Screening of Natural Products and Approved Oncology Drug Libraries for Activity against *Clostridioides difficile*

Rusha Pal¹and Mohamed N. Seleem^{1,2*}

¹ Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA

² Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA

*Corresponding Author: Mohamed N. Seleem Department of Comparative Pathobiology Purdue University College of Veterinary Medicine 625 Harrison St., West Lafayette, IN, 47907 Phone: 765-494-0763 Fax: 765-496-2627 Table S1: Bacterial strains used in the study.

Bacterial strains / ID number	Source and comments		
P2 /NR-32883	Toxin producing strain isolated from patient stool in western Pennsylvania, USA in 2001		
P6/ NR-32886	Toxin producing strain isolated from the stool of a patient suffering from recurrent <i>C. difficile</i> infection in western Pennsylvania, USA in 2001		
P7/ NR-32887	Toxin producing strain procured from patient stool in western Pennsylvania, USA in 2001		
P8/ NR-32888	Toxin producing strain procured from patient stool in western Pennsylvania, USA in 2001		
P9/ NR-32889	Toxigenic strain procured from fecal matter of a patient suffering from recurrent <i>C. difficile</i> infection in western Pennsylvania, USA in 2001		
P19/ NR-32895	Toxigenic strain procured from fecal matter of a patient suffering from recurrent <i>C. difficile</i> infection in western Pennsylvania, USA in 2005		
Isolate 1/NR-13427	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 2/ NR-13428	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 4/ NR-13430	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 6/ NR-13432	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 9/ NR-13435	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 1/ NR-13436	Isolated from a patient diagnosed with CDI in the Mid-Atlantic region of the USA in 2008/2009		
Isolate 20100502/ NR- 49277	Isolated in 2010 from the fecal matter of an elderly male patient diagnosed with community-associated (CA) <i>C. difficile</i> infection in Colorado, USA		
Isolate 20100207/ NR- 49278	Isolated in 2010 from the stool of an elderly adult male patient diagnosed with healthcare-associated (HA) <i>C. difficile</i> infection in New York, USA		
Isolate 20100211/ NR- 49279	Isolated in 2010 from the stool sample of a pediatric female patient diagnosed with community-associated (CA) <i>C. difficile</i> infection in New York, USA		
Isolate 20120016/ NR- 49282	Isolated in 2011 from the stool sample of a pediatric female patient diagnosed with community-associated (CA) <i>C. difficile</i> infection in New York, USA		

Isolate 20110999/NR- 49286	Isolated in 2011 from the stool sample of an elderly female patier diagnosed with healthcare-associated (HA) <i>C. difficile</i> infection i western/midwestern, USA	
Isolate 20110870/ NR- 49288	Isolated in 2011 from the stool sample of a young adult female patient diagnosed with healthcare associated (HA) <i>C. difficile</i> infection in Tennessee, USA	
Isolate 20120187/ NR- 49290	Isolated in 2011 from the stool sample of an elderly adult male patient with healthcare-associated (HA) <i>C. difficile</i> infection in Tennessee, USA	
ATCC BAA 1870	Presence of $cdtB^{a}$, $tcdA^{b}$, and $tcdB^{c}$ genes, classified as toxinotype IIIB, ribotype 027	

^a cdtB= C. *difficile* binary toxin ^b tcdA= C. *difficile* toxin A gene ^c tcdB= C. *difficile* toxin B gene

Table S2: Initial screening data, chemical structure, and description of the hits for the approved oncology drugs set V library against *C. difficile* ATCC BAA 1807.

	Compound name	Chemical structure	MIC (IIM)	Description and use
1	Ponatinib		16	Tyrosine kinase receptor inhibitor that used in the therapy of refractory chronic myelogenous leukemia (CML).
2	Regorafenib		8	Oral multi- kinase inhibitor used in the therapy of refractory metastatic colorectal cancer, hepatocellular carcinoma and gastrointestinal stromal tumor.

3	Sorafenib	$HN \rightarrow O$	8	Protein kinase inhibitor used in the therapy of advanced renal cell, liver, and thyroid cancer.
4	Mitomycin C	$HN \xrightarrow{V} HN \xrightarrow{V} H12$	0.5	Antineoplastic antibiotic used in stomach and pancreatic cancers.
5	Tamoxifen citrate	$HO \rightarrow O \rightarrow$	16	Selective estrogen receptor modulator used in malignant glioma and other cancers overexpressing protein kinase C expression.

Table S3: Initial screening data, chemical structure, and description of the hits for the natural product set III library against *C. difficile* ATCC BAA 1807:

Compound	Chamical structure	MIC	Description and use
name	Chemical structure	(µM)	Description and use

4	Valinomycin	HN HN NH NH NH NH NH NH NH NH NH NH NH N	32	Antibiotic
5	Pomiferin		32	A prenylated isoflavone found in <i>Maclura pomifera</i>
6	Aristolochin		32	Monocarboxylic acid found in <i>Aristolochia</i> sp.

7	Mangostin		16	Antineoplastic antibiotic isolated from the stems of <i>Cratoxylum</i> <i>cochinchinense</i> ,
8	Siomycin A		≤0.25	Antibiotic, antineoplastic
9	Lonchocarpic acid	O OH OH	32	Isoflavonoid

10	Tetrocarcin A, sodium salt	$ \begin{array}{c} H^{0} \downarrow \downarrow \downarrow \downarrow \downarrow 0 H \\ \circ \downarrow \downarrow \downarrow \downarrow 0 H \\ \circ \downarrow \downarrow \downarrow \downarrow 0 H \\ \circ \downarrow \downarrow \downarrow 0 + 0 + 0 \\ \circ \downarrow \downarrow \downarrow \downarrow 0 + 0 \\ \circ \downarrow \downarrow \downarrow 0 + 0 \\ \circ \downarrow \downarrow \downarrow \downarrow 0 + 0 \\ \circ \downarrow \downarrow \downarrow 0 + 0 \\ \circ \downarrow \downarrow \downarrow 0 + 0 \\ \circ \downarrow 0 + 0 \\ \bullet $	0.5	Antitumor antibiotics
11	Michellamine B	HO HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ HZ	16	Novel plant alkaloid inhibiting HIV virus
12	Rifamycin		≤0.25	Natural antibiotic

16	Levomycin		≤0.25	Polypeptide antibiotic
17	Gangetin	HO	8	Hexane extract from the root of the plant <i>Desmodium</i> <i>gangeticum</i>