Supplementary Information for

Antiferromagnetic textures in BiFeO₃ controlled by strain and electric field

A. Haykal^{1*}, J. Fischer^{2*}, W. Akhtar^{1***}, J.-Y. Chauleau³, D. Sando⁴, A. Finco¹, F. Godel², Y.A. Birkhölzer⁵
C. Carrétéro², N. Jaouen⁶, M. Bibes², M. Viret³, S. Fusil^{2,7**}, V. Jacques¹, V. Garcia²

¹Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
 ²Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
 ³SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
 ⁴School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
 ⁵Department of Inorganic Materials Science, Faculty of Science and Technology and MESA+ Institute
 for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
 ⁶Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
 ⁷Université d'Evry, Université Paris-Saclay, Evry, France

*These authors contributed equally to this work **e-mail: stephane.fusil@cnrs-thales.fr ***Now at Department of Physics, JMI, Central University, New Delhi, India

Supplementary Figure 1. Reciprocal space maps on (103), (013), ($\overline{113}$) substrate peaks. BFO, STO, DSO, TSO, GSO and SSO stand for BiFeO₃, SrTiO₃, DyScO₃, TbScO₃, GdScO₃ and SmScO₃, respectively. While the red colour label is assigned to the substrate peaks, the green and blue colour labels stand for the two elastic domains of the BiFeO₃ thin films. All the films display similar structural properties despite the large strain variations from SrTiO₃ to SmScO₃. The r. l. u. units of the in-plane and out-of-plane wavevectors, $\mathbf{Q}_{x,y}$ and \mathbf{Q}_{z} , respectively, stand for reciprocal lattice units.

Out-of-plane PFM

In-plane PFM

Supplementary Figure 2. Striped ferroelectric domains in BiFeO₃ with 71-degree domain walls. a, Out-of-plane PFM phase image of a BiFeO₃ film grown on TbScO₃(110). The homogeneous bright signal indicates a downward polarisation. b, Corresponding in-plane PFM phase image. The stripeddomain structure corresponds to two polarisation variants (grey arrows). c, Sketch of the 71-degree domain wall structure.

Supplementary Figure 3. Determining the 71-degree domain walls structure with vectorial piezoresponse force microscopy. Illustration for BiFeO₃ thin films grown on SrRuO₃/DyScO₃(110). In position 1, the cantilever is perpendicular to the ferroelectric stripes. The out-of-plane PFM phase is homogeneous and bright, indicating only downward polarisation variants. The in-plane PFM phase shows alternating bright and dark domains with equal amplitudes. As sketched on the right panel, this could correspond to (P_1 , P_4) variants in the bright regions and (P_2 , P_3) variants in the dark regions. In position 2, the cantilever is parallel to (P_2 , P_4), thus these two variants do not respond. The in-plane PFM phase and amplitude show that only one family of domains responds and its phase signal is thus bright. This signal corresponds to the P_3 variant (right of the cantilever). In position 3, the cantilever is parallel to (P_1 , P_3). The in-plane PFM phase and amplitude show that only one family of domains responds to the P_4 variant (left of the cantilever) and the P_3 variant does not respond as it is parallel to the cantilever. Putting all this information together allows us to conclude that the striped-domain structure then corresponds to alternated P_3 and P_4 domains with 71-degree domain walls. All the PFM images are 2.5 × 2.5 μ m². The dashed red line emphasizes the complementarity between each signal in the three different positions.

Supplementary Figure 4. Artificial stripes designed by PFM on BiFeO₃ thin films grown on SrTiO₃. a, Out-of-plane PFM phase change from domains pointing downwards (bright contrast) to domains pointing upwards (dark contrast). **b**,**c**, This writing scheme is accompanied by a change in the arrangement of the in-plane polarisation variants from the native mosaic-like pattern (**b**) to a stripe-domain pattern (**c**).

Supplementary Figure 5. Antenna and markers defined to spatially correlate PFM and NV imaging. Antenna and markers defined by laser lithography on the BiFeO₃ samples. (top) Optical microscope image. (bottom) $17 \times 8.5 \ \mu m^2$ PFM images in the scanned area defined by the dashed yellow square.

Supplementary Figure 6. Magnetic textures in BiFeO₃ **thin films grown on SmScO**₃**.** NV magnetometry images at different locations of the BiFeO₃ film grown on SrRuO₃/SmScO₃(110).

Supplementary Figure 7. Single ferroelectric domains and the corresponding magnetic textures. a-d (top) In-plane PFM phase images of written areas and (bottom) corresponding NV images for BiFeO₃ films grown on (a) DyScO₃, (b) TbScO₃, (c) GdScO₃, and (d) SmScO₃ substrates. The dashed squares in the PFM images show the sizes of the corresponding NV images.

Supplementary Figure 8. Microdiffraction on pristine and written areas of a BiFeO₃ thin film grown on DyScO₃. a, $2\theta - \omega$ XRD scans of the (004) peaks and b-d, RSMs around the (013) substrate peak collected from a pristine area (b), a written area with high domain wall (DW) density (c), and a written area with low domain wall density (d). The dotted horizontal lines are guides to the eye to aid comparison. The insets in panels (b-d) show $4 \times 4 \mu m^2$ in-plane PFM phase images of the areas measured by microdiffraction. All three areas show identical structural properties despite the large variations in domain configurations, ruling out strain differences between artificially-written and asgrown striped-domains.