
**Supplementary Information** 

Organoid Cultures from Normal and Cancer-Prone Human Breast Tissues Preserve Complex Epithelial Lineages

Rosenbluth et al.

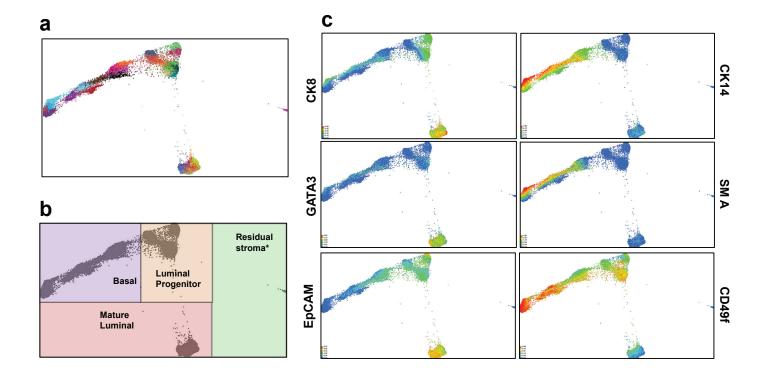




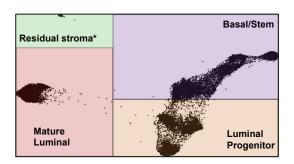
**Supplementary Figure 1.** Examples of marker expression in mammary organoids. **a** Examples of high ER expression (top panels) and low ER expression (bottom panels) as assessed by immuno-fluorescence and confocal microscopy for the indicated markers, scale bar =  $100 \ \mu m$ . **b** Flow cytometry analysis of ALDH activity in the luminal progenitor cells (EpCAM<sup>+</sup> CD49f<sup>+</sup>) from three organoid cultures. ALDH activity is compared to a negative control using a specific inhibitor of ALDH. The percentage of ALDH<sup>+</sup> and ALDH<sup>-</sup> luminal progenitor cells is shown for each culture. **c** Immunohistochemistry for ERBB3 in luminal progenitor-type organoids in the indicated cultures, counterstained with Hematoxylin, scale bar =  $100 \ \mu m$ .

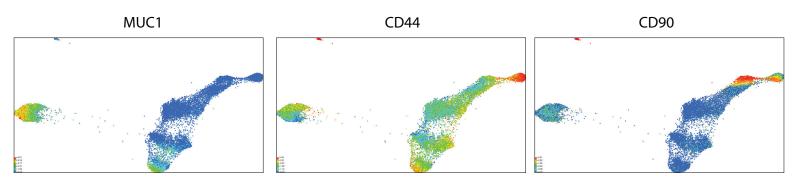

| <u>Epithelial</u> | <u>Mesenchymal</u> | <u>Hormone</u>                      | <u>Other</u> |
|-------------------|--------------------|-------------------------------------|--------------|
| EPCAM             | EGFR               | <b>Receptors</b>                    | Ki67         |
| CD24              | CD44               | Estrogen Receptor                   | p53          |
| MUC1              | vimentin           | alpha                               | CD54         |
| ANPEP             | CD90               | Androgen Receptor<br>Glucocorticoid | CD73         |
| CD133             | SMA                | Receptor                            | CD95         |
| Laminin5          | Galectin1          | Progesterone                        | CD47         |
| GATA3             | CD10               | Receptor beta                       | H3K27Me3     |
| Anxa8             | EPCR               | Stroma                              | RANK         |
| CK8               |                    | CD31                                | BRCA1        |
| HER2              |                    | CD140b                              | HLAabc       |
| CD49f             |                    | CD45                                | HSP27        |
| CK14              |                    |                                     | TSPAN8       |
| CK17              |                    |                                     |              |

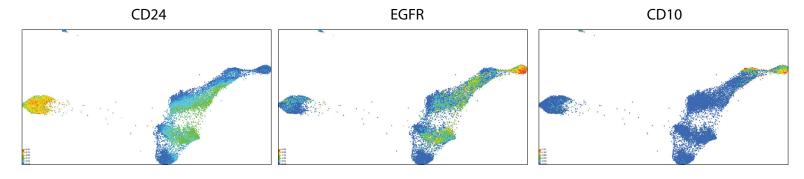
**Supplementary Figure 2.** CyTOF antibody panel for analysis of human mammary lineages. Antibodies recognizing the proteins listed in each of the 5 categories (see Supplementary Table 4) were validated, conjugated to heavy metals, and used for CyTOF profiling of human mammary cells.

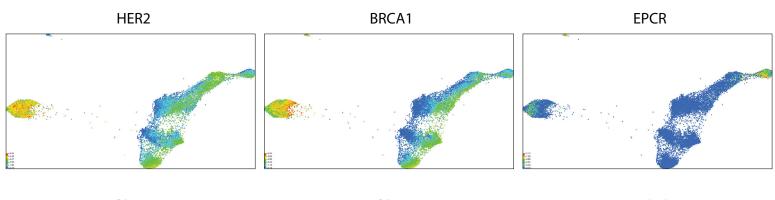

| ates                    | in and     |      | ۲<br>۲    | The gas             | ſ        |
|-------------------------|------------|------|-----------|---------------------|----------|
|                         | 2          | 8    |           | guilding<br>the set | 12       |
| 13                      | 14         | 15   | 16        |                     | 18       |
| <b>B B</b>              | 20         | 21 e | 3 B<br>22 | 2                   | Y        |
| opposite<br>approximate | 2          |      | 3         |                     | Martin 5 |
|                         | 969<br>7   | 19 1 | e 8       | 8 8 8               | 12       |
| ष्ट्री क्रि<br>13       | Â.4        | 15   | 8 8       | A 3<br>17           | 8<br>18  |
| 19                      | <b>7</b> 8 | 21   | Å_22      | 11                  | Y        |
|                         |            |      |           |                     |          |

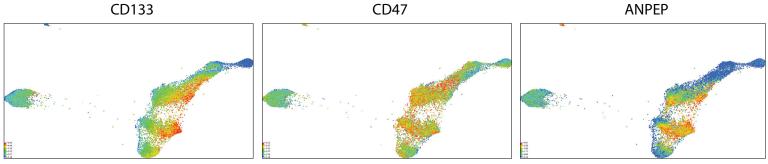
**Supplementary Figure 3.** Karyotype analysis of two cultures used in the CyTOF analysis. Examples of metaphase spreads for two organoid cultures, ORG37 and ORG38, demonstrating normal diploid karyotypes.


b





**Supplementary Figure 4.** Heat map of X-shift-defined clusters from 12 organoid cultures analyzed by CyTOF. CyTOF analysis was performed on 12 organoid cultures derived from normal human mammary tissues. Clustering of cells was performed using X-shift to define 29 distinct clusters (y-axis). The heat map displays the abundance of each of the markers in the panel (x-axis) (red = higher expression level, blue = lower expression level).

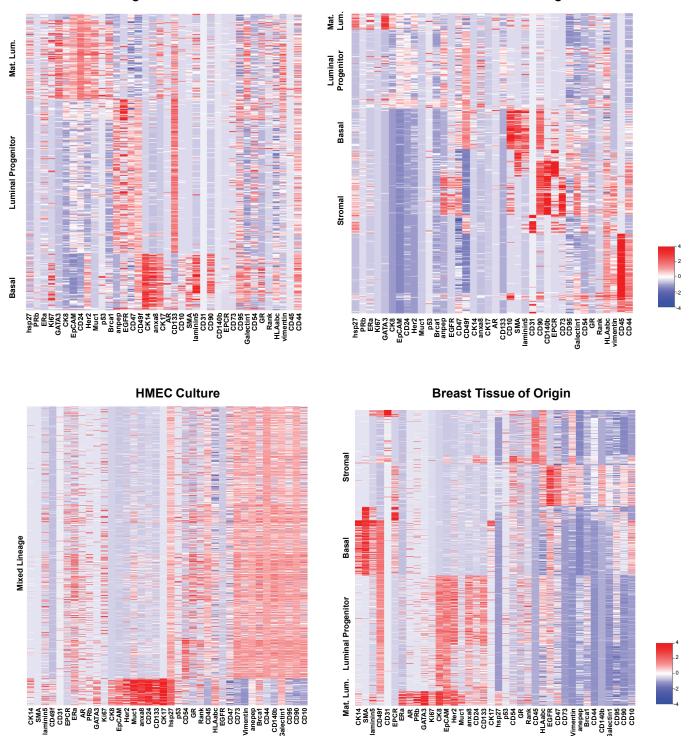




**Supplementary Figure 5.** Re-analysis of CyTOF data after exclusion of BRCA1 and p53 from the CyTOF panel. CyTOF data were re-analyzed as in Figure 3, but excluding the markers BRCA1 and p53 from the X-shift clustering. Global clustering pattern nearly identical to Figure 3 was obtained, as shown by force-directed layout in **a-c**. Note that the minor re-orientation of the clusters relative to Figure 3 is intrinsic to each X-shift re-run and does not reflect changes in the global clustering pattern. **a** Cells are colored by X-shift-defined cluster. **b** Cell types as determined by expression of markers such as those shown in **c**. **c** The levels of the indicated markers are shown, with warmer colors demonstrating higher protein expression levels.



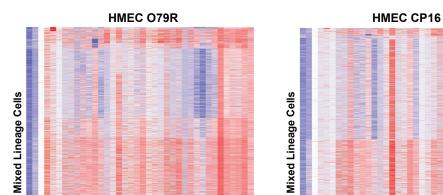




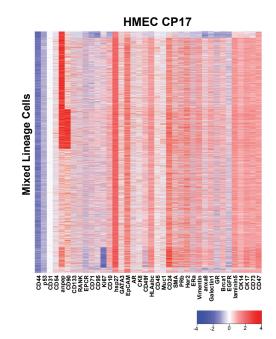





**Supplementary Figure 6.** Expression levels of select markers of interest from CyTOF analysis of 12 organoid cultures. Force-directed layouts of the 12 organoid cultures analyzed by CyTOF in Figure 3. In each panel, each dot represents one cell, and colors represent the expression levels of the indicated markers (warmer color = higher expression level).


Organoid Culture

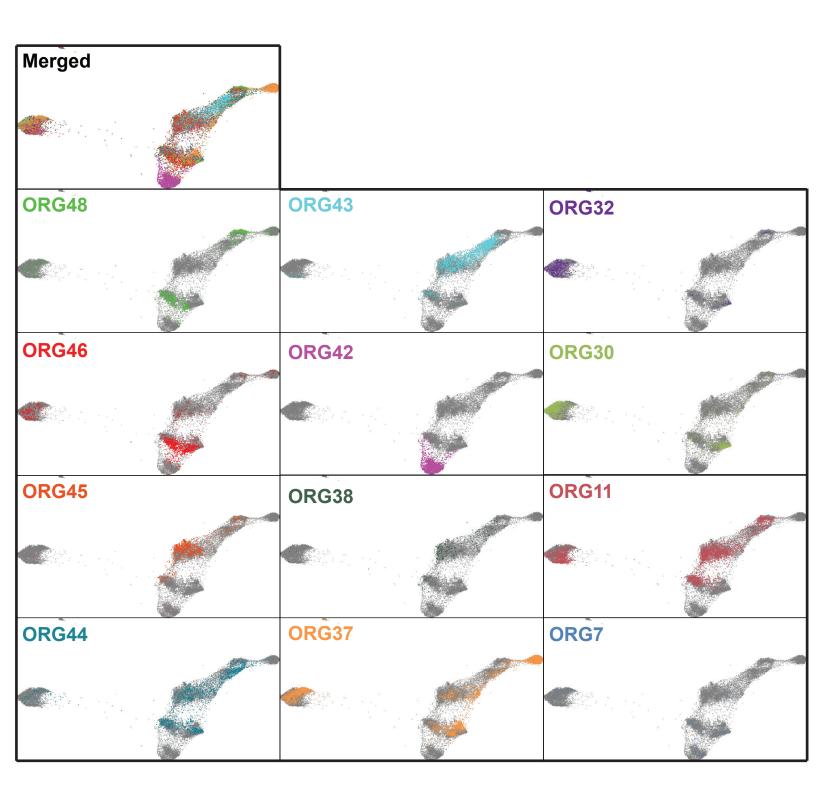
**Breast Tissue of Origin** 



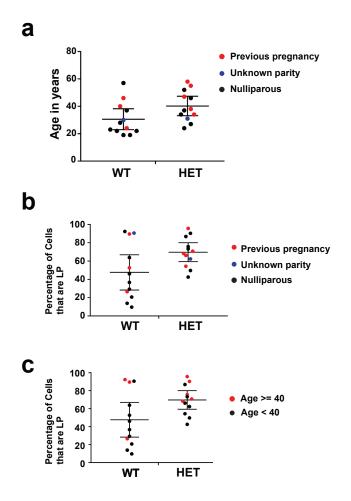

**Supplementary Figure 7.** CyTOF analysis of cultures and matched tissues of origin. Heat maps show individual cells along the y-axis, ordered by X-shift clustering. Identified cell types are labelled. Markers in the CyTOF panel are on the x-axis. **a** Single-cell heat map of a representative tissue (right) and its matched organoid culture (left). **b** Single-cell heat map of representative tissue (right) and its matched HMEC culture (left).

b

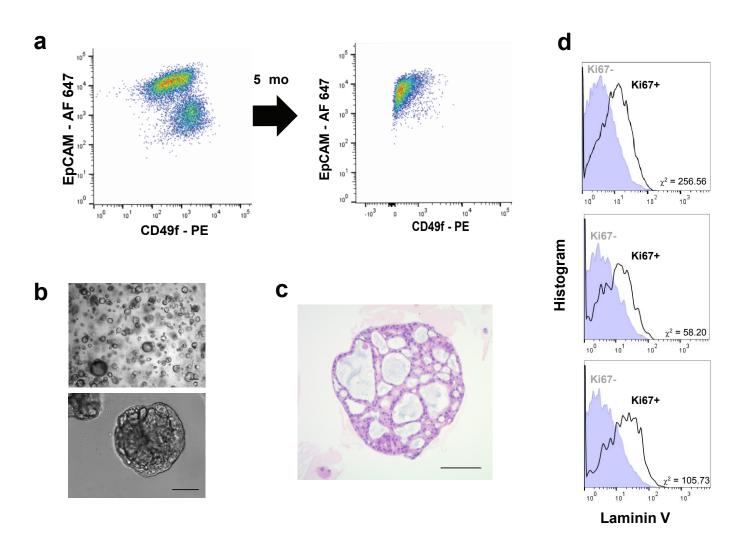



C D 4 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 5 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7 C D 7



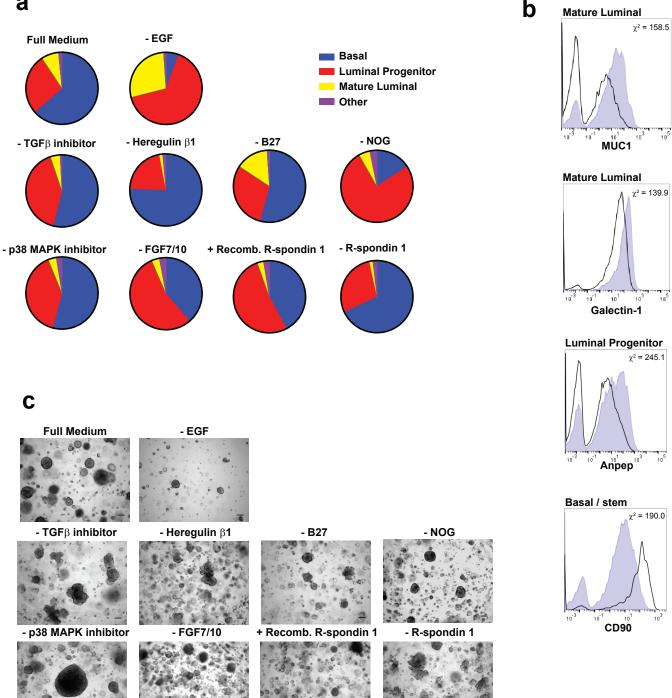



**Supplementary Figure 8.** CyTOF analysis of immortalized mammary cell lines. **a** Single-cell heat maps showing three immortalized HMEC cell lines grown in standard two-dimensional culture. **b** MCF10A cells were grown in matrigel to form acinar structures. Acini were dissociated to single cells and analyzed by CyTOF. A single-cell heat map is depicted.


a



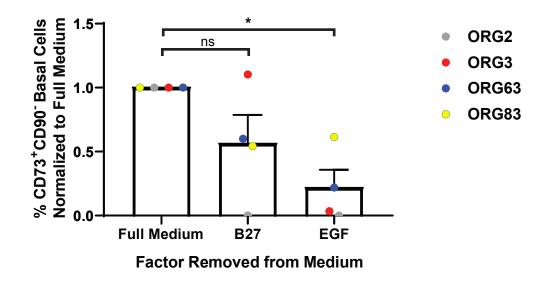
**Supplementary Figure 9.** Patient-to-patient heterogeneity in organoid cultures. Force-directed layouts of the 12 organoid cultures analyzed by CyTOF in Figure 3. Each dot represents one cell, and in each panel the cells from the indicated culture are colored.




**Supplementary Figure 10.** Assessment of parity and age in set of wild-type and BRCA1-mutated organoid cultures. **a** Ages of patient donors of the organoid cultures shown in Figure 7. Patients with (HET) or without (WT) a known mutation in *BRCA1* are indicated, and previous pregnancy status is indicated by color. **b** Overlay of parity on the % of cells that are Luminal Progenitor (LP), extracted from Figure 7b. **c** Overlay of age on the % of cells that are LP, extracted from Figure 7b. Mean with 95% confidence interval is shown. For each genotype, n = 12 biologically independent organoid cultures were assessed over the course of 12 independent experiments.



**Supplementary Figure 11.** Mature luminal cell-predominant organoid cultures. **a** Cells from an organoid culture, ORG32, were stained with EpCAM and CD49f and analyzed by flow cytometry. Analysis was repeated after five additional months in culture. **b** Bright field microscopy images of mature luminal cell-predominant culture indicating a high proportion of acinar and multi-lumen structures (representative of n = 2). Scale bar = 100  $\mu$ m. **c** H & E stained section of a multi-lumen organoid structure exhibiting similarity to Usual Ductal Hyperplasia (representative of n = 2). Scale bar = 100  $\mu$ m. **d** Laminin-V levels of Ki67<sup>-</sup> versus Ki67<sup>+</sup> cells, as measured by CyTOF, are shown by histogram for three organoid cultures, with  $\chi^2$  values shown.


а



□-EGF

Full Medium

Supplementary Figure 12. Individual components of the organoid medium affect mammary lineage distribution in organoid cultures. For a representative mammary organoid culture, ORG63, organoids were established in the presence or absence of the indicated growth factors or signaling pathway inhibitors. a CyTOF analyses were performed on the series of cultures, and the percentages of cells in the mature luminal (ML), luminal progenitor (LP), and basal populations were determined, as shown by pie chart. **b** Marker expression levels are shown in the histograms as measured by CyTOF for mature luminal, luminal progenitor, or basal/stem cell populations of ORG63, as indicated. Shaded histogram indicates culture grown in full medium, and clear histogram indicates culture grown in the absence of EGF.  $\chi^2$  values shown. c Bright field images at low power of organoid cultures grown in full medium, medium with recombinant R-spondin 1 (control for - R-spondin 1 condition), or medium lacking the indicated factor (representative of n = 4). Scale bar = 100  $\mu$ m.



**Supplementary Figure 13.** Assessment of a CD73<sup>+</sup> CD90<sup>-</sup> population in organoid cultures established in full medium, or medium lacking either B27 or EGF. The percentage of CD73<sup>+</sup> CD90<sup>-</sup> cells in the basal (EpCAM<sup>-</sup> CD49f<sup>+</sup>) population was determined as measured by CyTOF for the indicated cultures, values shown are normalized to the percentage of CD73<sup>+</sup> CD90<sup>-</sup> cells in the basal population grown in full medium. Mean and standard error of the mean are shown. \* is p = 0.012 and ns is not significant by Student's t-test, two-tailed.

| Assessment of branching or budding-<br>type organoids |                                                 |                                 |  |  |
|-------------------------------------------------------|-------------------------------------------------|---------------------------------|--|--|
| Culture                                               | Number of<br>branching/<br>budding<br>organoids | Number of<br>total<br>organoids |  |  |
| ORG3                                                  | 6                                               | 479                             |  |  |
| ORG63                                                 | 3                                               | 346                             |  |  |
| ORG83                                                 | 5                                               | 553                             |  |  |

| Numbers of ER+ organoids and cells in culture |                               |       |                        |                          |  |  |
|-----------------------------------------------|-------------------------------|-------|------------------------|--------------------------|--|--|
| Culture                                       | Number of<br>ER+<br>organoids | total | Number of<br>ER+ cells | Number of<br>total cells |  |  |
| ORG23                                         | 13                            |       | 22                     | 743                      |  |  |
| ORG9                                          | 40                            | 70    | 66                     | 217                      |  |  |
| ORG60                                         | 24                            | 81    | 53                     | 477                      |  |  |
| ORG63                                         | 45                            | 244   | 239                    | 3692                     |  |  |
| ORG66                                         | 67                            | 162   | 7                      | 758                      |  |  |

| Calculation of organoid forming efficiency |         |         |                                   |                              |                                   |                              |
|--------------------------------------------|---------|---------|-----------------------------------|------------------------------|-----------------------------------|------------------------------|
|                                            | Mature  | Luminal | Luminal Progenitor                |                              | Basal / Stem                      |                              |
|                                            | •       |         | Organoid<br>Forming<br>Efficiency | Number of<br>sorted<br>cells | Organoid<br>Forming<br>Efficiency | Number of<br>sorted<br>cells |
| ORG7                                       | 1 in 4  | 19579   | 1 in 11                           | 33485                        | 1 in 302                          | 10571                        |
| ORG46                                      | 1 in 9  | 5239    | 1 in 14                           | 22377                        | 0 in 241                          | 241                          |
| ORG41                                      | 1 in 9  | 1201    | 1 in 14                           | 9354                         | 0 in 24                           | 24                           |
| ORG43                                      | 1 in 50 | 495     | 1 in 3                            | 3760                         | 1 in 16                           | 334                          |
| ORG60                                      | 1 in 9  | 14717   | 1 in 8                            | 8200                         | 1 in 34                           | 57370                        |

| Antibodies us  | ed for mass cytometry |              |               |               |       |
|----------------|-----------------------|--------------|---------------|---------------|-------|
| Marker         | Company               | Catalog no.  | Origin        | Location      | Metal |
| CK8            | DSHB                  | TROMA        | rat           | intracellular | 145Nd |
| BRCA1          | from D. Livingston    | MS110        | mouse         | intracellular | 169Tm |
| TSPAN8         | Biolegend             | 363702       | mouse         | extracellular | 169Tm |
| CD47           | Fluidigm              | 3209004B     | mouse         | extracellular | 209Bi |
| CD49f          | Biolegend             | 313602       | mouse         | extracellular | 155Gd |
| vimentin       | Cell signaling        | 5741         | rabbit        | intracellular | 174Yb |
| AR             | Cell signaling        | 5153         | rabbit        | intracellular | 143Nd |
| HER2           | Cell signaling        | 2165         | rabbit        | intracellular | 176Yb |
| GR             | Cell signaling        | 3660         | rabbit        | intracellular | 156Gd |
| PR B           | Cell signaling        | 3157         | rabbit        | intracellular | 164Dy |
| p53            | Cell signaling        | 2524         | mouse         | intracellular | 165Ho |
| CD95           | Miltenyi Biotec       | 130-108-066  | mouse 1gG1k   | extracellular | 168Er |
| CD133          | Miltenyi Biotec       | 130-108-062  | mouse lgG1k   | extracellular | 173Yb |
| GATA3          | Miltenyi Biotec       | 130-108-061  | human lgG1    | intracellular | 141Pr |
| Ki67           | Miltenyi Biotec       | 130-108-060  | human lgG1    | intracellular | 146Nd |
| CD45           | Fluidigm              | 3089005B     | human lgG1    | extracellular | 089Y  |
| CD31           | Biolegend             | 303102       | mouse lgG1, k | extracellular | 113ln |
| ER a           | Cell signaling        | 13258        | rabbit        | intracellular | 172Yb |
| Parp (cleaved) | ebioscience           | 14-6668-80   | mouse         | intracellular | 159Tb |
| SMA            | ebioscience           | 14-9760-80   | mouse         | intracellular | 160Gd |
| EpCAM          | Biolegend             | 324202       | mouse         | extracellular | 150Nd |
| CD24           | Biolegend             | 311102       | mouse         | extracellular | 158Gd |
| EPCR           | Biolegend             | 351902       | rat           | extracellular | 148Nd |
| MUC1           | Biolegend             | 355602       | mouse lgG1    | extracellular | 149Sm |
| LAM5           | DSHB                  | P3H9         | mouse         | intracellular | 162Dy |
| HSP27          | DSHB                  | CPTC-HSPB1-3 | mouse lgG2b   | intracellular | 153Eu |
| ANXA8          | R & D Systems         | AF8105-SP    | sheep         | intracellular | 161Dy |
| Galectin-1     | R & D Systems         | AF1152-SP    | goat          | intracellular | 171Yb |
| CK14           | R & D Systems         | MAB3164-SP   | mouse lgG2a   | intracellular | 144Nd |
| HLA-ABC        | Biolegend             | 311402       | mouse         | intracellular | 167Er |
| CD10           | Biolegend             | 312202       | mouse         | extracellular | 163Dy |
| CD44           | Biolegend             | 103001       | rat           | extracellular | 115ln |
| CD73           | Biolegend             | 344002       | mouse         | extracellular | 170Er |
| CD90           | Biolegend             | 328101       | mouse         | extracellular | 152Sm |
| ANPEP          | Biolegend             | 301701       | mouse         | extracellular | 151Eu |
| CD54           | Biolegend             | 353101       | mouse         | extracellular | 142Nd |
| EGFR           | Biolegend             | 352901       | mouse         | extracellular | 147Sm |
| CK17           | Cell signaling        | 12509        | rabbit        | intracellular | 166Er |
| RANK           | Amgen                 | N-1H8        | mouse         | extracellular | 175Lu |
| H3K27Me3       | Cell signaling        | 9733S        | rabbit        | intracellular | 175Lu |
| CD140b         | Cell signaling        | 4564         | rabbit        | intracellular | 154Sm |