SUPPORTING INFORMATION

In-vivo crystals reveal critical features of the interaction between CFTR and the PDZ2 domain of Na^+/H^+ exchange cofactor NHERF1

Eleanor R. Martin^{1,2#}, Alessandro Barbieri^{1,3}, Robert C. Ford¹, Robert C. Robinson^{2,4,5*}

From the ¹School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; ²Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore; ³Bioinformatics Institute (BII), A*STAR (Agency for Science, Technology and Research), Biopolis, 138671, Singapore; ⁴Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand; ⁵Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan

[#]Present address: Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445, Luxembourg

Supporting information

Figure S1: Overlay of the structures of the extended and canonical NHERF1 PDZ2 domains

Figure S2: Secondary structure prediction for the PDZ domains of the NHERF family

Figure S3: Cross-species sequence alignment of the CFTR C-terminus

Figure S4: In-cellulo crystals formed by the iBox-PDZ2-PAK4cat fusion construct

Figure S5: Unrefined electron density map obtained for the iBox-PDZ2-PAK4cat fusion construct

Figure S6: Light images of COS-7 cells co-transfected with GFP-PDZ1 and either iBox-PAK4cat-DTRL or iBox-PAK4cat-AAAA

Figure S7: Representative GFP fluorescent images of COS-7 cells co transfected with GFP-PDZ and iBox-PAK4cat-DTRL construct variants

Figure S8: Corresponding light images for Figure S7

Figure S9: GFP fluorescent image of crystals obtained from lysed cells following co-transfection with GFP-PDZ1 and iBox-PAK4cat-DTRL

Figure S10: Root-mean-square-deviation (RMSD) of NHERF1 PDZ2 in complex with the CFTR PDZ-binding motif with different protonation states for H169 and H212

Figure S11: Root-mean-square-deviation (RMSD) of NHERF1 PDZ2 in complex with the CFTR PDZ-binding motif alanine substitution mutants

Table S1: Diffraction statistics for the iBox-PDZ2-PAK4cat fusion crystal

Movie S1: Fluorescent time-lapse comparison of COS-7 cells co transfected with GFP-PDZ2 and iBox-PAK4cat constructs

Figure S1. Overlay of extended and canonical NHERF1 PDZ2 domain. Extended PDZ2 domain of NHERF1 obtained in this study (green) is overlaid with the crystal structure of the canonical domain (PDB: 20ZF) (orange).

red:	СННННННННСССССС	CEEECCCCCCC	22222222222	CCCCC
AA:	DKETDNMYRLAHFSP	FLYYQSQELPI	NGSVKEAPAP'	FPTSL
	90	100	110	120

NHERF3_PDZ4

Conf:]				l oop t
Pred:		β2		β3 	-)
Pred: AA:	CCCEEEEEEC	CCCCCEEE	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CEEEECCCCC	HHHH PADL
	1	0	20	30	40
Conf:	3				
Pred:	β4	β5		! 	β6
Pred: AA:	CCCCCCCEEE AGLEDEDVII	EECCEECC EVNGVNVI	CCCCHHHHHH DEPYEKVVI	HHHCCCCEE DRIQSSGKNV	EEEE TLLV
	5	0	60	70	80
Conf:	30-0 000000	10 0000 000			
Pred:	\rightarrow				
Pred: AA:	ECHHHHHHHH CGKKAYDYFQ	AKKIPIVS	CCCCCCCCCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCC ESNH
	9	0	100	110	120

NHERF4_PDZ2

Conf:	<u>}</u>	000000000000000000000000000000000000000	0== = []==	10000000 E
Pred:	β1	<u>β2</u>	β3	
Pred: AA:	CCCEEEEECCC RPRLCHIVKDE	CCCCEEEECC GGFGFSVTHG	CCCCEEEECC NQGPFWLVLS	CCCHHHHCC TGGAAERAG
	10	20	30	40
Conf:	3000000000000	000000]=0000000={
Pred:	β4 		<u>- az</u>	- <u>β</u> 6
Pred: AA:	CCCCCEEEEEC VPPGARLLEVN	CEECCCCCHH GVSVEKFTHN	HHHHHHHHCC QLTRKLWQSG	CEEEEEEEC QQVTLLVAG
	50	60	70	80
Conf:	}	000000000000000000000000000000000000000	20002002200	
Pred:				
Pred: AA:	HHHHHHHHHCC PEVEEQCRQLG	CCCCCCCCCC LPLAAPLAEG	CCCCCCCEEE WALPTKPRCL	EEEECCCCC HLEKGPQGF
	90	10	0 11	0 120

Legend: = helix Conf:],]]]][[= confidence of prediction + + = strand Pred: predicted secondary structure = coil AA: target sequence

NHERF3_PDZ1

Conf:	3 000 000000000000000000000000000000000	B2	B3	a llina aa	E
Pred:		— <mark>—</mark> ——	μ5		
Pred: AA:	CEEECCCCCC	CCEEECCC	CCCCCEEEEE KDTEGHLVRV	ECCCCHHHHC VEKCSPAEKA	CC .GL
	1	0	20	30	40
Conf:				= 	E
Pred:	p4))— <mark>β6</mark>	
Pred: AA:	CCCCEEEEEC QDGDRVLRIN	CEECCCCC IGVFVDKEE	HHHHHHHHHH HMQVVDLVRK	CCCEEEEEEE SGNSVTLLVL	CC DG
	5	0	60	70	80
		-			
Conf:					L
Pred:	<u> </u>				
Pred: AA:	HHHHHHHHHCC DSYEKAVKTF	CCCHHCCC	CCCCCCCCCC SQKEQGLSDN	CCCCCCCCCCC	CC QT
	9	0	100	110	120

NHERF3_PDZ3

COUL:				
Pred:	β1	<u>B2</u>	<u>β3</u>	
Pred: AA:	CCCEEEEEECCC QPRIVEMKKGSN	CCEEECCCCCC	CCCCEEECCCC QKGQIIKDIDS	CCHHHH GSPAEE
	10	20	30	40
Canfi	1			
COUL:	0.4	RE	a2	ße
Pred:	p4			рө
Pred: AA:	CCCCCCCEEEEE	CCEECCCCCHH NGESVETLDHD	HHHHHHHHCCC SVVEMIRKGGE	EEEEEE QTSLLV
	50	60	70	80
		-		
Conf:				LUUUU t
Pred:		_		
Pred:	ЕСНННННННС	CCCCCEEECCC		cccccc
AA:	VDKETDNMYRLA	HFSPFLYYQSÇ	ELPNGSVKEAF	APTPTS
	90	100	110	120

NHERF4_PDZ1

Conf:]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]			
Pred:	p1		p3	— <u>)</u>
Pred: AA:	CCCEEEEEEECCC ERPRFCLLSKEEG	CCCCEEEECCCCC KSFGFHLQQELGF	CCCCEEEEECO RAGHVVCRVDI	CCCHH PGTSA
	10	20	30	40
Conf:				la la la
Pred:	β4		<u></u>	β6
Pred: AA:	HHCCCCCCCEEEE QRQGLQEGDRILA	ECCEECCCCCHHF VNNDVVEHEDYAV	HHHHHHHHCCO VVVRRIRASSI	CEEE PRVLL
	50	60	70	80
				_r
Conf:	100000000000000			l - L
Pred:	$\rightarrow - 0$	_		⇒—
Pred: AA:	EEECCHHHHHHHH TVLARHAHDVARA	HCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCCCCEEEI GPGVRPRLCH	SEECC IVKDE
	90	100	110	120

CAL1

Conf:]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	 == =]		loo llo of
Pred:	β1	<u>β2</u>	β3	
Pred: AA:	CCCEEEEECCCC	CCCCCEEEECC	CCCCCCEEEEE	ECCCCCH IHPGQPA
	10	20	30	40
Conf: Pred: Pred: AA:	β4 HHCCCEEEECEE DRCGGLHVGDAJ 50	EEEECCCCCCCC LAVNGVNLRD	α2 CCHHHHHHHH RKHKEAVTILS 70	β β β β β β β β β β β β β β
Conf:]	 	10000000000	1 0 0 0 0 0 0 E
Pred:			_	
Pred: AA:	EEEEEECCCCCC FEVVYVAPEVDS	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCEEECCCCC	CCCCCCCC
	90	100	110	120

Figure S2. Secondary structure prediction for the PDZ domains of the NHERF family. A third helix (α 3) after the β 6 strand is predicted for several PDZ domains within the NHERF family, but not for those outside such as CAL1. Note: A fourth helix (α 4) is predicted only for NHERF2 PDZ1 and NHERF3 PDZ1, but is not predicted to be present in either NHERF1 PDZ1 or PDZ2. Secondary structure predictions were carried out using the PSIPRED server v3.3 (available at http://bioinf.cs.ucl.ac.uk/psipred) using the default settings.

Human	ISPSDRVKLFPHRNSSKCKSKPQIAALKEETEEEVQDTRL 148	0
Frog	HSDRLKLFPLHRRNSSKRKSRPQISALQEETEEEVQDTRL 148	5
Rat	LSSSEKMKLFHGRHSSKQKPRTQITAVKEETEEEVQETRL 147	6
Mouse	ISSSEKMRFFQGRHSSKHKPRTQITALKEETEEEVQETRL 147	6
Zebrafish	ERLKLFPRRNSSMRTPQSKLSSVTQTLQEEAEDNIQDTRL 148	5
Dog	IGPPERPGLLPHRLSSRQRSPSRIAALKEETEDEVQDTRL 148	3
Horse	ISSSDPLKLFPHRNSSKHKSRSKIAALQEETEEEVQETRL 148	1
Bovine	ISPADRLKLLPHRNSSRQRSRSNIAALKEETEEEVQETKL 148	1
Rabbit	ISSSDRAKLFPHRNSSKHKSRPQITALKEEAEEEVQGTRL 147	6
Sheep	ISPADRLKLLPHRNSSRQRSRANIAALKEETEEEVQETKL 148	1
	* * * * * * * * * * * * * * * * * *	

Figure S3. Cross-species sequence alignment of the CFTR C-terminus. Last 40 residues of CFTR were aligned using ClustalW2 with the default settings.

Figure S4. *In-cellulo* crystals formed by iBox-PDZ2-PAK4cat fusion construct. Crystals were imaged four days post-transfection in COS7 cells. Scale bar indicates 100 μ m. Note: The different colors of the crystals likely results from the plastic of the petri dish which produces some polarization in the light which interacts with the lattices in the crystals. The colour of individual crystals therefore depends on their size and relative orientation in the field of view.

Figure S5. Unrefined electron density map obtained for the iBox-PDZ2-PAK4cat fusion construct. OMIT mesh map is contoured at 1.0 sigma and within 1.5 Å of the respective atoms. Left, iBox-PAK4cat is shown in magenta and PDZ2 in green. Right, comparison of electron density observed for typical helices in PAK4cat and PDZ.

Figure S6. Light images of COS-7 cells co-transfected with GFP-PDZ1 and either iBox-PAK4cat-DTRL or iBox-PAK4cat-AAAA. Both iBox-PAK4cat construct variants appear to be similar in terms of crystal generation proficiency. Scale bar indicates 100 µm.

GFP-PDZ1

S-6

GFP-PDZ2

Figure S7. Representative GFP fluorescent images of COS-7 cells co-transfected with GFP-PDZ and iBox-PAKcat4-DTRL construct variants. Please note: Images for GFP-PDZ2 with iBox-

PAK4cat-DTRL and GFP-PDZ2 with iBox-PAK4cat-DTRA co-transfections have been reproduced from Fig. 5B.

Figure S8. Corresponding light images for Figure S7.

Figure S9. GFP fluorescent image of crystals obtained from lysed cells following co-transfection with GFP-PDZ1 and iBox-PAK4cat-DTRL.

Figure S10. Root-mean-square-deviation (RMSD) of NHERF1 PDZ2 in complex with the CFTR PDZ-binding motif with different protonation states for H169 and H212. HIP (+1 charged, both δ - and ϵ -nitrogens protonated), HID (neutral, δ -nitrogen protonated), and HIE (neutral, ϵ -nitrogen protonated). R = replicate. RMSD for all C α atoms is shown in red, the RMSD related to C α atoms of the secondary structure elements of the complex is shown in green, and the RMSD of C α atoms of the peptide is shown in blue.

Figure S11. Root-mean-square-deviation (RMSD) of NHERF1 PDZ2 in complex with the CFTR PDZ-binding motif alanine substitution mutants. R = replicate. RMSD for all C α atoms is shown in red, the RMSD related to C α atoms of the secondary structure elements of the complex is shown in green, and the RMSD of C α atoms of the peptide is shown in blue.

Space group	P63
Cell dimensions	
(a, b, c) (Å)	143.1, 143.1, 61.8
(α, β, γ) (°)	90.0, 90.0, 120.0
Resolution range (Å)	19.9-3.15 (3.21-3.15)
Unique reflections	13276 (633)
Completeness (%)	99.9 (99.4)
Multiplicity	3.6 (3.1)
R _{merge}	18.8 (57.6)
Ι/σ	6.3 (2.0)

Table S1. Diffraction statistics for the iBox-PDZ2-PAK4cat fusion crystal.

Movie S1. Fluorescent time-lapse comparison of COS-7 cells co-transfected with GFP-PDZ2 and iBox-PAK4cat constructs. iBox-PAK4cat-DTRL, left, or iBox-PAK4catDTRA, right.