recurrent connectivity should be factorizable into the form Ω = −FD
where F is the matrix of feedforward weights and D is an a priori unknown
decoder matrix.6 As a consequence, the membrane voltage of each neuron can
be interpreted as a projection of the reconstruction error, εn, which we refer
to as ‘error-driven coding.’ Indeed, the recovery of the reconstruction error in
the membrane voltages is a key ingredient of the optimal network, see equation
(S.14). While the decoder matrix, D, is unspecified at this point, not all matrices
D will allow a network to fulfill condition (1), as well. As a consequence, the
target Ω = −FD consists of a large, if unspecified, set of possible matrices, and
‘error-driven coding’ can be achieved by a large set of networks. Once Ω has
converged, the decoder D can, in principle, be derived by solving the equation
Ω = −FD for D.

6.3 Interlude: the importance of quadratic costs

The ‘error-driven coding’ architecture achieves the primary objective, i.e. rep-
resenting the signal x(t), which can now be read out via the decoder D (once
the decoder has been determined). Moreover, the voltages of the neurons now
represent part of the global coding error, or, more generally, the loss function.

However, even though the loss function is now represented within the net-
work, it is not yet minimized. More specifically, the efficiency of the representa-

6We note that the decoder D is a central conceptual tool in the formulation of the learning
rules. This decoder is not an explicit biophysical quantity of the network, and is initially
simply an unknown matrix D of size M ×N .
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tion depends strongly on the exact choice of the feedforward weights. There are
two problems. First, if the feedforward weights do not cover some part of the
input space (as in Figure 2, central column), then the reconstruction cost can
still be high in that part of the space. Second, even if the feedforward weights
cover the whole space, so that x̂ ≈ x everywhere, the particular spiking code
chosen by the system can still be inefficient from a practical point of view: since
we have not considered any cost terms, neurons could fire at very high rates
in order to properly represent the signal. To find a better distribution of the
feedforward weights, we therefore need to first re-introduce the L2 cost term,
i.e., the cost term that severely punishes high firing of individual neurons.

In the presence of an L2 cost, we know the form of the optimal recurrent
connectivity from section 4. Adapted to the error-driven coding architecture,
the recurrent weights should therefore converge to Ω = −FD− µI.

6.4 Condition 3: Feedforward weights need to mimic D

The network architecture that we have derived so far still deviates from the
optimal architecture, since F and D> are not necessarily the same matrices.
Accordingly, we need to somehow make sure that the feedforward weights F
align with the decoder D>.

This update of the feedforward connections should happen at a slower time
scale than recurrent learning, to ensure that the equation Ω = −FD − µI is
approximately preserved.

6.5 Condition 4: Decoder needs to minimize the loss

To make sure that the network as a whole represents the input signals properly,
the feedforward weights need to properly span the space of input signals. If,
for instance, the feedforward weights of all neurons were identical, the network
could at most represent the one-dimensional space spanned by these feedforward
weights—a pathological and uninteresting solution. We can make sure that the
signal space is properly covered if both D and F converge to the global optimum
D∗ of (S.17).

6.6 A plan of action for learning all the weights

These conditions suggest a specific program for learning the synaptic weights.
First, starting from random feedforward and recurrent weights, we need to learn
a balanced system in which the recurrent weights converge to a low-rank solu-
tion, Ω→ −FD +µI. In a second step, we can then aim to tighten the balance
between excitatory and inhibitory currents by aligning D and F such that both
converge to the global optimum, D∗.

In the next sections, we follow this program through for the current-based
learning rules and then the voltage-based learning rules. Only in the latter case
will we provide convergence proofs and also explain the full generalization to L1
costs and non-whitened inputs.
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7 Recurrent weights: current-based learning

In this section, we will explain how the current-based learning rules achieve
error-driven coding, or conditions 1 and 2. The current-based learning rules are
mathematically simpler, yet biophysically less plausible than the voltage-based
rules. To ease the presentation, this section does not consider the most general
scenario (with both L1 and L2 costs and correct scaling), which we will revisit
in section 9, where the voltage-based learning rules are derived.

7.1 Condition 1: Recurrent weights learn to balance

The shortest possible time-scale at which a single spiking neuron can be balanced
is limited by the interval between any two consecutive population spikes, i.e.
spikes emitted by any neuron in the population. We will refer to this interval
as a population interspike interval (pISI), in contrast to the standard interspike
interval (ISI) that is defined for two consecutive spikes of the same neuron.

We illustrate this idea in Figure 1C in the main text. Here a cell receives
excitatory feedforward inputs and inhibitory spikes from three pre-synaptic neu-
rons. Between the second and the third spike (gray area) the cell integrates its
feedforward input currents and depolarizes its membrane voltage. The arrival
of the second inhibitory spike (red) then causes a hyperpolarization of the mem-
brane potential (see voltage trace in middle panels). In the balanced case (left
column) the hyperpolarization due to the inhibitory spike from the red neuron
perfectly cancels the depolarization through the excitatory feedforward connec-
tions (gray area).

To understand how to balance a single cell on such a short time-scale, we
rewrite the membrane potential as a sum over spikes. We index the spikes in
the network by the time of their occurrence, writing t1, t2, . . . for the successive
spike times of the population. We then introduce a second index in order to
identify which neuron fired a particular spike, writing k(i) to indicate that the
i-th spike, ti, was fired by the k-th neuron. With this notation in mind, let
us define the integral over the input signal c(t) in the interval between two
consecutive population spikes at time ti−1 and ti:

g(ti) :=

ti∫
ti−1

dτ c(τ)e−λ(ti−τ).

We can then write the membrane voltage Vn at time ti (i.e., at the time of the
i-th spike) as (confer (S.8))

Vn(ti) = F>nx(ti) + Ω>n r(ti)

= F>n

ti∫
−∞

dτ c(τ)e−λ(ti−τ) + Ω>n

ti∫
−∞

dτ o(τ)e−λ(ti−τ)

=
∑
j≤i

F>n g(tj)e
−λ(ti−tj) +

∑
j≤i

Ωnk(j)e
−λ(ti−tj)

=
∑
i≤j

(F>n g(tj) + Ωnk(j))e
−λ(ti−tj),
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where k(j) denotes the index of the neuron spiking at time tj , as explained
above. Here Fng(tj) corresponds to the accumulated excitatory current during
the pISI before the j-th spike, i.e., the total charge transfer. In turn, Ωnk(j)

corresponds to the immediate inhibitory charge transfer caused by the j-th
spike itself. The network is perfectly balanced on the shortest time scale if
these two opposing charge transfers cancel exactly. In more practical terms,
the network is balanced on the shortest time scale if the (squared) net charge

transfer,
(
F>n g(tj) + Ωnk(j)

)2
, is as small as possible.

We hence concentrate on minimizing the objective

L =
∑
n,i

(
F>n g(ti) + Ωnk(i)

)2

,

where the sum runs over both neurons, n, and spike times, i. We can minimize
this objective by updating the recurrent synaptic weights after each spike in a
greedy manner,

∆Ωnk(t) ∝

{
−F>n g(t)− Ωnk(t) when neuron k spikes,

0 otherwise.
(S.22)

This rule has a rather intuitive meaning, as explained in the main paper and
illustrated in Fig 1C: if the excitation a neuron receives in the last pISI is
higher than the subsequent lateral inhibition, inhibition is strengthened, and
vice versa7. Importantly, the learning rule relies only on local information, i.e.
on quantities that are available to the neuron that needs to update its synapses.

7.2 Condition 2: Spike-by-spike balance yields error-driven
coding

By using the above learning rule for the recurrent weights, we can establish
spike-by-spike balance—condition (1) in Section 3—for every single neuron n =
1 . . . N . We will now show that condition (2) comes out as a by-product of this
learning rule, yielding the error-driven coding architecture.

The proof is straightforward. We simply investigate the fixed points of the
learning rule (S.22), i.e. all points for which the mean update is zero, 〈∆Ω〉 = 0.
We obtain

Ωnk = −
〈
F>n g

〉
k spikes

= −F>n 〈g〉k spikes ,

where the brackets denote an average taken over all the spike-times of neuron
k. This formula has two interesting consequences. First, the strength of the
inhibitory synapse from neuron k to neuron n equals the average excitatory
feedforward current that neuron n receives in the pISI before a spike of neuron
k. Thus, all neurons in the population cooperate to keep the voltage of the post-
synaptic cell as constant as possible. Second, the fixed points for the recurrent

7Note once more that, for illustrative purposes, we here suppose that the recurrent weights
are inhibitory and all feedforward weights are excitatory. We use this simplified picture for the
rest of the SI. In the case described here, in which the network violates Dale’s law, feedforward
and recurrent weights can have both positive as well as negative signs.
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weights can be written as Ωnk = −F>nDk where8

Dk = 〈g〉k spikes . (S.23)

We note that this is the desired low-rank factorization for “error-driven coding”,
i.e., Ω → −FD. In this regime the membrane voltage of each cell tracks a
projection of the error, and so the network fulfills condition (2) in section 3.

To summarize, we derived a simple learning rule for the recurrent connec-
tions from the principle that each recurrently fired spike should balance the
feedforward input of its respective postsynaptic cells. This rule seeks to bal-
ance the network on the shortest possible time scale and thereby yields the
desired low-rank factorization of the recurrent weights which is important for
error-driven coding. Furthermore, we have derived an explicit formula for the
decoder. Hence, even though the decoder was initially unknown, and even
though the decoder does not have a direct biophysical manifestation, it can be
computed through biophysical quantities, namely, the input signal sampled at
the spikes of the different neurons.

8Please note that Fk corresponds to the k-th row of matrix F while Dk corresponds to the
k-th column of matrix D. Nonetheless, all vectors in the SI, including these two, are assumed
to be column vectors.
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8 Feedforward weights: current-based learning

In this section, we will explain how the feedforward weights can be learnt within
the current-based framework, and we will focus on conditions (3) and (4) ex-
plained in Section 6. As also explaind in that section, the quadratic costs become
important in order to specify exactly which feedforward weights we consider op-
timal, and we will therefore first specify how the introduction of quadratic costs
modifies the recurrent learning rules. (We note that the current-based learning
of the feedforward weights is not explained in the main text. We include it here
for the sake of completeness.)

8.1 Quadratic costs modify recurrent learning

In the presence of an L2 cost, we know the form of the optimal recurrent con-
nectivity from section 4. Adapted to the error-driven coding architecture, the
recurrent weights should therefore converge to Ω = −FD−µI. We can achieve
this new fixed point of the recurrent learning rule (S.22) by introducing a small
regularization term, µδij , so that

∆Ωnk(t) ∝

{
−F>n g(t)− Ωnk(t)− µδnk when neuron k spikes,

0 otherwise.
(S.24)

Importantly, the learning rule will still seek to balance the system as tightly as
possible given the extra constraints. Following the logic of the previous section,
one can see that Ω will converge to the desired fixed point. After convergence
of the recurrent weights to Ω = −FD − µI, the membrane potential of each
neuron can be written as

V = F(x−Dr)− µr.

As a side note, we point out that the introduction of the cost term does not
alter the definition of the decoder (S.23).

8.2 Condition 3: Feedforward weights learn to mimic the
decoder

The derivation of the optimal network, section 4, suggests that F should eventu-
ally align with D>, as explained in condition (3) in section 3. Ideally, one would
therefore want an update rule of the form ∆F ∝ D> − F, which would move
the feedforward weights towards the decoder D>. While D can be inferred from
the recurrent connectivity by solving Ω = −FD−µI for D, it is not an explicit
quantity in the network, and the above learning rule is therefore biophysically
unrealistic. However, using the fixed-point equation for the decoder, (S.23), we
can replace D to obtain a local, biophysical rule

∆Fn(t) ∝

{
g(t)− Fn(t) when neuron k spikes,

0 otherwise.

If the learning of the feedforward connectivity occurs more slowly than the
learning of the recurrent connectivity, then all fixed points of the feedforward
network connectivity will fulfill Fn = 〈g〉n spikes = Dn and hence F → D>
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as desired. From a biophysical perspective the first term in the learning rule,
〈g〉n spikes, corresponds to the average input signal integrated before a spike
of neuron n. Such a signal could be computed in the presynaptic terminal,
for instance, which, given the complex machinery of synaptic plasticity is well
within the realm of possibilities.

We make two observations about the feedforward rule. First, the rule will
only change the feedforward weights if a postsynaptic spike (of neuron n) coin-
cides with a previous presynaptic input (the integrated input signal up to the
time of the postsynaptic spike). In other words, this learning rule corresponds
to the causal part of the standard STDP-rule. Second, a neuron that never
spikes will not change its feedforward weight. This latter scenario is problem-
atic since the neuron is then essentially lost to the network. However, it can be
avoided either by introducing a noise term in the learning rule, or by lowering
the neuron’s threshold. We used this latter solution to overcome this problem
in the initial stages of learning for Figure 4–8, see also Section 14.

8.3 Condition 4: Learning rules minimize loss function

While the feedforward learning rule shapes the connectivity into the desired
form (section 4), it is not a priori clear whether these changes also help to
minimize the loss function, (S.17), which was our fourth condition on learning.
We will now show that the learning rule derived in the previous section achieves
exactly that. To do so, we will investigate how the learning rules affect the
(average) voltages, since the voltages are directly linked to the reconstruction
errors and thereby the loss function. To keep things simple, we will assume that
the recurrent connectivity is already learnt, and we will write ∆F = λ(D>−F)
for the feedforward update, where λ is a small feedforward learning rate. Let ∆r
be the corresponding change in firing rate. The resulting change in the voltage
will then—on average—be proportional to〈

∆V
〉

=
〈
∆F(x−Dr) + Ω∆r

〉
= λ

〈
(D> − F)(x−Dr)

〉
+
〈
Ω∆r

〉
= λ

〈
D>(x−Dr)− µr

〉
− λ
〈
F(x−Dr)− µr

〉
+
〈
Ω∆r

〉
= λ

〈
D>(x−Dr)− µr

〉
− λ
〈
V〉+

〈
Ω∆r

〉
.

Since the learning of F happens on a much slower time-scale than the learning
of the recurrent weights, both the l.h.s, i.e. the average voltage difference, and
the second term on the r.h.s., i.e., the average voltage, will be close to zero, as
the network remains in a tightly balanced state throughout the learning of the
feedforward weights. As a consequence the change in firing rates approximately
respects the following equation〈

Ω∆r
〉
≈ −λ

〈
D>(x−Dr)− µr

〉
,

= λ
∂L

∂r

where L is the averaged loss function (S.4) in the absence of the linear cost
term. As the network is in the balanced state, we expect the symmetric part of
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Ω to be negative-definite, that is for all v 6= 0, v>Ωv < 0. As a consequence

−
〈
∆r>

〉
· ∂L
∂r

= − 1

λ

〈
∆r>

〉
·Ω
〈
∆r>

〉
> 0.

In other words, the change in instantaneous firing rate of the network will have
positive dot product with the antigradient of the loss function, thus minimising
it.

8.4 Conclusions and biological realism reconsidered

To summarize, in this section we illustrated how an STDP-like learning rule for
the feedforward connections in conjunction with a recurrent learning rule that
seeks to tightly balance excitatory and inhibitory inputs, leads to a network
architecture that optimizes the average loss, (S.4), and thereby produces an
efficient spike code of the input signals. The derived learning rules are local, in
that they only require knowledge of quantities that are available to the neurons.

There are several issues that we did not consider so far. First, we did not
study linear costs or non-whitenend input distributions. Second, even though
the learning rules are local, their biological plausibility may still be questioned,
since the rules require the integration of input currents between successive spikes
of the population. While it cannot be ruled out that actual neurons (or synapses)
do keep track of these quantities, it has not been observed, either. In the
next section, we address these concerns and derive learning rules based on the
voltages of the neurons. We furthermore consider the extension to linear costs,
non-whitened inputs, correct scaling and, finally, the full EI network.
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9 Recurrent weights: Voltage-based learning

In this section, we will explain how the voltage-based learning rules achieve
error-driven coding, or conditions 1 and 2. These are the recurrent learning
rules that underlie the simulations in the main text. The derivation in this
section closely follows the spirit of Section 7, and includes a convergence proof.

9.1 Condition 1: Recurrent weights learn to minimize
voltage fluctuations

As in Section 7, we start by considering the learning of the recurrent synapses
without costs. The target of learning is then a balanced network with recurrent
weights Ω = −FD. In the last section we showed that it is enough to seek a
balanced state in order to reach both properties. In the same spirit, we first
establish a suitable and practical measure of membrane voltage fluctuations,
derive learning rules for the recurrent weights that minimize those fluctuations
and then show that the network will converge to a low-rank configuration Ω→
−FD.

A particularly straightforward way of measuring voltage fluctuations is the
temporal average of the squared voltage deviations from rest V0 = 0, i.e.,

L =
〈
‖V(t)‖2

〉
t
.

However, evaluating the exact voltage deviations requires a precise tracking of
the membrane voltage at all times, and may thus be infeasible for real neurons.
Inspired by the insights from the previous section, we start with the presumption
that learning occurs only during the presence of a presynaptic spike. We can
then reduce the problem to minimizing the deviations of the membrane voltages
around the time of a presynaptic spike. In the optimal network, the membrane
voltage of a spiking neuron jumps from the threshold, T , before the spike to the
reset, −T , after the spike. Similarly, to achieve tight balance the membrane
voltage of all other neurons should ideally jump from +V before a presynaptic
spike to −V after the spike. This motivates the following spike-based measure
of the membrane voltage fluctations,

L =

〈∥∥∥∥1

2

(
Vbefore(tj) + Vafter(tj)

)∥∥∥∥2
〉

spikes

(S.25)

where tj is the time of the j-th spike in the population and 〈·〉spikes denotes
the expectation value over those spikes9. The superscripts “before” and “after”
refer to the voltage values immediately before and after a spike. The recurrent
weights enter (S.25) through their effect on the post-spike membrane potential,

Vafter(tj) = Vbefore(tj) + Ωek(j),

where k(j) is again the index of the neuron that spikes at time tj and ek(j)

is a unit vector with zero entries except at position k(j). The introduction of

9Note that in practice, i.e., in numerical simulations, we replace this expectation value with
a moving sum over a sufficiently large number of spikes. More precisely, we set 〈x〉spikes =
1
J

∑J
j=1 x(tj) where tj is the spike-time of the j-th spike in the past (relative to the current

time t).
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ek(j) is a bit cumbersome but useful: it allows, for example, to write the relation
between the instantaneous rates of the whole population before and after a spike
of neuron k at time tj as a simple vector equation,

rafter(tj) = rbefore(tj) + ek(j).

The deviation at time tj is thus

Lj =

∥∥∥∥1

2

(
Vbefore(tj) + Vafter(tj)

)∥∥∥∥2

=
∥∥∥Vbefore(tj) + 1

2Ωek(j)

∥∥∥2

.

To minimize the voltage deviations, we perform a greedy optimization every
time a spike was fired by one of the neurons in the network,

∆Ω(tj) ∝ −
∂Lj
∂Ω
∝ −

(
2Vbefore(tj) + Ωek(j)

)
e>k(j). (S.26)

More explicitely, the weight Ωnk is updated at every spike of the presynaptic
neuron k = k(j) such that the deviation of the postsynaptic membrane voltage
from rest is minimized,

∆Ωnk(tj) ∝

{
−2V before

n (tj)− Ωnk if k spiked,

0 otherwise.
(S.27)

This learning rule, when rewritten as a differential equation, is exactly equivalent
to Equation (5) in the main text. (The equivalency can be most easily seen
by integrating Equation (5) from the main text over time, and by replacing
the index n by the index i.) The rule differs from the one in the last section
mainly in the first term on the r.h.s.: instead of compensating for the integrated
feedforward current during the last pISI, the synapses here learn to compensate
for the deviation of the membrane voltage from rest.

9.2 Condition 2: Recurrent weights reach error-driven-
coding architecture

In this section we show that the fixed-points (i.e. the points at which the mean
change in the recurrent weights is zero) of the learning rule (S.27) are of the
desired low-rank configuration Ω → −FD. In the next section we will then
prove that the system will globally converge to one of these fixed-points under
mild assumptions.

Mathematically, the fixed-points are defined as those recurrent weights for
which 〈∆Ω〉spikes = 0. All quantities below, such as V(tj), x(tj), etc., are to be
understood as immediately before a spike, and we hence drop the superscript
“before” for the rest of the SI, as well as the explicit reference to the spike time,
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tj , for ease of notation10. The learning rule, (S.26), can then be rewritten as

∆Ω ∝ −2Ve>k(j) −Ωek(j)e
>
k(j)

(S.8)
= −2(Fx + Ωr)e>k(j) −Ωek(j)e

>
k(j)

= −2Fxe>k(j) −Ω
(
2r + ek(j)

)
e>k(j). (S.28)

To investigate the fixed points, we need to study the effect of applying this
learning rule repeatedly, i.e., over many spike times tj . From (S.28) and the
fixed-point condition 〈∆Ω〉spikes = 0 we obtain the defining property of the
fixed points of the recurrent weights,

2F
〈
xe>k(j)

〉
spikes

= −Ω
〈(

2r + ek(j)

)
e>k(j)

〉
spikes

.

Under the mild condition that the sum on the r.h.s. has full rank we can directly
infer that any fixed point of Ω is of the form−FD where D is (implicitly) defined
by

2
〈
xe>k(j)

〉
spikes

= D
〈(

2r + ek(j)

)
e>k(j)

〉
spikes

. (S.29)

While the matrix D can be interpreted as a linear decoder, which one could
use to reconstruct the input signal from the spike trains, it is not explicitly
realized within the network, since it is merged into the recurrent weights and
arises dynamically through learning. In other words, the decoder is not defined
upfront but the recurrent connectivity converges to a low-rank factorization
from which an external observer can read off the linear decoder.

Note that (S.29) is a matrix equation with dimensions M×N . To understand
the exact nature of the arising decoder D it is instructive to look at each element
i, n individually,

2
〈
xiδn,k(j)

〉
spikes

= D>i
〈(

2r + ek(j)

)
δn,k(j)

〉
spikes

,

⇔ 2 〈xi〉n spikes = D>i 〈2r + en〉n spikes ,

where 〈·〉n spikes is simply an average over all the spikes of neuron n. Using the
definition for the readout, (S.3), we obtain

⇔ 2 〈xi〉n spikes = 2 〈x̂i〉n spikes +Din,

⇔ Din = 2 〈xi − x̂i〉n spikes . (S.30)

Accordingly, the elements of the decoder are aligned with the reconstruction
errors at the time of a spike. During learning, the optimal decoder will therefore
move in directions with the largest error and hence will aim to cover as best as
possible the signal space.11

The resulting relation for the decoder is essentially equivalent to the con-
strained optimal decoder derived in section 5, up to a scaling parameter, which
we will consider further down. The minimum of the constraint loss function was
found as (S.16)

D∗in ∝ 〈(xi − x̂i)rn〉t .
Accordingly, the weighting of the error by the instantaneous firing rate mirrors
the weighting of the error by the spikes in (S.30).

10We note that the input signal x(tj) does not jump at the time tj of the presynaptic spike,
hence the distinction between before and after is irrelevant for this quantity.

11Note that (S.30) is a self-consistency relation since D is also part of x̂i.
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9.3 Condition 2: Convergence proof

In the last subsection we derived that all fixed points of the recurrent weights
are of the form −FD, but these fixed points might be unstable. We here prove
their stability by showing that any spiking network with bounded membrane
voltages will converge to the desired low-rank factorization.

To this end we split the recurrent weights Ω into a part that can be de-
scribed by a low-rank factorization, ΩF , and a residual part, Ω⊥. The low-rank
part, ΩF , can be described as the projection of Ω onto the image of F, i.e.,
ΩF = FF+Ω, where the superscript ”+” denotes the Moore-Penrose pseudo-
inverse. In turn, the residual part, Ω⊥, can be written as Ω⊥ = (I − FF+)Ω.
Accordingly,

Ω = FF+Ω + (I− FF+)Ω,

≡ ΩF + Ω⊥.

In order to show that the recurrent weights Ω converge to ΩF , we will prove
that the learning rule eliminates the residual part, Ω⊥. The update of Ω⊥ is
the corresponding projection of the total update of the recurrent weights (S.28),

∆Ω⊥ = (I− FF+)∆Ω,

= (I− FF+)
(
−2Fxe>k(j) −Ω

(
2r + ek(j)

)
e>k(j)

)
,

= −Ω⊥
(
2r + ek(j)

)
e>k(j). (S.31)

where the last step follows from the relation FF+F = F. In order to con-
firm convergence, we need to prove that the mean update 〈∆Ω⊥〉spikes always

decreases the norm of ‖Ω⊥‖2, i.e. we need to show that

‖Ω⊥‖2 ≥
∥∥∥Ω⊥ + ε 〈∆Ω⊥〉spikes

∥∥∥2

,

= ‖Ω⊥‖2 + 2ε tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
+O(ε2),

which results in the inequality

0 ≥ tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
. (S.32)

Plugging in (S.31) we find

tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
= − tr

[
Ω>⊥

〈
Ω⊥

(
2r + ek(j)

)
e>k(j)

〉
spikes

]
,

= − tr

[
Ω⊥

〈(
2r + ek(j)

)
e>k(j)

〉
spikes

Ω>⊥

]
,

≈ − tr

[
Ω⊥

〈
2rr>/ |r|+ ek(j)e

>
k(j)

〉
spikes

Ω>⊥

]
, (S.33)

where we used that for a given stimulus the rates are (to first order) fairly
constant12 over time and the average of the spike counts will be equivalent to

12Strictly speaking, this assumption is only valid in the limit of high instantaneous firing
rates. In the regime of low firing rates, however, the (positive) diagonals in the inner bracket
of (S.33) dominate and so the expectation value is still likely to be semi-positive definite as
required to prove relation (S.32)
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the rates, so
〈
re>k(j)

〉
spikes

≈
〈
rr>/ |r|

〉
spikes

. Finally, observe that the inner

bracket of (S.33) is semi-positive definite and so we proved the desired relation

tr
[
Ω>⊥ 〈∆Ω⊥〉spikes

]
≤ 0. Consequently, any stable network will converge to a

low-rank factorization under mild assumptions.

9.4 Learning with L2 costs

As explained in section 8.1, we need to introduce quadratic costs before consid-
ering the learning of the feedforward weights. The quadratic (L2) costs change
the target connectivity to Ω→ −FD−µI. This target can be obtained through
the following learning rule, modified from (S.26),

∆Ω ∝ −2
(
V + µr

)
e>k(j) − (Ω + µI)ek(j)e

>
k(j),

or, without the burden of seeing through the matrix-vector notation,

∆Ωnk ∝

{
−2 (Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.

We remind the reader that quantities such as the voltage or the instantaneous
rate are here assumed to be evaluated directly before a spike of neuron k, i.e.,
Vn = V before

n (tk) and rn = rbefore
n (tk). To show the fixed points of this modified

learning rule, we follow the exact same analysis as in section 9.2, see (S.28),

∆Ω ∝ −2(V + µr)e>k(j) − (Ω + µI)ek(j)e
>
k(j)

(S.8)
= −2(Fx + (Ω + µI)r)e>k(j) − (Ω + µI)ek(j)e

>
k(j)

= −2Fxe>k(j) − (Ω + µI)
(
2r + ek(j)

)
e>k(j).

Compared to (S.28) we only replaced Ω by Ω+µI. Consequently, all arguments
concerning the fixed points −FD and convergence in section 9.2 and 9.3 now
hold for Ω+µI, and so we proved Ω→ −FD−µI. Following the same argument,
the fixed points (S.30) of the decoder do not change.
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10 Feedforward weights: Voltage-based learn-
ing

In this section, we will explain the voltage-based learning rules for the feedfor-
ward weights. (In the main text, the core intuitions are graphically explained in
Figure 3.) We will first focus on conditions (3) and (4) explained in Section 6,
just as with the current-based rules. We will then extend learning to include
non-whitened inputs and L1 costs. The latter two generalizations achieve the
full flexibility in learning promised initially.

10.1 Condition 3: Feedforward weights mimic decoder

In order to solve the full quadratic optimization problem (S.4) we need to ensure
that the feedforward weights F align with the decoder D>. To this end, we
remind the reader that the decoder will converge to (S.30),

Dn = 2 〈x− x̂〉n spikes .

In principle we would like to use this quantity to guide learning of the feed-
forward weights F, just as we did in section 8.2. From a biophysical point of
view, however, we cannot assume that the feedforward weights have access to
the error x − x̂ (only to projections of the error). Fortunately the difference
between x − x̂ will be proportional to the input signal x, on average, since we
assumed that the quadratic costs are non-negligible (see previous section). To
see why that is the case, we note that, once the recurrent connections have been
learnt, the voltages of the neurons are in the balanced state, i.e., their averages
are zero. We can therefore write (on average):

〈V〉 = 〈F(x− x̂)− µr〉 ≈ 0

Multiplying be the decoder from the left and re-arranging, we obtain〈
DF(x− x̂)− µx̂

〉
≈ 0〈

(DF + µI)(x− x̂)
〉
≈ µx〈

(x− x̂)
〉
≈ µ(DF + µI)−1x

For sufficiently large µ, the errors are therefore proportional to x. Furthermore,
as shown in the next section, when the feedforward weights converge to the
transpose of the decoder, then D becomes an orthogonal matrix so that DD> ∝
I, and the relation holds even if µ is small.

These costs will prohibit x̂ to fully match the size of x, an effect that increases
linearly with the size of x. Accordingly, input signal and error are, on average,
proportional to each other, i.e., x− x̂ ∝ x. The learning rule for the feedforward
connections can therefore be approximated by:

∆Fn(tj) ∝

{
x(tj)− Fn if n spiked,

0 otherwise.
(S.34)

Importantly, we note that, if the current c is changing slowly compared to
the dynamics of the network, any sufficiently leaky integration of c is a good
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approximation of x − x̂. This observation becomes particularly important in
the case of faster inputs: here the error x − x̂ can become dominated by the
inability of the network to follow the inputs, so that a stable equilibrium is never
reached. In such cases we often find numerically that a less leaky integration
of the current leads to more efficient networks and better reconstruction errors.
For the sake of mathematical precision, we will here make the assumption that
c is changing slowly, as also stated at the very beginning, section 1.1, and we
will proceed with (S.34).

10.2 Condition 4: Feedforward weights reach optimum

Analysing the stable fixed points from the interacting feedforward and recurrent
synaptic plasticity rules is daunting since the membrane voltage of each cell
depends on the exact sequence and timing of the spikes. Under these conditions
there is little we can do beyond the numerical simulations (see main text). For
large networks, however, even small noise sources will considerably randomize
the timings and sequences of spikes [1], and so in this limit it makes sense
to analyse the fixed points under the assumption that spikes are distributed
according to an inhomogeneous Poisson process with mean firing rates r̄k(x).
In this case the fixed point of the feedforward learning rule, (S.34), is simply
given by computing the expectation value over stimuli,

F∗ =
〈
r̄x>

〉
.

Since the feedforward weights align with the decoder by design, the latter has
the same fixed point (up to a transpose), so that

D∗ =
〈
xr̄>

〉
.

By multiplying with D∗>D∗ from the right we can identify a simple condition
on the fixed point,

D∗D∗>D∗ =
〈
xr̄>

〉
D∗>D∗

=
〈
x(D∗r̄)>

〉
D∗

=
〈
xx̂>

〉
D∗.

As observed above, the reconstruction x̂ will closely follow the input signal x,
only slightly scaled down due to the quadratic costs. Since the input signal was
assumed to be white, 〈xx>〉 = I, we can conclude that 〈xx̂>〉 ∝∼ I. Hence,

D∗D∗>D∗ ∝∼ D∗.

This condition is only fulfilled if the transpose of D∗ is its own pseudo-inverse,
and so D∗ is a unitary matrix. (Or, more precisely, a slightly scaled down
version of a unitary matrix.) In other words, in its fixed points the network
represents the independent axes of a white stimulus on orthogonal directions
of the population response r, which is optimal. We discuss the non-whitened
inputs in the section 12.

27



11 Learning with L1 costs

In the section 9.4, we have already explained how an L2 cost term modifies the
learning rules for the recurrent weights. In this section, we discuss an L1 cost
term, which affects both feedforward and recurrent weights.

11.1 Scaling of the synaptic weights

So far, we have ignored the relationship between the threshold Tn and the scale
of the final decoder, see Equation (S.15). As explained there, we interpret the
threshold as a length-constraint on the decoder. This length-constraint effects
the scaling of both the feedforward and recurrent weights. Using our knowledge
of the optimal architecture, F> = D and Ω = −D>D − µI, we can directly
interpret the constraint on the decoder as constraints on the feedforward and
recurrent connectivity, namely

‖Fn‖22 = 2Tn − µ− ν, (S.35)

Ωnn = −‖Dn‖22 − µ = −2Tn + ν. (S.36)

These scaling constraints need to be taken into account when learning the synap-
tic connectivity. However, it is important to note that the constraints only
change the scale but not the structure of the network connectivity.

Whereas the L2 cost modifies the recurrent connectivity, so that Ω →
−D>D− µI, the L1 cost only enters the learning through these two equations.
Since we assume that the thresholds of the neurons are given some initial value
and are then never changed, our learning rules need to be modified in order to
account for the appropriate scale of the synaptic weights.

11.2 Modified learning of recurrent weights

To guarantee the relation Ωnn = −2Tn + ν, we introduce a scaling factor βn for
every neuron n in the learning rule of the recurrent synapses,

∆Ωnk ∝

{
−βn(Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.
(S.37)

Following again section 9.2 and the appropriate correction for the L2 costs in
section 9.4, it is straight-forward to see that Ω will converge to −FD−µI, where
the decoder D is now modified by the scaling factor βn so that

Din → βn 〈xi − x̂i〉n spikes .

Hence, in order to obey (S.36), the scaling factors βn should evolve according
to,

−Ωnn = 2Tn − ν
⇔ F>nDn + µ = 2Tn − ν,

⇔ F>n βn〈x− x̂〉n spikes + µ = 2Tn − ν,

⇔ βn =
2Tn − µ− ν

F>n 〈x− x̂〉n spikes

,

⇔ βn =
2Tn − µ− ν

Tn + µ〈rn〉n spikes
(S.38)
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where in the last step we have used the relation F>n 〈x−x̂〉n spikes = 〈Vn〉n spikes+
µ〈rn〉n spikes and Vn = V before

n = Tn, since the voltage directly before the spike
of the firing neuron is, by definition, the neuron’s threshold. Note that in the
absence of costs, µ = ν = 0, we recover βn = 2, i.e., the unscaled learning rule
(S.24).

11.3 Modified learning for feedforward weights

Similarly, to guarantee the scaling ‖Fn‖22 = 2Tn − µ − ν of the feedforward
weights, we introduce appropriate scaling factors αn into the learning rule (S.34),

∆Fn ∝

{
αnx− Fn if n spiked,

0 otherwise.
(S.39)

which will consequently lead to a scaling of the fixed point,

Fn → αn 〈x〉n spikes .

Hence, in order to fulfill (S.35) it should hold that

‖Fn‖2 = F>nFn

= F>nαn 〈x〉n spikes

= 2Tn − µ− ν

from which we read off an expression for the scaling factors,

αn =
2Tn − µ− ν
F>n 〈x〉n spikes

. (S.40)

The learning rules (S.37) and (S.39) in conjunction with the definition of the
scaling factors (S.38) and (S.40) are thus the set of rules that take into account
all costs and will make the network converge to the optimal network configura-
tion with the optimal decoding weights.

11.4 Simplifying assumptions and final learning rules

The scaling factors αn and βn for the feedforward and recurrent weights guar-
antee the convergence of the network to the properly scaled weights. It is
important to remember that the scaling factors only set the right scale of the
weights, they do not affect the overall structure of the optimal connectivities,
F ∝ D> and Ω ∝ −D>D − µI. In addition, we note that fixing the scaling
factors αn and βn merely fixes a set of fixed points with a particular L1 cost ν
and scaling of D.

To simplify these learning rules, one could therefore also simply fix the scal-
ing factors, e.g. by setting αn = α and βn = β (which assumes that all thresh-
olds have the same values Tn = T ). All weights will then converge to the right
connectivity structure, but the effective L1 cost, or the specific choice of ν,
remains a priori unknown.

Strictly speaking, αn and βn are related to each other (compare eqs. S.40
and S.38). In practice, however, we simply set α and β by hand such that
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the fixed points exhibit reasonable cost values and scales. This approximation
worked quite well. The recurrent learning rule, (S.37), then becomes

∆Ωnk ∝

{
−β(Vn + µrn)− Ωnk − µδnk if k spiked,

0 otherwise.
(S.41)

which, when rewritten as a differential equation, is equivalent to Equation (6)
shown in the main paper. The feedforward rule, (S.39), becomes

∆Fni ∝

{
αxi − Fni if n spiked,

0 otherwise.
(S.42)

When rewritten as a differential equation, this rule is equivalent to Equation (7)
in the main paper. In both rules, α and β are simply treated as free parameters.
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12 Learning rules for non-whitened inputs

So far we have assumed that the input stimulus is zero-mean and whitened.
To cover more general scenarios, we first revisit the optimal spiking neural
network from section 4, following the approach outlined in [6] for rate networks.
First, we note that a self-organized network is incapable of determining the
true covariance of the signal (which could always be “arbitrarily” distorted by
the feedforward weights) while the mean of the signal should be filtered out to
increase efficiency (otherwise spikes are constantly emitted just to support a
fixed offset). To take both aspects into account, we modify the loss function
(S.6),

` = (xc −Dr)
>

C−1 (xc −Dr) + µ ‖r‖2 + ν ‖r‖1 (S.43)

where xc = x− x̄ is the mean signal and C =
〈
xcx

>
c

〉
is the signal covariance. It

is important to note that the more general loss (S.43) is invariant with respect
to linear transformations in the input x. If the input signal is replaced by a
transformed signal x′ := Mx, with M an invertible matrix, the loss function
is not affected. It is sufficent to replace D with MD to recover an equivalent
optimization problem. In complete analogy to section 4, one can derive the
voltages and thresholds of simple integrate-and-fire neurons,

V = D>C−1xc −D>C−1Dr− µr,

Tn =
1

2

(
‖Dn‖2 + µ+ ν

)
.

Accordingly, the network is now characterized by feedforward weights F =
D>C−1 and recurrent weights Ω = −D>C−1D − µI = −FD − µI. These
equations show that we only need to revisit the feedforward weights, whose re-
lation to the decoder has changed, but not the recurrent weights, whose relation
to the feedforward and decoder weights remains the same. Indeed, we did not
make any (implicit or explicit) assumptions on the statistics of the input in the
derivation of the recurrent learning rules, and so the same learning rule (S.37)
applies in this case.

To make the feedforward weights converge to F = D>C−1, we modify the
learning rule (S.34) as

∆Fn ∝

{
xc − F>nxcxc when neuron n spikes,

0 otherwise.
(S.44)

We emphasize that this learning rule is still local. We can highlight this feature
by stating the learning rule for the i-th element of Fn,

∆Fin ∝

{
[xc]i − (F>nxc)[xc]i when neuron n spikes,

0 otherwise.

Here, F>nxc is simply the total feedforward current that the postsynaptic neuron
received. Accordingly, the modified learning rule requires a multiplicative, yet
local interaction between the presynaptic signal, [xc]i, and the postsynaptic
current. In Figure 3 of the main text, we illustrate this modified learning rule
in a network of six neurons that receive a correlated input signal. Interestingly,
the network learns tuning curves that are narrower and denser around the most
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frequently presented signal directions. This is reminiscent of the tuning curves
derived from efficient coding principles in population of Poisson-firing neurons
[20].

Following the derivation of section 10.2, and assuming once more Poisson-
distributed spike trains, the fixed points, F∗, of the feedforward rule become〈

r̄x>c − F∗xcx
>
c

〉
= 0,

⇔ F∗
〈
xcx

>
c

〉
=
〈
r̄x>c

〉
,

⇒ F∗ = D∗
>

C−1.

where the fixed point of the decoder, D∗ remains untouched, and becomes

D∗ ∝
〈
xcr̄
>〉 .

Using this relation once more, and multiplying it with D∗>C−1D∗ from the
right, we find the following relation for the decoder

D∗D∗>C−1D∗ ∝
〈
xcr̄
>〉D∗>C−1D∗,

=
〈
xc(D

∗r̄)>
〉

C−1D∗,

= 〈xcx̂c〉C−1D∗,

∝∼ D∗,

which is fulfilled if D∗ = C1/2U, where U is a unitary matrix. Then F∗ =
D∗>C−1 = U>C−1/2. This last equation exposes the solution that the network
finds: it whitens the input through its feedforward filters before encoding it
along orthogonal axes in the population response.
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13 Learning in the EI network

So far we neglected Dale’s law, i.e., the distinction between excitatory and
inhibitory neurons. We will first introduce the full equations for the EI network,
and then describe how the learning rules can be applied to this network.

13.1 Voltage dynamics

We assume that the membrane voltages of both the excitatory and inhibitory
neurons follow the dynamics of current-based, leaky integrate-and-fire neurons.
Specifically, the voltage V En of the n-th excitatory neuron is given by

V̇ En (t) ≡ ∂V En
∂t

= −λV En (t)+FEn ·c(t)+ΩEE
n ·oE(t)+ΩEI

n ·oI(t)+ση(t), (S.45)

where FEn are the feedforward weights of neuron n, ΩEE
n are the weights of

the recurrent excitatory inputs, ΩEI
n are the weights of the recurrent inhibitory

inputs, and ση(t) is a noise term. The multiplication sign ‘·’ denotes the inner
product or dot product. We generally assume that the feedforward weights can
be either excitatory or inhibitory, meaning that individual elements of FEn can
be either positive or negative. The elements of ΩEI

n are assumed to be negative
and the elements of ΩEE

n are assumed to be positive, with one exception: the
self-connection weight ΩEEnn is assumed to be negative, as it determines the
neuron’s reset potential after a spike. Whenever the neuron hits a threshold,
TEn , it fires a spike and resets its own voltage. In other words, we have included
the reset of the integrate-and-fire neuron in its self-connection for mathematical
convenience. After each spike, the voltage is therefore reset to V En → TEn +ΩEEnn ,
where ΩEEnn is a negative number.

Similarly, the membrane voltage V In of the n-th inhibitory neuron follows
the dynamics

V̇ In (t) ≡ ∂V In
∂t

= −λV In (t) + ΩIE
n · oE(t) + ΩII

n · oI(t) + ση(t), (S.46)

where ΩIE
n are the recurrent weights from the excitatory population and ΩII

n are
the recurrent weights from the inhibitory population. The thresholds are given
by T In and the reset is contained in the element ΩIInn of the recurrent inhibitory
input.

13.2 Learning the synapses

Using the intuition from the development of the learning rules in the non-Dalian
network, it is straightforward to see how learning in an EI network should pro-
ceed. Consider a population of excitatory neurons that receives feedforward
input. E-E connections are constrained to be excitatory, and so neurons with
overlapping inputs cannot balance each other. If, however, a population of in-
hibitory neurons has learned to represent the signal encoded by the excitatory
population, then its representation can in turn be used to balance the excita-
tory population. This suggests that the E-I connections are to be treated like
feedforward connections because the excitatory population response serves as
the input to the inhibitory population. The E-E and I-I connections are to be
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trained by the recurrent learning rule since they aim to balance the E- and the
I-population respectively. Finally, the I-E connections should be trained the
same way since they aim to balance the E-population.

We can formalize this intuition as follows. First, consider the optimal, non-
Dalian network without costs, Ω = −DD>, and split the decoder weights D =
D+−D− into one part with all positive and another with the absolute value of
all negative entries. Then,

Ωr = −(D+ −D−)>(D+ −D−)r,

= (D>−D+ + D>+D−)r− (D>+D+ + D>−D−)r.

We can identify the first term as the recurrent excitation and the second term
as the recurrent inhibition. It is this latter term that we need to approximate
by means of an inhibitiory population. To this end let r be approximated by
the response s of a second population, i.e. r̂ = D̃s and so

Ωr ≈ (D>−D+ + D>+D−)r− (D>+D+ + D>−D−)D̃s.

The second population shall minimize the objective

LI = arg min
D̃

〈∥∥∥r− D̃s
∥∥∥2
〉
,

which we know is solved optimally by a network with feedforward weights D̃>

and recurrent weights −D̃D̃>. Observe that this second population has only
inhibitory recurrent weights and its influence on the first is solely inhibitory;
it can therefore be identified as an inhibitory population. At the same time,
the first population has only excitatory recurrent weights and its influence on
the second is solely excitatory; it can therefore be identified as an excitatory
population.

In summary, the structure of the optimal EI network is given by feedforward
weights D>, E-E connections ΩEE = D>−D+ + D>+D−, E-I connections ΩIE =

D̃>, I-I connections ΩII = −D̃D̃> and I-E connections ΩEI = −(D>+D+ +

D>−D−)D̃. From the derivation it is clear that ΩIE act as feedforward weights to
the inhibitory population and are thus to be trained by the standard feedforward
rule. All other weights, i.e. ΩEE ,ΩIE and ΩEI , are trained using the recurrent
learning rule. The training then proceeds as in the non-Dale’s case except for
the sign constraint on the synaptic weights.
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14 Numerical Simulations

In this section, we detail how we simulated the learning rules in practice, and
we provide pseudo-code for all simulations. The MATLAB code for the figures of
the main paper will be made available on http://www.github.com/machenslab/spikes.

14.1 Network Dynamics

The membrane voltage Vn of each cell is simulated according to a discrete-time
(Euler) approximation of the differential equations, either (S.45) and (S.46) for
the EI networks, or (S.7) for the non-Dalian networks,

Vn(t+ ∆t) = Vn(t) + ∆tV̇n(t).

In Figure 2 and 4, the target signal x(t) is set as follows: we first draw a random
vector y(t) ∈ RM from a zero-mean Gaussian distribution y(t) ∼ N (0, σ2I) for
every time-step t and then convolve y(t) with a Gaussian kernel of size η over
time to get x(t). For Figure 6, the target signal was the speech spectrogram,
sampled at 100Hz and interpolated to reach a temporal resolution of 0.05 ms.
The input current c(t) is computed following (S.1), i.e.,

ci(t) = ẋi(t) + λxi(t).

Furthermore, gaussian noise terms ξV and ξT with very small variances and zero
means are added respectively to the voltage equation and to the thresholds of
the neurons.

14.2 Learning

In all simulations, the recurrent (and I to E) weights are trained by means of
the recurrent learning rule (S.41).

The feedforward weights F and the E−I connection follows (S.42) (whitened
inputs, Figure 2, 3A,B, and 4) or (S.44) (non-whitened input, Figure 3C,D, 6,7).
However, in Figure 4–8, the input signal x in equations (S.42) and (S.44) is
replaced by the input currents integrated with a larger leak term λF > λ. For
example, in Figure 4, the learning rule of the feedforward connection is

∆Fn(tj) ∝

{
c̄(tj)− Fn if n spiked,

0 otherwise.

where c̄ obeys ˙̄c = −λF c̄ + c.
The constant scaling term α is chosen so as to achieve mean firing rates of

around 5 to 10 Hz after training. The learning rates εF and εΩ of the feedfor-
ward and recurrent weights are either kept constant throughout the simulation
(Figures 2–4), or progressively decreased (Figure 6). Importantly, there is a
separation of time-scales such that εΩ = 10εF ; this ensures that the network is
always kept in a balanced (and thus stable) regime throughout learning.

The full pseudo-code for the non-Dales case can be found in algorithm 1.
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Algorithm 1 Pseudo-code for simulation of non-Dales network (Figures 2, 5–7)

1: procedure simulation
2: N,M ← number of cells and input dimensions
3: λ← membrane leak
4: F(0)← initial feedforward weights
5: Ω(0)← initial recurrent weights
6: S ← total simulation time
7: dt← time-step
8: εF , εΩ ← learning rates
9: α, β ← scaling factors in learning equations

10: µ← L2 cost
11: T ← threshold
12: σ, η ← standard deviation of signal, time-scale of smoothing kernel
13: top:
14: V(0)← 0 (initial voltage)
15: o(0)← 0 (initial spikes)
16: r(0)← 0 (initial filtered spikes)
17: Γ← closest integer to S/dt (number of simulation steps)
18: x(τ)← drawn from N (0, σ2IM ) for all τ = 1 . . .Γ
19: x(τ)← x(τ) filtered with Gaussian kernel of width η over time
20: ξV (τ)← drawn from N (0, σ2

ξV
IN ) for all τ = 1 . . .Γ

21: ξT (τ)← drawn from N (0, σ2
ξT

IN ) for all τ = 1 . . .Γ
22: loop:
23: for τ = 1 to Γ do
24: c(τ − 1) = x(τ)− x(τ − 1) + λ dt x(τ − 1)
25: V(τ) = (1 − λ dt)V(τ − 1) + dt F(τ − 1)>c(τ − 1) + Ω(τ − 1)o(τ −

1) + ξV (τ)
26:

27: o(τ) = 0
28: n← arg max (V−T)− ξT (τ))
29: if Vn > Tn then
30: on(τ) = 1
31: Fn(τ) = Fn(τ − 1) + εF (αx(τ − 1)− Fn(τ − 1))
32: Ωn(τ) = Ωn(τ − 1)− εΩ(β(V(τ − 1) + µr(τ − 1)) + Ωn(τ − 1))
33: Ωnn(τ) = Ωnn(τ − 1)− εΩµ
34:

35: r(τ) = (1− λ dt)r(τ − 1) + o(τ − 1)
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Algorithm 2 Pseudo-code for simulation of Dales network (Figure 4,8)

1: procedure simulation
2: NE , NI ← number of cells in the excitatory and inhibitory populations
3: M ← number of input dimensions
4: λ, λF , λEI ← membrane leak and FF integration time constants
5: F(0)← initial feedforward weights
6: ΩEE(0),ΩEI(0),ΩII(0),ΩIE(0)← initial recurrent weights
7: S ← total simulation time
8: dt← time-step
9: εF , εΩ ← learning rates

10: α, β ← scaling factors in learning equations
11: µ← L2 cost
12: TE , T I ← threshold
13: σ, η ← standard deviation of signal, time-scale of smoothing kernel
14: RE , RI ← refractory periods of the excitatory and inhibitory neurons
15: top:
16: VE(0),VI(0)← 0 (initial voltage)
17: oE(0),oI(0)← 0 (initial spikes)
18: rE(0), rI(0)← 0 (initial filtered spikes)
19: RE(0),RI(0)← 0 (initial refractory periods spikes)
20: Γ← closest integer to S/dt (number of simulation steps)
21: x(τ)← drawn from N (0, σ2IM ) for all τ = 1 . . .Γ
22: x(τ)← x(τ) filtered with Gaussian kernel of width η over time
23: ξVE (τ), ξVI (τ)← drawn from N (0, σ2

ξV
IN ) for all τ = 1 . . .Γ

24: ξTE(τ), ξTI (τ)← drawn from N (0, σ2
ξT

IN ) for all τ = 1 . . .Γ
25: loop:
26: for τ = 1 to Γ do
27: c(τ − 1) = x(τ)− x(τ − 1) + λ dt x(τ − 1)
28: cE(τ) = (1− λFdt)cE(τ − 1) + c(τ − 1)
29: cI(τ) = (1− λEIdt)cE(τ − 1) + oE(τ − 1)
30: VE(τ) = (1 − λ dt)VE(τ − 1) + dt F(τ − 1)>c(τ − 1) + ΩEE(τ −

1)oE(τ − 1) + ΩIE(τ − 1)oI(τ − 1) + ξVE (τ)
31:

32: oE(τ) = 0

33: nE ← arg max
(
VE −TE

)
− ξTE(τ))

34: if V EnE
> TEnE

& REnE
(τ − 1) < 0 then

35: oEnE
(τ) = 1

36: REnE
(τ − 1) = REmax

37: FnE
(τ) = FnE

(τ − 1) + εF (αcE(τ − 1)− FnE
(τ − 1))

38: ΩEE
nE

(τ) = ΩEE
nE

(τ−1)−εΩ(β(VE(τ−1)+µrE(τ−1))+ΩEE
nE

(τ−
1))

39: ΩEEnEnE
(τ) = ΩnEnE

EE(τ − 1)− εΩµ
40: ΩEI

nE
(τ) = ΩEI

nE
(τ−1)−εΩ(β(VI(τ−1)+µrI(τ−1))+ΩEI

nE
(τ−1))

41:

42: RE(τ) = RE(τ − 1)− 1
43: rE(τ) = (1− λ dt)rE(τ − 1) + oE(τ − 1)
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44: VI(τ) = (1−λ dt)VI(τ − 1) + ΩEI(τ)oE(τ) + ΩII(τ − 1)oI(τ − 1) +
ξVI (τ)

45:

46: oI(τ) = 0

47: nI ← arg max
(
VI −TI

)
− ξTI (τ))

48: if V InI
> T InI

& RInI
(τ − 1) < 0 then

49: oInI
(τ) = 1

50: RInI
(τ − 1) = RImax

51: ΩEI
nI

(τ) = ΩEI
nI

(τ − 1) + εF (αcI(τ − 1)−ΩEI
nI

(τ − 1))

52: ΩII
nI

(τ) = ΩII
nI

(τ−1)−εΩ(β(VI(τ−1)+µrI(τ−1))+ΩII
nI

(τ−1))
53: ΩIInInI

(τ) = ΩnInI
II(τ − 1)− εΩµ

54: ΩIE
nI

(τ) = ΩIE
nI

(τ−1)−εΩ(β(VE(τ−1)+µrE(τ−1))+ΩIE
nI

(τ−1))

55:

56: RI(τ) = RI(τ − 1)− 1
57: rI(τ) = (1− λ dt)rI(τ − 1) + oI(τ − 1)

14.3 Initialization

To initialize the feedforward weights F ∈ RN×M , we first draw all elements from
a zero-mean normal distribution, Fni ∼ N (0, 1), and then normalize each row
to be of length γ, i.e.

Fni → γ
Fni√∑
i F

2
ni

.

In Figures 2, and 6–8, the initial recurrent weights Ω ∈ RN×N are proportional
to the unit matrix IN with proportionality ω, i.e. Ω0 = ωIN . This simplified
initialization is chosen for illustrative purposes; the learning also works for more
general, random initializations of the recurrent connections. The recurrent con-
nectivity in the EI network (Figure 4) is similarly initialized as ΩEE = ωEEINE

and ΩII = ωIIINI
. In all simulations there are four times more excitatory than

inhibitory neurons, NE = 4 ·NI , and so we initialize the E-I and I-E connections
according to ΩEI = ωEI [INI

, INI
, INI

, INI
] and ΩIE = ωIE [INI

, INI
, INI

, INI
]>

where the squared brackets denote a stacking of the elements along the rows.
For Figures 2–4, the thresholds Tn = T are kept constant over the course of
the simulation (including learning) and are homogeneous across cells. For Fig-
ures 5–8, the thresholds were adjusted according to a simple homeostatic rule
in order to maintain average firing rates within a pre-determined range (see also
Section 14.6).

14.4 Tuning Curves

To compute the tuning curves (Figures 2–4), we define a circle in a 2D plane
and then sample inputs uniformly on this circle. For each trial a constant input
(orientation)is sampled from this circle and presented to the network (running
without plasticity). At the end of the trial, the average firing rate of each neuron
is computed over all the duration of the presentation of the input except for the
initial transient period.
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Parameters Figure 2 Figure 4 Figure 6,7
Number of neurons N 20 NE = 300 (4BC) 64

NE = 60 (4D)
NI = 75 (4BC)
NI = 15 (4D)

Dimension of input M 2 3 25
Time step dt 10−3s 10−4s 6.25 · 10−5s
Membrane leak λ 50 s−1 50 s−1 8 s−1

FF Integration time constant λF = λ λF = 6λ λF = 125λ
λE−I = λ

Stdev of input σ 2 · 103 2 · 103 -
Time scale of input kernel η 6 ms 6 ms -
Threshold T 0.5 0.5 dynamic
Stdev of voltage noise σξV 10−3 10−3 0
Stdev of threshold noise σξT 2 · 10−2 2 · 10−2 5 · 10−3

Learning rate εΩ 10−4 10−4 variable
Learning rate εF 10−5 10−5 variable
Scaling factor α 0.21 0.21 1
Scaling factor β 1.25 1 1
L2 cost µ 0.02 µE = 0.02, µI = 0 0.1
Initial scale γ 0.8 1 -
Initial scale ω −0.5 ωEE = −0.02 -

ωII = −0.5
ωEI = 0.5
ωIE = −0.3

Table 2: Simulation parameters for all simulations.
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14.5 Fano Factor and Coefficient of Variation

The Fano factor and the coefficient of variation are computed as follows. A
random direction is chosen in the input space and presented multiple times to
the network (running without plasticity). For each trial the spike count c of the
neurons is computed. then we compute the Fano factor for each neuron using
the formula :

Fn =
σ2
c(n)

µc(n)

σ2
c(n) and µc(n) are respectively the standard deviation and the mean of the

spike count of neuron n. This procedure is repeated using different random
input directions. The final Fano factor is an average over the input directions
and the neurons in the population.
The Coefficient of variation (CV) is computed using the same inputs. For each
trial, instead of the spike count, we pool the interspike intervals (ISI) of all
neurons. The formula used to compute the CV is

CV =
σISI
µISI

As for the Fano factor, the final CV is an average over the different input
directions.

14.6 Simulation of speech signal learning

To learn the speech signal (Figure 5,6), slight modifications were added to the
previous learning scheme. In a non-whitened scenario, partial learning of the
inhibitory recurrent connections can result in a large proportion of completely
silent neurons. Since plasticity require pre- and post-synaptic spiking, these
neuron never ”recover” or participate in the representation. To avoid this is-
sue, we used a dynamic threshold that decreases for unresponsive neuron and
increases for neurons that are too active. The threshold decreased by −εF for
a neuron that did not fire any spike in a sliding window of 2.5s, and increased
by εF if its firing rate exceeded 20Hz in the last 2.5s. After about 1000 itera-
tions, the firing rates are always maintained between these two bounds and the
thresholds remain constant for the rest of the learning.

In Figures 6,7 the initial recurrent and feedforward weights are drawn from a
normal distribution with standard deviations of 0.1 and 0.02 for the feedforward
and the recurrent weights respectively; These initial weights are not normalized.
The diagonal elements of the recurrent connectivity matrix (the resets) are equal
to -0.8. Such strong inhibitory autapses insure the stability of the network in the
initial state. In order to speed-up learning we used initially large learning rates
(εΩ = 10−2, εF = 10−3) that were progressively decreased to εΩ = 10−4 and
εF = 10−5. For re-training to the new non-speech stimulus, we used the learning
rates εΩ = 10−2, εF = 10−3. For re-training the feed-forward connections
without the lateral connections, we used εF = 1

410−2).
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