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We are grateful to all the reviewers for their comments and constructive suggestions on our manuscript.
We are well aware that reading through many pages of equation-heavy supplementary materials is a
very time-consuming task, and we thank both reviewers for having gone through the trouble of actually
doing that.

We have now revised the manuscript according to the comments and addressed all the concerns
raised by the reviewers, as described in detail below. We have also submitted the MATLAB code to
reproduce the key figures of the manuscript.

Responses to Reviewer 1

‘Learning to represent signals spike by spike’ is a normative study on learning rules built to represent
multiple signals simultaneously in a spiking neural network. This work starts where previous efforts
from the same authors (particularly Boerlin et al. (2013)) had left off. In that previous study, it was
shown that a carefully crafted arrangement of synaptic weights allows a network of spiking neurons to
represent an arbitrary number of continuous time-dependent signals. These results relied on a precise
arrangement of synaptic weights, and the authors had to assume that such an arrangement was given
a priori. In the present study, they ask if there exists spike-timing dependent synaptic learning rules
to let the network to self-organize to this rather convenient state. Following a normative approached
based on a greedy optimization of decoding error, they show that there is a learning rule which can
maximize encoding precision and is shows at the same time a voltage and spike-timing dependence in a
way that matches, qualitatively, some standard in vitro experiments. The authors reports considerable
achievements of their learning rule in spiking neural network (I commend the efforts to establish a
Dalean network that self-organizes in precise input representation).

This work comes in an opportune moment as part of the field of computational neuroscience shows
a growing interest in learning rules that will ensure that a particular function is conserved. Learning
rules have been shown to have a plethora of shapes and properties, and the recent introduction of
inhibitory learning rules is only making things worse. There was much focus on rate based learning
rules (FORCE learning and its variants), which has recently been shown to work with spiking neurons.
In the same vein, there is much recent research on learning weight matrices that are transpose of a
known weight matrix in biological implementation of deep learning. All these problems are connected
to the present work. Yet the present study is original and distinct from other studies in the sense that it
applies to the predictive coding framework and promises of an energy efficient encoding of information.

That being said, I think the paper needs to be revisited carefully in order to unify the narrative,
the results presented and and the supplementary material. I expand on my point of view below, but
overall I recommend further consideration of this MS for PLoS CB.

We are grateful for the reviewer’s positive comments.

1. Abstract. The abstract seems to confuse premises with results. Statements like ‘here we show that
many single-neuron quantities including voltages. . . acquire a precise functional meaning’ summarizes



the premise of the work rather than the result. Premise in the sense that these are the assumptions
from which the main results are derived, but in that case also because these are the results of a previous
paper from the same group. Similarly for the conclusion sentence of the abstract. Going a little further,
the question of finding THE level at which THE functional meaning emerges is not a key question in
neuroscience. There are multiple levels of description and therefore functionality has multiple levels of
description. Multiple levels of description, but also multiple types of systems with membrane potentials
(the spike-based predictive coding framework does not apply to non-spiking retina despite the shared
coding and energy constraints). These statements is made even more out of place when we consider
the fact that I don’t think the work presented in the MS addresses this question. The work is about
whether biological-looking learning rules can give rise to the nice benefits of the predictive coding
framework. In effect, it would be nice if the abstract would be more to the point. The introduction is
good, so just a condensed version of the intro would do. Similar issue with the end of the discussion.

We agree that the abstract may have been too broadly worded. We now rewrote parts of the abstract
to better identify the focus and novelty of this particular paper.

We still like to point out, though, that voltages (and other biophysical quantities) acquire a specific
functional meaning after learning. The reviewer is correct to point out that this is very much by design.
However, the fact that voltages do represent coding errors after learning is fundamental to the type
of network architectures we study, and yields an important functional bridge between single-neuron
biophysics and the population code. (Classical) models of spiking neural networks do not treat voltages
in this way. (That said, there are, of course, single-neuron models, such as the ones by Urbanczik and
Senn, that do, which we now point out in the discussion.)

2. Intro. I thought I would mention a few related works that I think are germane to the present study:

• Membrane potential as prediction error: Urbanczik and Senn, Neuron (2014).

• Learning the transpose of weights: Burbank (2015) uses an STDP setup to do so.

• Further learning of the transpose of the weights in rate models; Akrout et al. (2019); Lansdell,
Prakash and Kording (2019)

Thanks for pointing out these references. We have included them in both the introduction and
discussion. In the introduction, we now clarify better that our work focuses on unsupervised learning,
and we now mention that similar problems exist in supervised learning:

In turn, the derivation of learning rules under locality constraints has often relied on
heuristics or approximations (Zylberberg et al, 2011; Savin et al, 2010, Bourdoukan et al
2012, Burbank et al, 2015), although more recent work has shown progress in this area
(Vertechi et al, 2014; Pehlevan et al, 2015; Pehlevan et al, 2018). We note that supervised
learning in neural networks faces similar problems, and recent work has sought to address
these issues (Whittington et al, 2017, Guerguiev et al, 2017, Sacramento et al, 2018, Akrout
et al, 2019, Lansdell et al, 2019). We will here focus on unsupervised learning.

In the discussion, we now write:

In the future, these ideas may be combined with explicit single-neuron models (Urbanczik
et al, 2014) to turn local learning rules into global functions.

3. Decoder weights. In many places the decoder weights are said to be unknown, but then they are the
target of the recurrent weights, later they are the target of feedforward weights. How can the weights
be targets without being known? Similarly, the decoder network is sometimes an explicit network
elements, but recurrently it is just a virtual presence introduced for the sake of argument. It was
particularly confusing in the supplementary materials: D is assumed unknown but should follow S.23,
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which is in effect F. Then F is assumed unknown, but derived to be D. I am left with the impression
that there is a circular argument in the learning of F with D that is not fixed a priori. In my point of
view, the circular argument is present in sections like 8.2 of supplementals. Same with section 6, which
(6.4 has F to mimic D, but 6.5 chooses D with F).

We thank the reviewer for helping us to clarify this concept. The reviewer is correct that D is unknown
before learning. Instead, over learning the recurrent weights Ω converge to a low-rank configuration of
the type Ω = −FX where F is the known feedforward matrix and X is some a priori unknown matrix.
It turns out, however, that the matrix X is actually the optimal decoder to reconstruct the signal (see
Section 6.5), and so we always identify the matrix X as the decoder D throughout the manuscript,
even though the decoder is unknown before learning and is only a quantity that can be computed from
Ω and F after learning. (See also Section 6.2 in the supplementary Material).

In other words, the decoder matrix D is unknown before learning and can only be inferred from Ω
after learning by solving the equation Ω = −FD for D. We emphasize that this decoder D is still not
explicitly present in the network, only implicitly. Still, it is mathematically defined, and so we can now
state that the learning of the feedforward weights F needs to converge to D.

We have revised parts of Chapter 6 and Section 8.2 to clarify these points.

4. Supplementary material. I could not fully follow the supplementary material. There was too much
back and forth between different formalisms and different sets of assumptions. Current based learning,
then voltage-based learning, then L1-L2 costs, then summary of some of it, there has to be a more
streamlined version. There are a few, perhaps interesting, theoretical results that are not part of the
results as far as I can see. Particularly parts of section 5.

We agree with the referee that the supplementary material are quite long and very technical. When
writing the manuscript, we decided to write a main paper that contains the key ideas with a minimum
of math, so that all readers, including those without a strong quantitative background, can get the
gist of the work. At the same time, we felt that we should provide all of the technical details in the
Supplementary materials, so that really interested readers can follow through all the details.

Given this split, we have then decided to refer to technical details from the results section point by
point, rather than making the supplementary materials a second, more detailed and technical version
of the main paper. In turn, these choices have led to a supplementary material that is divided into
many different sections, rather than being a coherent text on its own.

The reviewer is correct that this organization of the material has certain drawbacks, and a natural
solution may seem to move some of the materials into the main text and in turn shorten and condense
the supplementary materials. The way we see it, however, is that each re-organization has its own
advantages and disadvantages. We therefore prefer to keep the overall organization of the manuscript.

5. Figure 2 does not give enough credit to learning recurrent connections. As we can see in Fig. 2A,
the error goes down dramatically at then end of the recurrence-learning, so the signal reproduction is
near perfect before learning the FF weights. Since it is not clear in Figure 3 whether the recurrent
weights have been adequately learned, this brings me to the question eluded to earlier: can you prove
that FF learning is essential? In which case?

In Fig. 2, after recurrent learning, even though the mean firing rate (in red) is much reduced, there is
still some error (in blue) left. In this low-dimensional example, learning of the feedforward weights is
required to ensure that the feedforward weights span the whole input space. Indeed, a network with
feedforward weights as in Fig. 2B, left panel, will struggle to encode inputs in the bottom right and
top right quadrants, even after the recurrent synapses have been learnt.

More generally speaking, even if the average error is already quite reduced after learning the
recurrent weights, a network may still exhibit large errors for some input signals. In other words,
learning to be excellent on average is not the right metric—rather, the network should be excellent for
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all input signals. Learning of the feedforward weights is therefore required to make sure that all signals
are represented with high quality.

6. Figure 4 shows inverted I-E connections with respect to EE, but the text mentions the learning
rules are the same. Also, on which side is tpost > tpre in the learning windows?

The x-axis in the learning windows is ∆t = tpre− tpost. There does not seem to be any strict convention
in the field, and we have added an explanation to the legend in order to be crystal-clear.

The learning rules for the EE synapses are indeed the same, but there is an additional sign-flip
we need to take into account when mapping the learning rules to the experimental STDP protocols.
For a single synapse, the learning rule ∆Ω = −2V + Ω essentially states that Ω will become more
negative when the postsynaptic voltage was depolarized, and it will become more positive when the
postsynaptic voltage was hyperpolarized.

For an inhibitory synapse, becoming more negative means that the synapse is strengthened.
For an excitatory synapse, however, becoming more negative means that the synapse is weakened.
Consequently, when we map our learning rules on STDP-type protocols, we need to flip the sign on
the weight changes for the excitatory synapses.

We have added some explanatory text to the results section to clarify these points:

The insets show cartoon illustrations of the learning rules, stemming from STDP-like
protocols between pairs of neurons, with the x-axis representing the relative timing between
pre- and postsynaptic spikes (∆t = tpre − tpost), and the y-axis the change in (absolute)
weight. Note that increases (decreases) in synaptic weights in the learning rules map onto
increases (decreases) for excitatory weights and decreases (increases) for inhibitory weights.
This sign flip explains why the STDP-like protocol for EE connections yields a mirrored
curve.

7. x is assumed to white at many places, but it is simulated as a non white signal (section 14.1 and eq.
S.1)

For the sake of simplicity, the learning rules are initially presented and simulated in the setting of white
signals (Figures 2, 3A,B, and 4, and also Figure 8). However, it is possible to generalize the network
architecture and plasticity to handle non-white signal by introducing the input covariance matrix in
the loss function (Supplementary Sect. 12). This modifies the learning rule for the feedforward weights
(see Figure 3C,D). These modified learning rules are used in Figures 5,6, where we learn a network
architecture for speech signals (which are non-white). We now explicitly point out, when introducing
Figure 2, that the input signals are uncorrelated.

8. Having filtered x and non-filtered x denoted by the same variables in the main results section is
disturbing, please fix.

We thank the reviewer for pointing out the inconsistency in notation between main text and supple-
mentary material. We now introduce a separate notation for currents also in the main text (on page
4):

Each neuron’s membrane potential is driven by feedforward input signals, xj(t), which we
will model as a leaky integral of input currents cj(t), and by recurrent inputs, that feed the
output spike trains, ok(t), back into the network.

We have updated eq. 1 accordingly.

9. Please explain why noise is included in the simulations. I presume it is required to some extent.
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The role of noise is two-fold. First, it showcases an important feature of our networks’ architecture:
even though the signal decoding is robust, small voltage fluctuations can cause large differences in the
spike trains of single cells (see Figure 2E,F after learning; see also Boerlin et al, 2013, PLOS CB).

Second, this spike train variability allows us to approximate the network activity in the limit of
large network, which is necessary to give convergence guarantees for the voltage-based learning rule,
see pages 26-27 of the Supplementary Material:

For large networks, however, even small noise sources will considerably randomize the
timings and sequences of spikes (Boerlin et al., 2013), and so in this limit it makes sense to
analyse the fixed points under the assumption that spikes are distributed according to an
inhomogeneous Poisson process with mean firing rates r̄k(x).

10. Please verify the transpose on Eq. S.12 and S.10.

Following our conventions, we define the decoder D as the M ×N matrix mapping the N -dimensional
activity r onto the M -dimensional estimated signal x̂. In turn, we define the N ×M feedforward
matrix F as mapping M input dimensions onto N neurons.

Given these definitions, we indeed require that the feedforward matrix approximates the transpose
of the decoder matrix at the end of learning, and so F = D>.

11. L* not defined in first equation of Section 4 of supplementary materials. Wording is a bit confusing
just before that equation as it is as if a loss function is defined by the equation. I find this equation
and the one in 5.1 confusing. The goal is not to determine L*, but to determine D or o that achieves
L*. Why not use argmin?

We thank the reviewer for pointing out the confusing phrasing. We now use a more straightforward
formula, see Supplementary Sect. 4:

Specifically, we will seek to find the set of spike trains, o(t), that minimizes the loss function

L(o) =
〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
,

where the average in angular brackets is taken over all possible spike trains.

and Supplementary Sect. 5.1:

In short, we want to determine the best possible decoder D for a given network, i.e.,
minimize

L(D) =
〈
‖x−Dr‖2

〉
, (1)

where r is the filtered spike train output of the network.

12. What is a population spike in (section S7)

We refer to a spike emitted by any neuron in the population. We now introduce this notion at the
beginning of Supplementary Sect. 7 on page 15, together with the notion of population interspike
interval :

The shortest possible time-scale at which a single spiking neuron can be balanced is limited
by the interval between any two consecutive population spikes, i.e., spikes emitted by any
neuron in the population.
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13. Main results section p14-15. The term decoding weights has been used instead of FF weights.

We have corrected the mistake and also made sure to explain the concept of the decoding weights
better (see also response to comment 3).

14. Note that FF weights from thalamus are fixed after critical period.

There is certainly a lot more plasticity during the critical period. However, we do not really think that
there is any evidence that the thalamo-cortical synapses are truly ’fixed’ once the critical period is
over. Hence, we believe that our predictions make sense even after the critical period is over.

15. I was a bit frazzled by the overly simple descriptions

Our general aim was to make the manuscript as readable as possible for a more biological audience, and
to move the technical and more complex aspects of the work to the supplementary materials. That is
certainly not ideal for the more theoretically-minded reader, but we see it as a reasonable compromise,
given the mixed audience the paper will likely face.

Responses to Reviewer 2

The manuscript addresses efficient coding of inputs by spiking neural networks. Theories of efficient
coding have a long history in neuroscience. The approach taken here differs from most other works
in the assumptions made on the generation of spikes. In the proposed scheme, spikes of individual
neurons may appear noisy and stochastic, but in fact every spike is generated by a rule that aims to
minimize the reconstruction error of an implicit linear decoder, while taking into account the activity
of all others neurons in the network.

The above approach is related to previous works from the same senior authors, in which the goal
was to design recurrent networks of spiking neurons that precisely implement certain dynamics. The
previous works argued that the emergent solution is one in which internal variables related to the
dynamics will be efficiently represent by spikes. In this sense, the present work takes a step backwards,
by focusing solely on efficient coding of an external variable. In my opinion this apparent step backwards
is in fact very useful, as it allows for a more rigorous treatment of this family of problems.

I appreciated the detailed supplementary text which, despite being highly mathematical in nature,
lays out the ideas in a principled and usually clear manner. The exposition of the ideas in the main
text, in comparison, is sometimes too vague or sketchy to be comprehensible. There are some aspects
of the presentation that can be improved in the supplementary text as well.

My overall assessment is that this work offers an important contribution to the theory of neural
coding, and its content is therefore very appropriate for publication in PLoS Computational Biology.
However, there are some issues that require additional explanation or correction.

We thank the reviewer for the appreciation of our work.

General comments

1. It will be helpful to explain more explicitly how this work differs from previous works by the same
authors on optimization of spiking neural networks (Refs 21-24). My understanding is that the main
differences are: (a) in the goal (as mentioned above), (b) in the training scheme, i.e. in proposing an
online learning rule which is biologically plausible. Even though (b) is stated in the introduction, it is
not sufficiently clear from the phrasing that this is the key contribution of the present manuscript.
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The referee correctly points out that the novelty of the work lies in the training scheme. In previous
publications (Refs 21-24), the structure of the network was simply assumed. (More precisely, a fixed
decoder was assumed, and the structure of the optimal network was derived from this assumption.) In
turn, our previous work had no training scheme, and it was a priori unclear whether it was possible for
the network to self-organize into the desired structure via biologically-plausible local learning rules.
The current manuscript now shows how this can be done. We have reworded the abstract to clarify
better the novel aspect of our study (see also response to comment 1 from Referee #1).

In terms of the optimization goal (regardless of the training scheme), it will be helpful to understand
whether the goal considered here is a special instance of the problem considered in the previous works.
If so, what is the relationship between the solutions for synaptic connectivity obtained in these different
works (even if the learning rules are different).

In our previous work, the decoder was simply given by a putative downstream readout, and the optimal
recurrent and forward connectivity were determined through this downstream readout. In the current
manuscript, we first define an optimal decoder (defined as the putative downstream readout that would
minimizes the time-averaged reconstruction error across all possible network architectures), and then
show how to learn the network architecture for this optimal decoder.

A specific, somewhat technical difference between the previous works and the present manuscript is that
in the former works, the dynamics involved both slow synapses and fast (or instantaneous) synapses,
whereas here all synapses are instantaneous - see also comment 4. It will be helpful to comment on
this.

The referee is correct that the present manuscript has no slow connections. Indeed, we consider the
learning problems for the slow and fast connections separate learning problems. Loosely we think of
the slow connections as a supervised learning problem (see e.g. Alemi, Machens, Deneve, Slotine, 2018,
AAAI Conference), and the fast connections an unsupervised learning problem (this paper).

2. Likewise, the manuscript proposes two learning algorithms and argues that both are optimal. Do
they converge to the same solutions, or at least the same values of the objective functions? If the
solutions are not the same, is this because there are multiple local minima? or because of some other
reason, such as lack of optimality?

One of the reasons for a need to address these questions is that the argumentation for convergence
to optimal solutions with the voltage-based rules relies on several uncontrolled approximations and
assumptions. Hence, numerical testing of its performance relative to other schemes is warranted.

Both learning rules are based on the same objective function, i.e.

L(o) =
〈
‖x−Dr‖2 + µ ‖r‖2 + ν ‖r‖1

〉
,

as mentioned in the Supplemental Material, page 9. However, they do so via different proxy loss
functions. As shown in Supplementary Sects. 7 and 9, both learning rules have the architecture
Ω = −FD− µI, and F = D> as fixed points.

The referee correctly points out that this leaves two open problems. First, are the fixed points local
or global optima of the loss function? Second, what is the nature of the matrix D after convergence?

Concerning the first question, Supplementary Sections 9 and 10 have convergence proofs showing
that the fixed points are global attractors of the learning rules. The referee is correct, though, that
these proofs are not airtight for all possible scenarios. In practice, however, i.e., in simulations of
networks with (low-dimensional) input signals, we have always found convergence to the global optimum.
Figure 2B shows an example. (Networks with higher-dimensional input signals have been harder to
learn for numerical reasons—the simulation times become prohibitively long on desktop computers.)
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Concerning the second question, we show in Supplementary Sects. 8 and 10 that both learning
rules achieve F = D> and optimize D with respect to the efficient coding objective. That said, we
cannot ensure that the final values of D coincide for both learning rules in numerical simulations,
as the optimum of the efficient coding objective function can be quite shallow. Moreover, unlike in
classical efficient coding, here the decoder D is not renormalized (even though the learning rules ensure
that ‖D‖ does not diverge to +∞). The techniques used to prevent ‖D‖ from diverging can in general
lead to different absolute values of D depending on the learning rule chosen.

Nonethess, we have always found overall similar values of the loss function after learning in
simulations.

3. The relationship to other works on efficient coding is not sufficiently clear, and is sometimes
confusing. Most works on efficient coding focused on the receptive fields of single cells, and not on
how the recurrent connectivity can generate jointly an efficient representation by spikes. Accordingly,
spiking was mostly considered as generating noise which is independent in different neurons. In this
respect, the present work offers an important advancement.

On the other hand, the present work does not incorporate important lessons that were learned
from works that focused on the optimal receptive fields in a population of neurons that encode a
multidimensional input:

a First, some works on efficient coding considered mutual information rather than reconstruction
error as the optimization goal.

b Under certain variants of optimization with sparseness constraints, optimal solutions implement
ICA on the inputs, not PCA. The solutions obtained here are only sensitive to the covariance
matrix of the inputs and therefore do not implement ICA.

c Under L2 constraints and without noise in the inputs, networks typically implement whitening
without the need for a modified loss function as in Section 12. Here (in the present work) it
seems that the whitening is forced into the solution by the choice of the loss function, and this
requires some clarification.

d Once noise is included in the inputs, it is typically suboptimal to simply whiten the inputs. This
was clarified for example by the classical works of Attick and Redlich on encoding of visual stimuli
by the retina, as well as others.

It is possible that the formulation proposed in the present work can be extended to incorporate all these
ingredients, but as far as I can see this is not the situation right now. Therefore, it will be helpful to
lay out more clearly and correctly the relationship to previous works on encoding of multidimensional
inputs and acknowledge the limitations of the present work. The last paragraph of supplementary
section 1.4 is very confusing in this respect.

We thank the reviewer for this interesting remark. The last paragraph of supplementary Section 1.4
gave the material a bit short shrift, and we have now expanded this paragraph to better explain the
scope of our work.

Briefly, the term ’efficient coding’ has been used in various ways in the past, as correctly pointed
out by the reviewer. We use the term efficient coding in two senses: First, we simply want to express
that the spike code generated by our networks is far more efficient than classical codes such as Poisson
codes. Here, we measure efficiency as number of spikes fired for a given accuracy of the code. Second,
we can understand efficient coding in our work in the sense of Olshausen and Field (1996), where
efficiency was equated with sparsity. The loss function used by Olshausen and Field is mathematically
identical to our loss function, and also relates this work to ICA. More specifically, it relates our work to
overcomplete ICA, as explained in e.g. Lewicki & Sejnowski, 2000, Neural Computation, 12:337–365.

Concerning point (a), we now explain better that we are not using a general, mutual-information
based approach, but one based on mean-square errors. Specifically, we now write at the beginning of
the discussion:
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We have measured efficiency with an objective function that combines the mean-square
reconstruction error with various cost terms. While mathematically simpler than mutual-
information-based approaches, our objective function includes both principal and overcom-
plete independent component analysis as special cases.

Concerning point (b), we have now clarified that ICA can be achieved in our networks via a sparsity
cost, just as in Olshausen and Field (1996). We added ’overcomplete’ when refering to ICA in the
main text (see above), and in Section 1.4 of the Supplementary Material, we now write:

We note that algorithms such as principal component analysis (PCA) and independent
component analysis (ICA - Hyvärinen et. al, 2001) can be formulated as special cases of
this general class of learning problems. In particular, Lewicki and Sejnowski (2000) show
how ICA relates to efficient coding in the presence of a sparsity cost.

Accordingly, while our work does not relate to all possible ICA algorithms, it does relate to overcomplete
(or sparse) ICA, because it shares the same loss function.

Regarding point (c), the change in the cost is not so much about whitening as it is about invariance
with respect to linear transformations of input signals. As the recurrent learning rules are local, they
have no access to transformations in the input (which is only accessible after a linear transformation
F). The covariance structure of the input allows us to define a loss that is not affected by such
transformations: as an added benefit, the network is now able to efficiently encode non-white signal.
We now mention the invariance considerations more explicitly in the Supplementary Material on page
31:

[...] we modify the loss function,

` = (xc −Dr)>C−1 (xc −Dr) + µ ‖r‖2 + ν ‖r‖1

where xc = x − x̄ is the mean signal and C =
〈
xcx

>
c

〉
is the signal covariance. It is

important to note that the more general loss (S.43) is invariant with respect to linear
transformations in the input x. If the input signal is replaced by a transformed signal
x′ := Mx, with M an invertible matrix, the loss function is not affected. It is sufficent to
replace D with MD to recover an equivalent optimization problem.

Regarding point (d), that is an interesting point for future work, but we think it goes beyond the
scope of our study, which is primarily about learning rules in a spiking network.

4. The learning of feedforward connections is chosen to be slow compared to the learning of recurrent
connections, and this is apparent already in Figure 2 but not discussed (unless I missed this). Later
on, in at least two instances, the difference in time scales is mentioned as an important requirement or
consequence, and time scale separation is used in some of the argumentation in the supplementary
material. However, as far as I understand, the results don’t demonstrate that successful learning occurs
only if the time scale of feedforward learning is slow compared to the recurrent learning, and it will be
helpful to comment directly on this question.

We thank the reviewer for pointing out this omission. When first discussing the learning of the
feedforward weights in the context of Figure 2, we now write:

The effect of the feedforward plasticity rule is shown in Fig. 2Aiii–Giii. The feedforward
weights change slowly until the input space is spanned more uniformly (Fig. 2Biii). While
these changes are occurring, the recurrent weights remain plastic on a faster time scale and
thereby keep the system in a balanced state.

The rationale is that, once the recurrent learning brought the network to the state Ω ≈ −FD, it is
important that the feedforward learning does not disrupt this factorization. We now explain this in
Supplementary Sect. 6.4.
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The network architecture that we have derived so far still deviates from the optimal
architecture, since F and D> are not necessarily the same matrices. Accordingly, we need
to somehow make sure that the feedforward weights F align with the (unknown) decoder
D>. This update of the feedforward connections should happen at a slower time scale than
recurrent learning, to ensure that the equation Ω = −FD− µI is approximately preserved.

We also note that if the time scale of the feedforward learning is too rapid, the learning rules no
longer converge, as suggested by our mathematical derivations, and as observed in many numerical
simulations.

More specific comments

5. In the network dynamics (Eq. 1) synaptic currents are instantaneous. This should be stated
explicitly. The phrasing in page 16 misrepresents the situation, since the postsynaptic current generated
by an incoming spike is a delta function, not a jump followed by exponential decay. The voltage jumps
and decays exponentially following a spike, not the current. This dynamics of the voltage has nothing
to do with synaptic dynamics.

We thank the reviewer for pointing out the inaccuracy. Indeed the term current is incorrect here: we
intended to refer to voltage and postsynaptic voltage dynamics. We have now corrected the text on
page 17:

A final concern could be to what extent the learning rules rely on overtly simplistic synaptic
dynamics—each spike causes a jump in the postsynaptic voltage followed by an exponential
decay.

We now also mention explicitly, on page 4, that the recurrent synapses are instantaneous in (Eq. 1):

For simplicity, here we consider instantaneous synaptic transmission: the impact of synaptic
delays on the network will be examined in Fig. 7.

6. I recommend to briefly mention the basic requirements from an optimal decoder in the main text,
before discussing the current and voltage based learning rules. These requirements are currently derived
in sections 2-5 of the supplementary material and summarized in section 6. It will be very helpful
to clearly lay out the requirements in the main text, preferably using some equations. Otherwise,
it remains unclear while reading the main text alone that optimization of the error entails certain
concrete requirements on the recurrent and feedforward connectivity and (implicitly) on the decoder.
Consequently, it is not clear to the reader in what sense the local learning rules derived later achieve
optimal performance.

We can see the merit in what the reviewer is suggesting, i.e., to essentially provide more mathematical
details in the main text. However, we prefer to have a stronger split between intuitions with ‘light
math’ in the results and then the more technical parts in the Appendix. We completely agree that this
organization puts a bit of burden onto the more theoretically inclined audience, but we think that it’s
worth the benefit of being more comprehensible for more experimentally oriented neuroscientists.

That said, the reviewer is correct that we never explicitly mentioned that the decoder will also be
optimized. In the main text, we have corrected that omission and now write (beginning of results),

The second objective of the network will be to find, among all possible spiking outputs,
and all possible decoders, the ones that are the most efficient.
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7. The discussion on the current based decoder lacks concreteness in the main text. It will be helpful
to provide some equations involving g, in similarity to Eqs. (5) and (6) that are provided for the
voltage based rule. Otherwise it is not clear that the idea of balancing the currents translates into a
specific synaptic learning rule. It will also be helpful to refer to the appropriate supplementary sections
earlier in the text.

We intentionally kept the mathematics of the current-based learning to the supplementary materials.
Our aim to discuss the current-based learning rules in the main text was two-fold. First, the idea
of current-based learning provides nice intuitions. Second, having two learning rules shows that the
learning rules leading to the optimum are not unique. We believe that is an important insight.

We prefered to keep the math of the current-based learning rules in the supplementary materials
so as to not stretch the main text too long or make it too technical. We agree with the referee,
though, that a better reference to the supplemental sections will be helpful. We now write (before the
introduction of the learning rules):

We developed two ways of reaching the balanced regime (see Supplementary Materials S6
for a high-level, technical overview). The first scheme balances excitatory and inhibitory
currents on a fine time scale (see Supplementary Materials S7 and S8 for details), while the
second scheme minimizes the voltage flucutations (see Supplementary Materials S9–S12
for details). We here briefly explain the current-based scheme, but then focus on the
voltage-based scheme for the rest of the text.

8. Likewise, it will be helpful to mention what are the relevant supplementary sections early on when
introducing the voltage based learning, to clarify that there is a systematic derivation behind the
proposed rules, which are only qualitatively motivated in the main text.

We agree - please see above.

9. The argumentation at the top of page 9 is difficult to follow and seems circular. The problem
starts with “Since the connectivity structure dictates that the voltage becomes a function of the global
coding error”: isn’t this part of what needs to be shown? How does this follow from the stationary
state arising from rule (5)?

Here we are only showing that Ω = −FD is a fixed point (for some matrix D), we are not showing that
the learning rules converge to that fixed point. (A convergence proof is provided in the supplementary
materials.)

To show that Ω = −FD is a fixed point, one only needs to show that the net changes in Ω vanish,
i.e., that 〈dΩik/dt〉 = 0. To show this, we first use the fact that, whenever Ω = −FD, the voltage
becomes a function of the coding error, as shown in Eq. 4. Plugging this equation into the learning
rule, then shows that the average derivative vanishes. We now make the logic more clear in the text on
page 9:

Since, whenever Ω = −FD, the connectivity structure dictates that the voltage becomes a
function of the global coding error, as stated in Eq. 4, the stationary point can be rewritten
as Ωik = −2

∑
j Fij〈xj − x̂j〉k.

The last equation then shows that the stationary point is of the form Ω = −FD, and the derivatives
will vanish if we identify the decoder Djk = 2〈xj − x̂j〉k.

10. If I am not mistaken, the exposition in the main manuscript fails to acknowledge the need to show
that the rules converge to a decoder that minimizes the loss function (Sections 8.3 and 10.2). This is
something that I was puzzled about while reading the main text, and became clear only while reading
carefully through the supplementary text. I recommend to mention this explicitly.

We thank the reviewer for pointing out this omission. We now write (on page 13):
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More specifically, the feedforward weights have become identical to the decoding weights,
Fik = Dki, and the latter minimize the objective function, Eq. 3.

11. Fig. 4 caption: the text on panel A discusses an STDP rule depending on the timing of pre- and
post- synaptic spikes. However the recurrent learning rule discussed in the text involves the presynaptic
spike and the postsynaptic voltage, while the feedforward rule involves a postsynaptic spike and the
presynaptic continuous input. Please clarify.

In a previous section of the manuscript, on page 8, we refer to Clopath et al. (2010), which propose
multiplication of presynaptic spike and postsynaptic voltage as a mechanism for STDP.

[...] According to this rule, the recurrent connections are updated only at the time of a
presynaptic spike, and its weights are increased and decreased depending on the resulting
postsynaptic voltage. While this rule was derived from first principles, we note that its
multiplication of presynaptic spikes and postsynaptic voltages is exactly what was proposed
as a canonical plasticity rule for STDP from a biophysical perspective (Clopath et al.,
2010).

The objective of our analysis is to argue that, even though our rules are defined in terms of postsynaptic
voltage, simulations show that they exhibit STDP-like feature. We have now clarified this in the
discussion, on pages 21/22:

As a result, even though our proposed learning rules are not defined in terms of relative
timing of pre- and postsynaptic spikes, most connections display some features of the classic
STDP rules, e.g., LTP for pre-post pairing, and LTD for post-pre pairing (Caporale and
Dan, 2008; Feldman, 2012).

12. The results on more realistic synaptic dynamics (page 16) are not sufficiently clear and detailed.

a Please explain clearly that the synapses were instantaneous up to that point (see also comment
1).

b The phrasing “transmission delays” is confusing, as it suggests a simple delay of the synaptic
current without any other modification in its structure. A better phrasing will be something
along the lines of “realistic, non-instantaneous synaptic currents” with reference to panel D of
Figure 7.

c In panel C, the ratio between the error with 2ms delay and 0 ms delay is very large, more than
an order of magnitude. In what sense then is the degradation in performance small, as stated in
page 16? And how does the error compare to its value at the beginning of training? Does it still
improve with increase of the network size?.

Concerning item (a), we now explicitly mention that the synapses are considered instantaneous - see
response to point (5).

Concerning item (b), we agree that the wording was confusing. We are now more explicit in our
definitions and write:

To address this question, we also simulated the network assuming more realistic synaptic
dynamics (Fig. 7D). We measures the effective delay of transmission as the time-to-peak
for a postsynaptic potential.
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Concerning item (c), we eliminated the word ’small’. We emphasize that the performance of the
networks improves even in the delayed case. However, the overall improvement is simply smaller.

13. The Pseudo-Code in the supplementary text may be helpful for reproducing the results. It is less
useful if one wishes to simply understand in mathematical terms what were the dynamics of neurons
and synapses in each simulation. It’s difficult to do so now because equations are scattered in the main
manuscript and in the multiple sections of the supplementary material. Therefore, I suggest to add
a summary of the equations used, either in the supplementary text or as a methods section. Either
repeat the equations or refer to them by number, but specify clearly what were the equations that
were used in each Figure.

We agree with the reviewer that the results and figures should be easily reproducible, and that the
current explanations and pseudo-code are unlikely to achieve that job. We believe that the best way to
do so is to simply share the MATAB code for all relevant figures, which we have now done, and will do
upon publication of the paper.

14. I didn’t fully understand the logic of Sec. 5.2. I understand that greedy optimization of the spike
timing yields Eqs. S.10 and S.11. But if the threshold is instead fixed at some value that deviates from
optimality, is it obvious that the best choice for the decoder weights is the one that obeys these two
equations?

In Eq. S.11, we assume that the decoder length ‖Dn‖, and the linear and quadratic costs, ν and µ, are
known, and we calculate the threshold. In Eq. S.15, we assume that the threshold is known, as are the
linear and quadratic costs, and we then calculate the decoder length.

These choices are not so much driven by optimality considerations, but rather by the consideration
to keep things simple. In principle, one could freely choose the threshold and decoder length. This
would be equivalent to giving a separate linear cost, νn, to each neuron’s firing rate, i.e., to weighting
the cost of each spike differently. We refrain here from doing so, as it would make things more general,
but without adding conceptually new insights.

15. In page 19 (section 8.3), at the left hand side of the equations, why is there no average symbol on
the voltages? In addition, the argumentation is confusing since 〈V 〉 is assumed to be close to zero, but
then naively 〈∆V 〉 will remain close to zero as well. I suppose that all terms in the equation are small
but in the last line of the equation 〈V 〉 can somehow be shown to be small compared to the first term.
This is not done in a sufficiently convincing manner.

We thank the reviewer for signaling the inaccuracy. We refer to the average voltage difference
〈
∆V

〉
.

The reviewer is correct in pointing out the confusion concerning ∆V. We were originally referring to
the change in voltage due to feedforward learning assuming that the firing rates do not change. We
now instead consider explicitly a change in firing rates, in which case both V and ∆V will be small.
This is now explained more clearly in the Supplemental Material on page 19:

To keep things simple, we will assume that the recurrent connectivity is already learnt, and
we will write ∆F = λ(D> − F) for the feedforward update, where λ is a small feedforward
learning rate. Let ∆r be the corresponding change in firing rate. The resulting change in
the voltage will then—on average—be proportional to〈

∆V
〉

=
〈
∆F(x−Dr) + Ω∆r

〉
= λ

〈
(D> − F)(x−Dr)

〉
+
〈
Ω∆r

〉
= λ

〈
D>(x−Dr)− µr

〉
− λ

〈
F(x−Dr)− µr

〉
+
〈
Ω∆r

〉
= λ

〈
D>(x−Dr)− µr

〉
− λ

〈
V〉+

〈
Ω∆r

〉
.
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Since the learning of F happens on a much slower time-scale than the learning of the
recurrent weights, both the l.h.s, i.e. the average voltage difference, and the second term on
the r.h.s., i.e., the average voltage, will be close to zero, as the network remains in a tightly
balanced state throughout the learning of the feedforward weights. As a consequence the
change in firing rates approximately respects the following equation〈

Ω∆r
〉
≈ −λ

〈
D>(x−Dr)− µr

〉
,

= λ
∂L

∂r

where L is the averaged loss function in the absence of the linear cost term.

16. In the last paragraph of page (19) of the supplementary material I did not understand the argument.
If r (not 〈V 〉) would change in the direction of the anti gradient with respect to r, the argument would
be clear.

We thank the reviewer for pointing out this unclear passage in the proof. As mentioned in the previous
reply, we now consider the induced change in firing rate explicitly and show that, assuming stability of
the network and therefore that the recurrent inhibitory connections are a negative definite matrix, this
change has positive dot product with the antigradient of the loss function, see pages 19 and 20 of the
Supplemental Material.

As the network is in the balanced state, we expect the symmetric part of Ω to be negative-
definite, that is for all v 6= 0, v>Ωv < 0. As a consequence

−
〈
∆r>

〉
· ∂L
∂r

= − 1

λ

〈
∆r>

〉
·Ω
〈
∆r>

〉
> 0.

In other words, the change in instantaneous firing rate of the network will have positive
dot product with the antigradient of the loss function, thus minimising it.

17. In Section 10 of the Supplementary material (page 26) the argument for (x− x̂) being proportional
to x could benefit from more substantiation and motivation.

Briefly, the key idea here is that, in the presence of quadratic costs, the readout x̂ will be shorter than
the signal x. We have now added the following motivation for this approximation in the supplementary
materials:

To see why that is the case, we note that, once the recurrent connections have been learnt,
the voltages of the neurons are in the balanced state, i.e., their averages are zero. Taking
averages over time for fixed signals, x, we can therefore write,

〈V〉 = 〈F(x− x̂)− µr〉 ≈ 0 (2)

Multiplying by the decoder from the left and re-arranging, we obtain〈
DF(x− x̂)− µx̂

〉
≈ 0 (3)〈

(DF + µI)(x− x̂)
〉
≈ µ〈x〉 (4)〈

(x− x̂)
〉
≈ µ(DF + µI)−1〈x〉 (5)

For sufficiently large µ, the errors will therefore approximately align with x. The costs µ
will moreover prohibit x̂ to fully match the size of x, an effect that increases linearly with
the size of x.
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18. On the following page (section 10, page 27) Why is the fixed point written as 〈rx>〉? How is this
equal to the expectation of x at the time of a spike?

This is a consequence of the assumption that the input currents are changing slowly, as mentioned on
page 27.

For the sake of mathematical precision, we will here make the assumption that c is changing
slowly, as also stated at the very beginning, section 1.1, and we will proceed with (S.34).

19. In section 12 of the supplementary material, does S.43 imply that the synapses need to learn the
mean of the signal?

Indeed, the reviewer is correct, the synapses will need to have a mechanism that lets them keep track
of the mean of the signal. More specifically, they should only learn based on deviations from that
mean. We have not made any attempt to relate this assumption to the biophysics of synapses. We
only emphasize the locality of the learning rules.

(We note, though, that any type of (long-time-scale) adaptation process will act as a high-pass
filter, and therefore eliminates the mean, which would be sufficient for the purposes of our learning
rules.)

20. In Sec. 13 of the supplementary material: the text explains the idea that the inhibitory population
can approximates the activity r of the excitatory population. The idea mentioned in page 33 is that
the inhibitory neurons represent the signal encoded by the excitatory population. But the derivation
in page 34 proposes that they learn to represent the activity r of the excitatory population, which is
not the same quantity – it will be helpful to clarify this. In addition, r varies quite rapidly, on the
time scale of the membrane potential following each spike, which may violate the assumption of a slow
signal mentioned in section 1.1 of the supplementary material. Does this cause any difficulties?

The key idea here is that, if the inhibitory population can properly track r along directions in firing
rate space that matter for the encoding of the signals, it will automatically also track x̂. The reviewer
is correct to note that r will not just undergo signal-induced changes in directions determined by
the decoder D, but also fluctuations in directions orthogonal to the decoder D. However, from the
point-of-view of the inhibitory population, these latter fluctuations, which are fast and noisy, are
negligible compared to the slower, but much stronger and reliable firing rate changes induced by the
signal. The inhibitoryb population therefore learns to track these latter changes, rather than the
random fluctuations.

In practice, we have not found any difficulties with this scheme.

Typos and minor comments

21. In page 6, first two rows: the sentence should be corrected (what does ‘they’ refer to?)
22. In Figures 2 and 4, what does “Error” mean? In Figure 7, is “Error [%]” the same quantity,
multiplied by a hundred? It will be helpful to use the same notation in all figures.
23. In page 11 it took me a while to understand what “the length of the decoder weights” means (this
terminology is used also in page 10). Perhaps replace by the L2 norm?
24. The first paragraph of the section “Learning in networks with separate excitatory and inhibitory
populations” (page 13) refers to equations numbered 1 and 2. These equation numbers seem to be
incorrect.
25. In the section on excitatory and inhibitory populations, it will be helpful to mention that both the
inhibitory and excitatory neurons follow the dynamics of Eq. (1), with the same time constant.
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26. In the section “Learning for correlated inputs” it is desirable to refer early on to the appropriate
section of the supplementary text.
27. In page 4 of the supplementary material: “Each filtered spike trains”.
28. In page 9 of the supplementary material (section 4), above condition 3: the statement “A second
observation is that the optimal architecture deviates from...” is not clear, because it is detached from
the derivation of the recurrent connectivity and is immediately followed by a statement about the
feedforward connectivity. A bit more explanation (what is the difference in the architecture and what
is the source of this difference) will be helpful.
29. In Section 6.1 of the supplementary material: the sentence on before last at the end of the paragraph
is grammatically incorrect (“must be quickly canceled... or otherwise causes”).
30. In the equation at the bottom of page 15 of the supplementary material, the limits of the integrals
over tau seem to be incorrect (they should be replaced by minus infinity to ti).

We thank the reviewer for pointing out all of these typos and minor inaccuracies, which we have now
fixed. Concerning remark 22, we note that all errors are plotted as mean-square errors between signal
and reconstruction. For all practical purposes, though, these errors are in arbitrary units (as they
completely depend on the specific parameters of the simulations) and are only meaningfully compared
within a figure, not across figures. We now simply write ’Error [a.u.]’ and point out that it is the
mean-square error in the legend.
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