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Figure S1 – Structural ensembles and target data used for HDX ensemble refinement testing. 
Artificial HDX data (solid arrows) were generated for each exchangeable amide for a mixed 
ensemble corresponding to 60% closed and 40% open TeaA. These HDX data were used as the 
target for ensemble refinement of the complete test ensemble, which includes closed, open, 
and decoy semi-open frames (dashed lines).  
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Figure S2 – Residues included in target HDX data for TeaA with reduced levels of sequence 
coverage. The sequence is colored according to the protein domain region as defined in Fig. 
1A. Bars underneath the sequence indicate the residues included in the target data at 100% 
coverage (dark brown) and at approximately 80, 60, 40, or 20% coverage (from light brown to 
orange to yellow). See Methods section in the main text for more details. 
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Figure S3 – Structural variability in the reference simulation of TeaA and selection of 
reference structures. The root mean square deviation (RMSD) of the Ca atoms from the 
reference closed conformation is plotted against time for the unbiased trajectory from 
bias-exchange metadynamics simulations performed by Marinelli & coworkers (1). Trajectory 
frames were taken at 1 ps intervals. The frame at 41.546 ns was arbitrarily selected as the 
reference closed configuration, among many frames with similarly-low RMSD from the holo 
structure. Visual analysis confirmed that this configuration adequately represented the two 
key features of closed structures, namely a small inter-lobe distance and a kinked a9 helix. 
The frame at 44.428 ns has the highest RMSD to the closed conformation and was therefore 
selected as the reference open configuration. The distribution of the RMSD values to the 
closed structure is shown in the panel on the right. 
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Figure S4 – Relationship between g, 𝑊app, and the agreement with the target data during HDX 
reweighting analyses in which the target TeaA HDX data is resolved at the individual residue 
level. Circles indicate independent reweighting experiments. (A) The mean square deviation 
(MSD) between the predicted and target HDX values increases as the value of g decreases. 
Little improvement in MSD is observed for values of	𝛾 below ca. 10*+, suggesting that, beyond 
this point, the initial HDX data lies within the uncertainty distribution 𝜌err that is defined by g. 
(B) For the same reweighting analyses, the reduction in MSD is coupled to an increase in 𝑊app 
until a plateau is reached for MSD values below ca. 10–7. (C) and (D) Optimized values of the 
𝛽$ (black) and 𝛽# (blue) parameters after reweighting do not change as a function of g or MSD. 
The target HDX-MS data was generated using 𝛽$ = 2.0 and 𝛽# = 0.35. 
  



 6 

 
 
Figure S5 – Structural variance in the clustered ensembles of TeaA obtained after ensemble 
reweighting by HDX data resolved at the individual residue level. The backbone root mean 
squared fluctuation (RMSF) was averaged over each residue for all conformations in the two 
main clusters (orange and cyan), or in the outliers (gray). 
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Figure S6 – Effect of overlap (i.e., redundancy) in the peptide segment residue ranges on 
reweighting. The decision plot shows the work applied during reweighting against the MSD of 
the reweighted ensemble to the target HDX data. Circles indicate independent reweighting 
experiments. Target data with overlapping 10-residue segments were defined such that 
peptides maintained 100% sequence coverage, but overlapped in approximately 5-residue 
intervals (e.g., residues 1-10, 6-15, 10-19, 15-24…). Reweighting using overlapping segments 
(blue) initially shows similar performance to reweighting with non-overlapping 10-residue 
segment data (light brown), but trends towards the results obtained with shorter, 5-residue, 
peptide segments (dark brown), owing to the additional information content of target data 
with peptide redundancy. 
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Figure S7 – Effect of targeting the HDX reweighting to ensembles with varying populations of 
the two major states. Target ensembles are defined as percentage mixtures of closed and 
open states. The 60-40 mixture is the target ensemble used in the main text. All data assume 
10-residue long peptide segments. (A) Decision plot showing the apparent work applied 
during reweighting, 𝑊app, against the MSD of the reweighted ensemble to the target HDX data. 
As the target population of closed states decreases from 80% to 5%, greater values of 𝑊app 
are required to achieve an agreement of MSD = 10–6 (dashed line). Reweighting to mixtures 
with 80% and 95% closed states required approximately equal 𝑊app, as the large increase in 
closed state population compared to the reference ensemble was balanced by a 
comparatively smaller increase in open state population. In all cases the reference ensemble 
populations were 37.2 : 1.6 : 61.2 for closed : open : decoy states. (B) RMSD distributions, with 
reference to the closed TeaA conformation, after reweighting. Trends in the target ensembles 
are at least qualitatively recreated across all datasets. 
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Figure S8 – Effects of varying the 𝛽 parameters on predicted HDX values obtained using the 
Best and Vendruscolo forward model for TeaA. Contours indicate the mean square deviation 
(MSD) of the predicted HDX to the reference HDX values calculated with 𝛽$ = 2.0 and 𝛽# = 
0.35. The artificial TeaA HDX data generated with 100% sequence coverage in 10-residue 
peptide segments were used as reference HDX values. 
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Table S1 – HDX model parameters, 𝛽# and 𝛽$, after reweighting to original, low-error and 
high-error target datasets, with 𝑊.// = 1.64 kJ mol–1 

Dataset *Target 𝛽0  *Target 𝛽1  †Observed 𝛽0 †Observed 𝛽1  
Original 2.0 0.35 2.02 0.349 
Low error 7.0 0.20 2.61 0.336 
High error 2.0 0.20 1.67 0.343 

* Values of 𝛽$ and 𝛽# used to calculate target HDX-MS data for the 𝛼9 helix of TeaA; HDX-MS 
data for the remaining residues were calculated using the default parameters, 𝛽$ = 2.0 and 
𝛽# = 0.35. † Values of 𝛽$ and 𝛽# obtained by optimization during the reweighting procedure. 
 

 

Table S2 – Agreement of reweighted ensembles and target data for noisy and zero-noise 
datasets, measured as MSD. Each row reflects a cross-validation of a reweighted ensemble 
(trained model) against multiple target HDX data (test datasets). The accuracy of each 
reweighted ensemble to its own training data is shown in bold. 

Training 
dataset for 
reweighting 

Test dataset for MSD calculation 

No noise 𝜎 = 0.1 𝜎 = 0.01 

1 min 60 min 1 min 60 min 1 min 60 min 

No noise 1.02 x 10–6 8.06 x 10–7 1.34 x 10–2 7.68 x 10–3 1.30 x 10–4 7.71 x 10–5 

𝜎 = 0.1 2.11 x 10–4 3.40 x 10–4 1.25 x 10–2 7.12 x 10–3 4.02 x 10–4 4.33 x 10–4 

𝜎 = 0.01 3.32 x 10–5 3.32 x 10–5 1.33 x 10–2 7.97 x 10–3 8.73 x 10–5 5.52 x 10–5 
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Text S1 – Cross-validation experiments with HDXer reweighted ensembles 

Overfitting is an unwanted, but common, pitfall of methodologies designed to construct or 

refine structural ensembles based on limited-resolution data. We therefore evaluated the 

potential for overfitting in the context of HDXer. In the article enclosed we highlighted how 

the apparent work (𝑊.//) as a function of the MSD provides an effective descriptor of the 

reweighting process; when this apparent work increases in magnitude with no significant 

improvement in MSD, overfitting is likely the cause. Nevertheless, it is unlikely that monitoring 

of a single metric will unambiguously preclude overfitting, and thus complementary 

approaches, such as cross validation experiments, are desirable. To illustrate possible 

applications of HDXer for cross-validation, we first defined training and test HDX-MS datasets. 

Specifically, we treated the reweighted ensemble as if it were a trained model with a given 

level of accuracy (e.g., MSD = 1 x 10–6) to the target HDX data that were used for the training 

(reweighting) of the ensemble. In the absence of overfitting, a statistically-robust reweighted 

ensemble should have similar accuracy when compared to the training set data as to test data 

that were not included in the reweighting process, but were sampled from the same 

underlying distribution. Our first cross-validation test investigated the reweighting performed 

with the data comprised of 10-residue segments and with 100% coverage (Fig. 4). We 

generated new test HDX-MS data at two timepoints (5 and 30 min) that were not used in the 

HDXer reweighting, which was instead “trained” with HDX data at 0.167, 1, 10, 60, and 120 

min timepoints. The reweighted ensemble had similar agreement with the test HDX dataset 

(MSD = 3.01 x 10–6 and 1.04 x 10–6 for the 5- and 30-minute timepoints, respectively) as with 

the training dataset (MSD = 1 x 10–6). This result reassuringly suggests that the final ensemble 

had not been overfitted in this case.  

With HDX-MS experiments, multiple test datasets can be easily acquired, for example from 

multiple independent repeat samples and multiple independent deuteration timepoints. A 

robustly-reweighted ensemble should agree similarly to all test data that are sampled from 

the same protein structural distribution, provided that the level of uncertainty of the test data 

is similar to that of the training data. Conversely, if test and training data feature different 

levels of uncertainty, in a robustly-reweighted ensemble the accuracy in reproducing each 

data set must be comparable with the relative error level. Our second cross-validation 

therefore involved test HDX datasets with a different level of experimental noise to the training 

sets included in the reweighting. Specifically, using the final ensembles obtained after 

reweighting to noisy target data (Fig. 6B), we calculated the MSD to the zero-noise target data 

at the 1- and 60-min timepoints. Vice-versa, using the final ensemble after reweighting to 



 12 

zero-noise target data, we also calculated the MSD to the noisy target data at the 1- and 60-

min timepoints. In each cross-validation case, the reweighted ensembles exhibit different 

levels of agreement to the test datasets than to the training dataset included in the HDXer 

reweighting. Nonetheless, these results are fully compatible with the noise level in each data 

set, underscoring that the reweighted ensembles were generated to a level of precision 

consistent with the uncertainty present in the target data (Table S2). 

These tests demonstrate how cross-validation may be used to assess whether reweighted 

ensembles suffer from overfitting. Of course, this application is easily characterized here, in 

part owing to our use of artificial datasets with controlled sources of error. In practice, 

identifying potential sources of overfitting (e.g., experimental datapoints with differing 

uncertainty levels, simulated ensembles that do not adequately describe the variance of the 

experimental data, etc.) might require extensive investigation. Here, we limit ourselves to 

highlighting this potential use of HDX-MS data, and we propose that similar approaches will 

be advantageous when applied to real experimental target data that require thorough cross-

validation of reweighted structural ensembles. 
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Movie S1 – Artificially-generated morph between the closed and open representative 
structures of TeaA. TeaA is shown in cartoon representation (wheat), and the ectoine 
substrate from the closed configuration is shown in ball and stick representation (peach). 
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