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Appendix A: Linearization of coastline using SSWD data 

 To linearize the Pacific coastline, we fit two linear regressions and calculated distance 

along the linear projection by mapping each point to the closest point on the line, then converting 

line distance from degrees latitude and longitude to kilometers. Because the width of a degree 

longitude varies substantially with latitude, we used separate values for each line calculated by 

averaging from the start and end points. This linearization is intended to facilitate a simple and 

purely qualitative comparison of SSWD observations with our model results, and does not 

incorporate the actual coastal geography, oceanographic conditions relevant to dispersal distance, 

or complex features such as Puget Sound.  The same linearization was used to create averaged 

SST and along-shore current velocity values from the ROMS data. 

 

 

 

 

 



Appendix B: Population and disease dynamics 

EnvDr-Q-SEI model: 

 The class dynamics for the EnvDr-Q-SEI epidemiological model are described by the 

following set of discrete-time equations: 

 

𝑆𝑖,𝑡+1 = 𝜎𝑆𝑆𝑖,𝑡𝑒−𝛽𝑄𝑖,𝑡 + 𝑅(𝑁𝑖,𝑡)     (B.1a) 

𝐸𝑖,𝑡+1 = 𝜎𝐸𝐸𝑖,𝑡(1 − 𝜁(𝐷𝐷𝑖,𝑡)) + 𝜎𝑆
𝜏𝑆𝑖,𝑡−𝜏(1 − 𝑒−𝛽𝑄𝑖,𝑡−𝜏)  (B.1b) 

𝐼𝑖,𝑡+1  = 𝜎𝐼𝐼𝑖,𝑡 + 𝜁(𝐷𝐷𝑖,𝑡)𝜎𝐸𝐸𝑖,𝑡     (B.1c) 

 

where σx is daily survival proportion of class x (assumed to not vary with temperature), τ is the 

delay between initial exposure and membership in the E class (defined as an individual with an 

established but asymptomatic infection releasing propagules), β indicates pathogen-susceptible 

infection rate, and ζ(DDi,t) indicates transition proportion from E to I (fully symptomatic 

infection) based on background transition and/or cumulative degree-days within the cell (with 

the complement, 1- ζ(DDi,t), representing the proportion of E individuals that remain 

asymptomatic). R(Ni,t) is a recruitment term limited by local population: 

 

𝑅(𝑁𝑖,𝑡) = {

     0          𝑖𝑓 𝑁𝑖,𝑡 > 𝐾𝑖       

  𝐾𝑖 − 𝑁𝑖,𝑡  𝑖𝑓 𝐾𝑖 − 𝑁𝑖,𝑡 < 𝑅𝑖

    𝑅𝑖           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

    (B.2a) 

𝑁𝑖,𝑡 = 𝑆𝑖,𝑡 + 𝐸𝑖,𝑡 + 𝐼𝑖,𝑡       (B.2b) 

 

where Ki is carrying capacity within the cell and Ri is a constant daily recruitment. Both cell-

specific values are set to default values (K and R), then scaled by region (Table C2). 



 

Qi,t indicates pathogen input into cell i: 

 

𝑄𝑖,𝑡 = ∑ 𝜌(𝑗, 𝑖, 𝑡)(𝜑𝐸(𝐸𝑗,𝑡 + 𝛾𝐼𝑗,𝑡) + 𝜎𝑄𝑄𝑗,𝑡−1)𝐶
𝑗=1    (B.3) 

 

where C is the number of cells, φE is the per-capita pathogen production for class E, γ is a scaling 

constant for the increased propagule production of class I, and σQ is the persistence parameter for 

propagules within the cell. The proportion arriving from a particular cell j into cell i is computed 

as: 

 

𝜌(𝑗, 𝑖, 𝑡) = ∫
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     (B.4) 

 

with vj,t indicating mean along-shore current near cell j at time t, cell width cw, and standard 

deviation θQ. The dispersal kernel used here combines a long-range asymmetric transport process 

(the along-shore current) with a short-range Gaussian diffusion-advection process (the specific 

destination cell post-transport). Note that Eq. B3 evaluates all possible source cells for a 

destination cell and thus Eq. B4 inverts the typical dispersal calculation. To simplify, we assume 

that the propagule source is a single point at the midpoint of the source cell and that the current 

at the source cell represents conditions for the entire time step. We then integrate across the 

destination cell width to convert distance into cell-to-cell transport. Our model makes the 

assumption that a virion – or other infectious agent – is not absorbed after it contacts a host (see 

below for implications). 



 Transition from E to I occurs within a cell at a constant proportion pBG (=0 for the purely 

environmentally-driven model) or when cumulative degree-days DDi,t approach or exceed a 

threshold: 

 

𝜁(𝐷𝐷𝑖,𝑡) = {
                 1                          𝑖𝑓 𝐷𝐷𝑖,𝑡 ≥ 𝐷𝐷𝑡ℎ𝑟𝑒𝑠ℎ

max [𝑝𝐵𝐺 , (
𝐷𝐷𝑖,𝑡

𝐷𝐷𝑡ℎ𝑟𝑒𝑠ℎ
)𝑐]   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               

.  (B.5) 

 

The scaling exponent c governs the degree to which partial transition occurs as stress levels 

approach the threshold. Degree-days accumulate exponentially above a local threshold for 

extreme temperatures: 

 

𝐷𝐷𝑖,𝑡 = 𝐷𝐷𝑖,𝑡−1 + {

𝑎𝐴𝑖,𝑡
𝑏        𝑓𝑜𝑟 𝑇𝑖,𝑡 ≥ 𝑇𝑚𝑖𝑛                                           

− 𝐷𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟 𝑓𝑜𝑟 𝑇𝑖,𝑡 < 𝑇𝑚𝑖𝑛 𝑎𝑛𝑑 𝐷𝐷𝑖,𝑡−1 ≥ 𝐷𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟

− 𝐷𝐷𝑖,𝑡−1     𝑓𝑜𝑟 𝑇𝑖,𝑡 < 𝑇𝑚𝑖𝑛 𝑎𝑛𝑑 𝐷𝐷𝑖,𝑡−1 < 𝐷𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟

  (B.6) 

 

where a and b are scaling parameters, Ai,t indicates temperature anomaly in cell i at time t, Tmin 

indicates the minimum absolute temperature for temperature anomalies to be considered 

stressful, and DDrecover indicates the maximum amount of accumulated stress recovered on non-

anomalous days. Alternative forms of the stress function are detailed in Appendix D. 

Both Ti,t and Ai,t, the daily mean sea surface temperature and temperature anomaly in cell 

i at time t, are calculated using ROMS data for the Pacific coast from January 1st, 2013 through 

December 31st, 201549. Anomaly is defined as deviation from local mean seasonal cycle as 

determined using 1999-2011 climate data. We linearized the data as described in Appendix A 

and averaged across gaps to match the spatial layout of the model (2500 km coastline in 5 km 



cells).  We used the same approach to transform the daily along-shore surface current vi,t from 

the ROMS model. 

 

Const-Q-SEI model 

 The Const-Q-SEI model is a special case of the EnvDr-Q-SEI model for which pBG=1.0 

and τ=20. Consequently, exposed S class individuals develop a full infection after 20 days, 

transforming to E class, then transition to I after a single timestep. 

 

EnvInf-Q-SEI model 

 The EnvInf-Q-SEI model represents an extension of Const-Q-SEI for which temperature 

affects the speed of disease dynamics, but does not trigger transition from E to I. The first 

temperature effect is through the strength of the disease transmission term β (see Eqs. B1a & 

B1b). In Ben-Horin et al. 45, abalone withering syndrome prevalence was found to increase with 

daily temperature fluctuation. Inspired by this, in the EnvInf-Q-SEI model the rate of susceptible 

infection is not constant but assumed to vary linearly with scaled temperature variance: 

 

𝛽(∆𝑇𝑖,𝑡) = 𝛽∆𝑇𝑖,𝑡        (B.7) 

 

where ∆Ti,t is a 5-time-step moving variance average scaled such that the mean daily value across 

the simulation =0.5, or 50% of the transmission rate for Const-Q-SEI, but ranges from close to 0 

on cold days to 10x or greater on the hottest days. 

 Secondly, disease progression is accelerated during periods of high temperature39,41. For 

Const-Q-SEI, there is a constant delay transitioning from S to E which, for the default value of 



τ=20, always takes 20 timesteps to complete. For EnvInf-Q-SEI, however, higher temperatures 

speed up this transition: disease progression doubles for every 3 °C above the Tcold threshold, to a 

maximum of 4x faster at 6+ °C. Thus, a single high temperature day advances the disease 2-4x as 

fast as a cold day, and the complete S->E transition could take anywhere from 5-20 timesteps 

depending on the proportion of hot and cold days in the incubation period following initial 

infection.  

 

Virion loss 

Virion loss upon sea star contact is likely a relatively small source of pathogen loss 

compared to other sources. Furthermore, because each cell in our model has similar host density, 

there would be no variation in relative loss rate due to this mechanism. If we were modeling 

filter feeders, loss due to host contact might be quite high, causing us to over-estimate infection 

rates. This assumption would have been most problematic for dose-dependent exposure in a filter 

feeder with variable density66. In such a case, the assumed loss of virions upon infection in dense 

host populations could keep virion densities below the infective dose, preventing disease spread. 

Such inverse density dependence could set up spatially patchy mass mortalities that impact low 

density host populations, but this scenario does not appear to fit SSWD. 

 

 

 

 

 

 



Appendix C: Model parameters 

Table C1: Model parameters 

Parameters Symbol Value Range testeda  

Demographic     

   Daily survival of S  σS 0.99992 +/- 25% of rateb c 

   Daily survival of E  σE 0.99992 +/- 25% of rateb c 

   Daily survival of I  σI 0.135 +/- 25% of rateb d 

   Daily recruitment  R 0.2 ind km-1 day-1 +/- 25% e 

   Default within-cell carrying capacity K 103 ind km-1 - f 

Disease     

   Infection parameter  β 10-1 prop.-1 10-4 - 101 g 

   Delay between exposure and full infection τ 20 days 5 - 25 h 

   Pathogen propagule production for E  φE 0.1 prop. ind-1 +/- 25% g 

   Scaling constant for class I production γ 50 10 - 100 g 

   Pathogen propagule persistence σQ (0.075)4 0.0054 – 0.954 i 

   Constant E-to-I transition proportion pBG 0.0-1.0 -  

Spatial and environmental     

   Length of coastline  C 100 cells -  

   Cell size cw 5 km -  

   Propagule dispersal standard deviation  θQ 5 km +/- 25%  

   Cumulative degree-day threshold  DDthresh 500 °C - j 

   Degree-day linear scaling parameter a 1.0 - j 

   Degree-day exponential scaling parameter b 1.5 0 - 2 j 

   Degree-day recovery value DDrecovery 5 °C 0 - 10 k 

   Degree-day partial transition exponent c 3 - l 

   Minimum stress temperature Tmin 12 °C - m 

   Maximum infection delay temperature Tcold 9 °C - m 

a. The results of the range sensitivity tests are given in Appendix D.  

b. The +/- sensitivity range was applied to the equivalent mortality rate, rather than the survival 

parameter itself. 

c. Daily survival of the S and E classes is based on an estimated 34.1 year lifespan from Menge 

1975. 

d. Daily survival of the I class is based on an average time until death of 12 hours, in keeping 

with the rapid decline observed in the field. 



e. Daily recruitment of mature individuals is approximated using the 0.0152 ind/m2 estimate 

from Menge 1975 and the total habitat per cell (see below), scaled using data from Miner et al. 

2018. 

f. Default carrying capacity was set to 10,000, equivalent to the 0.52 ind/m2 estimate from 

Menge 1975 multiplied by a 5,000 m coastline per cell and approximately 3.85 m of available 

vertical habitat. This was then scaled per-cell by the relative densities seen in Miner et al. 2018. 

g. The infection parameter was chosen by comparing MLE values across several orders of 

magnitude and choosing the best compromise value between density and prevalence likelihoods 

across the three models. 

h. Maximum delay roughly equal to mean 9 °C mortality time in Kohl et al. 2016. 

i. Pathogen propagule persistence was set to 7.5% survival after each 6-hour period (Hewson et 

al. 2018), raised to the 4th power to approximate daily persistence.  We tested a broad range of 

possible 6-hour persistence values. 

j. The various stress accumulation parameters were set by comparing MLE values across several 

different possible accumulation functions and choosing the values which produced the best 

compromise between density and prevalence likelihood (see Appendix D). 

k. The per-day stress recovery during non-anomalous conditions was set to be approximately 

equal to the stress from a moderate 3 °C anomaly. 

l. We added partial transition of some individuals as the stress threshold was approached to avoid 

an artifical knife-edge transition threshold.  We chose a simple scaling exponent to allow 

approximately 20% of individuals transition at about 75% of the stress threshold, but less than 

2% at 50%. 

m. Chosen as the cold-water and warm-water experimental temperatures in Kohl et al. 2016. 

 

 
Table C2: Regional density and recruitment (approximated from Miner et al. 2018) 

Region 
Start of 

regiona 

Relative initial 

density (2013)b 

Relative 

recruitmentb 

2014 

depletion 

2015 

depletion 

CA - South 0 km 0.25 1x 99% 99% 

CA - Central 750 km 0.5 20x 75% 75% 

CA - North 1200 km 0.5 50x 30% 75% 

OR 1750 km 1.0 50x 30% 75% 

WA 2150 km 1.0 20x 30% 75% 

a. Southern boundary of the region as measured in km from the southern boundary of our 

simulated coastline. Approximated to fit cell divisions. 

b. Density and recruitment levels relative to the other regions. 

 

 

 

 



Appendix D: Sensitivity to stress, outbreak, and model parameters 

Note: in all referenced parameter sensitivity tables except Table D6, italics are used to indicate 

the results for the parameter default and bold is used to indicate the minimal MLE value across 

parameter values for each category. The three MLE categories are: density, the MLE for 

assessing relative decline; prevalence, the MLE for assessing disease presence/absence; and, for 

overall comparison purposes, combined, the sum of density and prevalence (see Appendix E for 

MLE calculation details). 

 

Stress-accumulation parameters 

 In our model, we make two broad assumptions about how temperature-related stress 

accumulation affects sea stars. Firstly, as shown in Equation B.6, we assume that stress 

accumulates non-linearly using an exponential function (repeated here for convenience): 

 

𝐷𝐷 = 𝑎𝐴𝑖,𝑡
𝑏 𝑓𝑜𝑟 𝑇𝑖,𝑡 > 𝑇𝑚𝑖𝑛      (D.1) 

 

where a and b are scaling parameters. Although some studies of intertidal organisms have shown 

a non-linear response to temperature (e.g., oyster mortality57 and mussel growth58), the precise 

form of the relationship is unclear and may differ for sea stars. Coral bleaching, for example, is 

often modeled with stress as constant above a threshold (i.e., a step-function). Consequently, we 

tested several different possible stress functions to assess model sensitivity to the mechanism of 

stress accumulation (Figure D1). We found that the overall goodness of fit for the EnvDr-Q-SEI 

was relatively unaffected by the shape of the stress function (Table D1). 



 Secondly, we assumed that accumulated stress only affected the transition from the 

asymptomatic E class to the symptomatic I class. In reality, stress is likely to increase mortality 

for the uninfected S class as well. To test the importance of this assumption, we altered the 

constant survival terms σS and σE as follows: 

 

𝜎𝑖,𝑥,𝑡 = 𝜎𝑥 − 𝑚 ∙ 𝐷𝐷𝑖,𝑡      (D.2) 

 

where x indicates class, m is a constant stress-related mortality modifier, and DDi,t is the 

accumulated degree-days within cell i at time t. By varying m, we showed that increasing stress-

related mortality shifted the model with minimal MLE values from EnvInf-Q-SEI to EnvDr-Q-

SEI and, at very high levels, to Const-Q-SEI (Table D2). 

 

Parameter estimation 

 We used MLE values to select model parameters that were hard to estimate from field 

data or experimental work. We chose the infection parameter β (Table D3), infection delay τ 

(Table D4), and initial infection location (Table D5) based on which value best balanced 

likelihoods for the density and prevalence data. Note that relative model support, and thus our 

overall results, stays consistent across most parameter values.  In Table D6 we compare model 

likelihoods at different data aggregation levels, and show that the models are closest at the 

medium resolution we chose. The EnvInf-Q-SEI model is favored in both categories at finer 

aggregation and the EnvDr-Q-SEI model has a better prevalence MLE value at coarser 

aggregation. Note that MLEs cannot be compared across different aggregation levels.  

 



Hypercube sampling of model parameters 

 Because this is an exploratory rather than explanatory model, we did not use specific 

real-world disease parameters and were instead focused on a qualitative comparison between the 

output and the SSWD data. However, the results could still depend on the specific parameters 

chosen rather than the structure of the model. We estimated demographic parameters for P. 

ochraceus from Menge67 and set epidemiological parameters from experimental results and by 

selecting parameters to minimize the MLE values (Tables D3-5). To assess sensitivity to changes 

in the demographic and epidemiological parameters of the core disease model, we ran a Latin 

hypercube sampling analysis68, allowing parameters to freely vary by +/- 25% (or across a 

specified range; see Table C1). The results from this analysis show that, although variance is 

introduced and there is a wider spread for the possible MLE values (especially for the density 

MLE and Const-Q-SEI; Figure D2a), the relative support for each model variant remains 

consistent across almost all parameter combinations (Figure D2b) and our overall conclusions 

remain the same. Note the relative lack of points in the lower-left corner of Fig. D2b (the 

“negative/negative” region), which shows that there were very few instances for which Const-Q-

SEI was better on both metrics than the more environmentally-dependent models (though the 

reverse is often true), or EnvInf-Q-SEI than EnvDr-Q-SEI. In most instances, there was a trade-

off between density and prevalence likelihood.  

We used partial rank correlation coefficient (PRCC) analysis to determine which 

parameters significantly affected the relative difference between the models (Table D7). For each 

model comparison, a positive PRCC value indicates a parameter which positively correlates with 

a better fit for the more environmentally-dependent choice and a negative value indicates the 

reverse. The most significant parameters are those associated with propagule production (φE and 



γ) and survival (σQ), and stress recovery (DDRecovery). For prevalence likelihood, increased 

propagule production favors EnvInf-Q-SEI over Const-Q-SEI but Const-Q-SEI and EnvInf-Q-

SEI over EnvDr-Q-SEI.  These patterns are partially reversed for density likelihood and are 

mostly the same for propagule survival. Increasing stress recovery favors EnvDr-Q-SEI for 

density likelihood, while the opposite is true for prevalence likelihood. 

 

 

Figure D1. Stress-accumulation functions for different parameter combinations. The horizontal 

axis indicates the size of the temperature anomaly, and the vertical axis shows the accumulation 

of ‘degree-day’ stress. The lines indicate different combinations of scaling parameters, with a=1 

unless otherwise indicated. 

 

 

 

 

 

 



 

Figure D2. Absolute and relative MLE sensitivity to epidemiological parameters using 

hypercube sampling. For each of 500 sampling instances, ten parameters (recruitment, 

transmission strength, propagule dispersal, mortality rate of each stage, propagule production for 

infectious stages, and daily stress recovery) were independently sampled from uniform Latin 

hypercube distributions given in Table C1 (typically +/- 25% of default value). The default 

values for each scenario are shown by the larger, white shapes. a) The x-axis indicates the 

density MLE value for each model instance, and the y-axis indicates prevalence MLE values. b) 

The x-axis indicates the difference in density MLE values between the two models indicated, and 

the y-axis indicates the difference in prevalence MLE values. A positive value means that the 

first model was less supported by the data than the second model.  

 

Table D1: MLE values for EnvDr -Q-SEI with different stress accumulation parameters 

Stress 

func. 
Density for DDthresh= Prevalence for DDthresh= 

 500 °C 250 °C 100 °C 500 °C 250 °C 100 °C 

b=2 149 153 69 3868 3378 3272 

b=1.5 586 133 65 4138 3708 3416 

b=1 521 105 56 4879 4167 3662 

b=0, a=2 271 627 128 5065 4276 3515 

 

 



Table D2: MLE values for varying levels of stress-related mortality on uninfected individuals 

Window Density for Prevalence for 

 Const EnvInf EnvDr Const EnvInf EnvDr 

m=0 17444 -0.05 586 4330 3873 4138 

m=0.005 300 71 15 4656 4080 4160 

m=0.01 53 80 41 4778 4583 4191 

m=0.02 44 94 64 5058 4774 4301 

m=0.05 91 113 92 5204 5680 5914 

 

 

Table D3: MLE values for different values of infection rate 

β  Density for Prevalence for 

 Const EnvInf EnvDr Const EnvInf EnvDr 

10 20793 -69 548 4346 2532 4145 

1 16301 -59 546 4317 3479 4146 

.1 17444 -0.05 586 4330 3873 4138 

.01 1631 -23 -12 5107 6322 4224 

.001 7898 16205 32 6233 7480 6326 

.0001 8654 4461 2592 6963 6298 7335 

 

 

Table D4: MLE values for different values of infection delay 

Max delay Density for Prevalence for 

 Const EnvInf Const EnvInf 

5 35665 97 1914 2056 

10 32933 60 3371 2528 

15 27395 21 4578 3567 

20 17444 -0.05 4330 3873 

25 13558 -23 5189 4112 

 
 

Table D5: MLE values for different initial infection locations 

Initial 

cell 
Density for Prevalence for 

 Const EnvInf Const EnvInf 

125 11767 -41 4694 4340 

250 17444 -0.05 4330 3873 

375 26545 31 3406 2257 

 

 

 

 

 

 



Table D6: MLE values for different aggregation window dimensions 

Window Density for Prevalence for 

 Const EnvInf EnvDr Const EnvInf EnvDr 

25 km x 

7 days 
43080 73 821 4917 4366 4427 

50 km x 

14 days 
17444 -0.05 586 4330 3873 4138 

100 km 

x 30 

days 

9135 15 317 7070 6483 5437 

 
 

Table D7: PRCC values and significance for MLE differences under hypercube sampling 

Param Const - EnvInf EnvInf - EnvDr Const - EnvDr 

 Density Prev. Density Prev. Density Prev. 

R -0.001 -0.040 -0.023 0.032 -0.014 0.053 

β 0.121** 0.054 0.108* -0.079 -0.046 -0.096* 

σS 0.022 0.088* 0.007 0.137** -0.009 0.081 

σE -0.004 0.012 -0.007 0.052 -0.010 0.070 

σI 0.133** 0.039 0.127** -0.063 -0.067 -0.125** 

σQ 0.731*** -0.356*** 0.717*** -0.841*** 0.125** -0.857*** 

φE 0.186*** 0.064 0.190*** -0.098* 0.035 -0.199*** 

γ 0.538*** 0.373*** 0.521*** -0.185*** -0.153*** -0.536*** 

θQ 0.027 0.050 0.013 0.152*** -0.029 0.105* 

DDRecovery - - 0.083 -0.863*** 0.882*** -0.903*** 

*=p<0.05; **=p<0.01; ***=p<0.001 
 

 

 

 

 

 

 

 

 

 



Appendix E: Maximum Likelihood Estimation 

 To form a likelihood-based approach to be maximized as model validation, we derive a 

likelihood function to describe the likelihood of each of the three models given the empirical 

data. This involves comparing model outputs to empirical findings matched both temporally and 

spatially. We define a likelihood function as: 

 

𝐿(𝜃|𝑥) = ∑ ∑ log (𝑝𝜃𝑖𝑗
(𝑥𝑖𝑗))𝑇

𝑗=1
𝑁
𝑖=1      (E.1) 

 

where θ denotes the model, x denotes empirical data, and i and j indicate cell and time period, 

respectively. We evaluated this likelihood function for both the density of sea stars and the 

prevalence of disease among the sea stars. Let ρij be the observed density of sea stars in 

temporospatial window (i,j). Empirical and model density estimates approximate a lognormal 

distribution, so the likelihood function can be given as: 

 

𝑝𝜃𝑖𝑗
(𝑥𝑖𝑗)𝑑𝑒𝑛𝑠 =

1

𝜌𝑘(log (1+
𝜎𝑖𝑗

2

𝜇𝑖𝑗
2 ))

1
2√2𝜋

𝑒

−(log(1+𝜌𝑖𝑗)−log(1+𝜇𝑖𝑗 √1+
𝜎𝑖𝑗

2

𝜇𝑖𝑗
2⁄ ))2

2(log(1+
𝜎𝑖𝑗

2

𝜇𝑖𝑗
2 ))

 (E.2) 

 

Because empirical density estimates occur on a yearly basis, the temporal window is a year in 

length. The model is evaluated in two-week increments, and μij represents the mean of the 26 

model density estimates for each year. Likewise, σij is the standard deviation of the 26 model 

density estimates in each yearly window. This likelihood function evaluates relative decline by 

scaling the initial model density to match that of empirical density estimates in 2013.  



 SSWD prevalence in each temporospatial window is given by the model as πij. Each 

window is also assigned a 0 or 1 for empirical prevalence δij, indicating whether SSWD was 

identified in that window. The number of surveys taken in each window can be denoted nij and 

the area surveyed per survey as α. The expression used to calculate the likelihood function for 

SSWD prevalence is as follows: 

 

𝑝𝜃𝑖𝑗
(𝑥𝑖𝑗)𝑝𝑟𝑒𝑣 = {

1 − (1 − 𝜋𝑖𝑗)𝛼𝑛𝑖𝑗𝜆𝑖𝑗 ,   𝑖𝑓 𝛿𝑖𝑗 = 1 

(1 − 𝜋𝑖𝑗)𝛼𝑛𝑖𝑗𝜆𝑖𝑗 ,          𝑖𝑓 𝛿𝑖𝑗 = 0
   (E.6) 

 

Maximizing the resulting likelihood functions for density and prevalence, or minimizing -L(θ|x), 

gives the best fitting model to the empirical data. 

 

 

 

 


