1 Appendix (Table of content):

- 2 1. Supplemental Figure S1 to S11 and Legends
- 3 2. Supplemental Table S1
- 4

5 Follistatin is a novel therapeutic target and biomarker in FLT3/ITD acute myeloid

6 leukemia

7 Running Title: FST as biomarker and therapeutic target

8 Bai-Liang He,^{1, 2, #} Ning Yang,^{1, #} Cheuk Him Man,¹ Nelson Ka-Lam Ng,¹ Chae-Yin

9 Cher,¹ Ho-Ching Leung,¹ Leo Lai-Hok Kan,¹ Bowie Yik-Ling Cheng,¹ Stephen Sze-

10 Yuen Lam,¹ Michelle Lu-Lu Wang,¹ Chun-Xiao Zhang,¹ Hin Kwok,³ Grace Cheng,³

11 Rakesh Sharma,³ Alvin Chun-Hang Ma,⁴ Chi-Wai Eric So,⁵ Yok-Lam Kwong,¹ and

12 Anskar Yu-Hung Leung^{1, *}

¹Division of Hematology, Department of Medicine, Li Ka Shing Faculty of Medicine, 13 The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; 14 ²Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated 15 Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; ³Centre 16 for Genomic Sciences, 6th Floor, The Hong Kong Jackey Club Building for 17 Interdisciplinary Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, 18 Hong Kong SAR, China; ⁴Department of Health Technology and Informatics, The 19 Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; 20 ⁵Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of 21 Hematological Medicine, King's College London, Denmark Hill Campus, London SE5 22 9NU, UK. [#]Contributed equally to this work. 23

24 *Correspondence: Anskar Yu-Hung Leung (M.D./Ph.D.)

25 Address: Room K418, K Block, Queen Mary Hospital, Pokfulam, Hong Kong. Tel:

- 26 (852)22553347; Fax: (852)29741165; Email: ayhleung@hku.hk
- 27

28 Figure S1

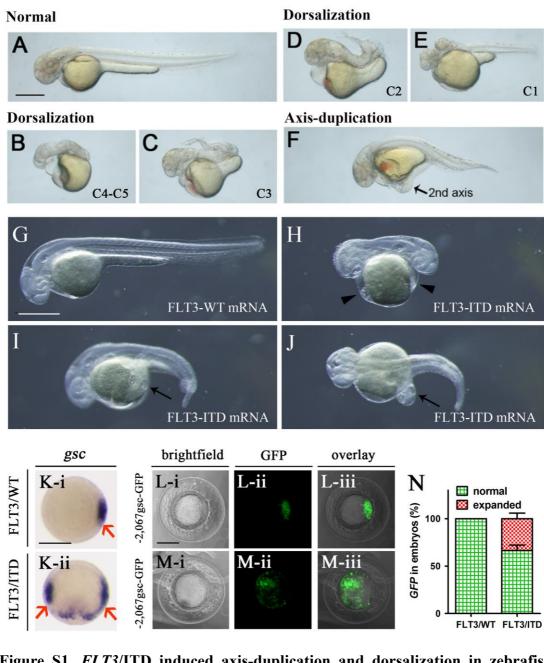


Figure S1. *FLT3*/ITD induced axis-duplication and dorsalization in zebrafish
embryos.

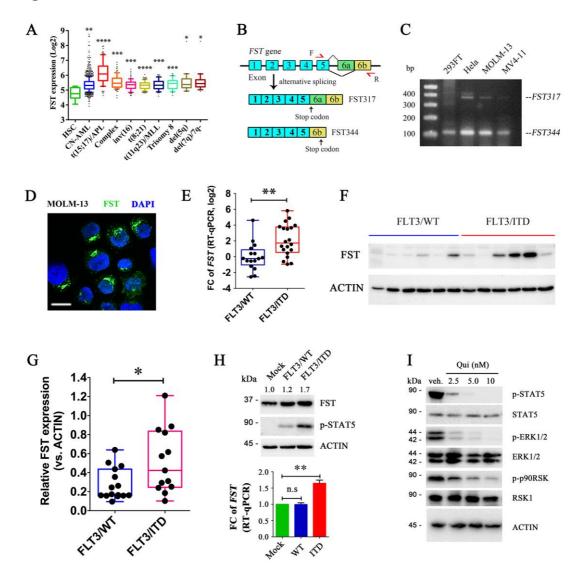
A-F Definition of dorsalization (C5-C1) and axis-duplication phenotype in early
zebrafish embryogenesis.

34 G-J The double-head and axis-duplication phenotype in *FLT3*/ITD mRNA-injected

35	zebrafish embryos at 2dpf. FLT3/WT mRNA-injected embryo was used as control.
36	The arrows indicated the second head and the arrowheads indicated the duplicated
37	hearts in the embryos.
38	K-N The expansion of Spemann's organizer after FLT3/ITD overexpression was

40 M) at 6 hpf. 50 pg plasmid vector, in which GFP expression is driven by zebrafish *gsc*

detected by WISH of gsc (K, red arrows) and a -2,067gsc-GFP reporter assay (L and


41 promoter (-2,067), was co-injected with *FLT3/WT* or *FLT3/ITD* mRNA (150 pg) in

zebrafish embryo at one-cell stage, respectively. The expression of GFP in the
FLT3/WT- and FLT3/ITD-injected embryos (N) was used as a real-time *in vivo*surrogate marker for *gsc* expression and Spemann's organizer at 6 hpf.

45 Data information: Scale bar = $500 \mu m$. All experiments were performed in triplicates.

46

39

50 Figure S2. FST was upregulated in FLT3/ITD-mutated AML.

A *In-silico* analysis of *FST* expression in normal HSC and different subtypes of AML
 using BloodSpot program. The whiskers, boxes, and central lines represents the 10th to-90th percentile, 25th-to-75th percentile, and the 50th percentile (median), respectively.

B-C Schematic representation of alternative splicing of *FST* gene (B) and RT-PCR of

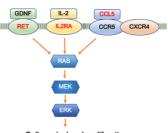
FST317 and *FST344* expression in 293FT, Hela, MOLM-13 and MV4-11 cells (C).

56 **D** Detection of endogenous FST in MOLM-13 cells by immunofluorescence. Scale bar 57 = $10 \mu m$.

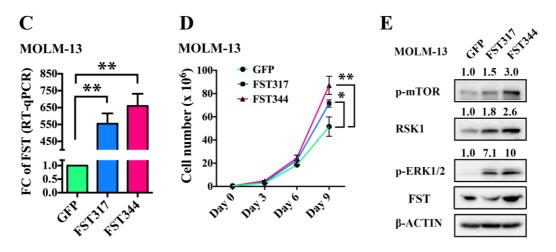
58	E-G FST expression was detected by RT-qPCR (E), and Western blotting (F and G)
59	from <i>FLT3</i> /WT and <i>FLT3</i> /ITD AML patients (cytogenetic normal, leukemia blast > 80%
60	at diagnosis). Panel F was the representative image showing FST expression from
61	<i>FLT3</i> /WT and <i>FLT3</i> /ITD AML. β -ACTIN was used for normalization and
62	quantification of FST expression in panel G. The whiskers, boxes, and central lines
63	represents the minimum-to-maximum values, 25th-to-75th percentile, and the 50th
64	percentile (median), respectively.

H Phosphorylation of STAT5 and FST expression were detected by Western Blotting
and RT-qPCR in Hela cells-transfected with *FLT3*/ITD. The RT-qPCR experiment were
performed in triplicates.

- I FLT3 signaling were detected by Western blot in Ba/F3-*FLT3*/ITD cells-treated with
 Quizartinib (Qui in short) *in vitro* (0-10 nM) for 1 day.
- Data information: In (E, G and H), data were presented as mean ± SEM. *P<0.05,
 **P<0.01 (Student's t-test), n.s: not significant.


72

74 Figure S3


A Upregulated genes in ML-2 (FST344 vs GFP)

GO term	p value	Genes
Signal transducer activity	0.01	FST, CSPG4, GJA1
Early endosome	0.02	RET, GJA1, C8ORF44-SGK3
MAPK cascade	0.03	RET, IL2RA, CCL5 Ӿ
Protein kinase activity	0.04	RET, CCL5, C8ORF44-SGK3
Cell proliferation	0.05	IL2RA, FSCN1, CSPG4

B Schematic model

Cell survival and proliferation

F Downregulated genes in ML-2 (FST344 vs GFP)

GO term	p value	Genes
Cell adhesion	5.15E-04	APP, CD36, DSG2, MYBPC3, VCAN, KIRREL2, THBS1, GPNMB, MYH10
Response to oxidative stress	0.01	APP, GAB1, PRDX2, SLC7A11
Differentiation	0.015	IGSF10, EPAS1, NAV1, SEMA4F, SYT3, SEMA3C, SPATA6, PPDPF
Immune response	0.028	TCF7, CD36, CNR2, PRG2, SEMA3C, THBS1
Negative regulation of FGF		
receptor signaling pathway	0.039	THBS1, GPC1
Extracellular matrix organization	0.045	APP, VCAN, THBS1, APBB2

75

76 Figure S3. Effect of *FST* overexpression on MOLM-13 and ML-2 cells.

A-B Gene ontology (GO) analysis of upregulated genes (from RNA-seq) in ML-2 cells-

78 overexpressing FST344 comparing to those of GFP overexpression (A). The

- vpregulated genes RET, IL2RA and CCL5 (asterisk) were enriched in the MAPK
- 80 cascade which was shown in the schematic diagram in panel B.

81	C-E The effect of <i>FST</i> overexpression (C) on cell growth (D) and ERK activation (E)
82	in FLT3/ITD MOLM-13 cells in vitro. The numbers above the blots indicated the fold
83	change of p-mTOR, RSK1, and p-ERK1/2, respectively (GFP sample was used as
84	control and set as 1). The RT-qPCR experiments were performed in triplicates.

- ${\bf 85} \qquad {\bf F} \ {\bf Gene \ ontology \ (GO) \ analysis \ of \ downregulated \ genes \ (from \ RNA-seq) \ in \ ML-2 \ cells-$
- 86 overexpressing *FST344* comparing to those of *GFP* overexpression.
- 87 Data information: In (C and D), data were presented as mean ± SEM. *P<0.05,
- 88 **P<0.01 (Student's t-test).

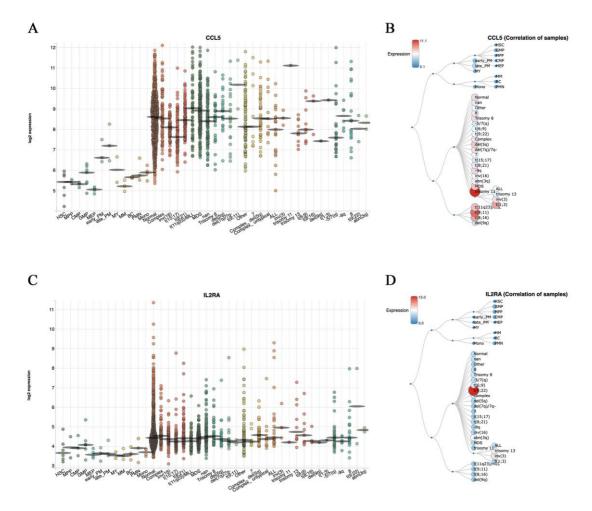
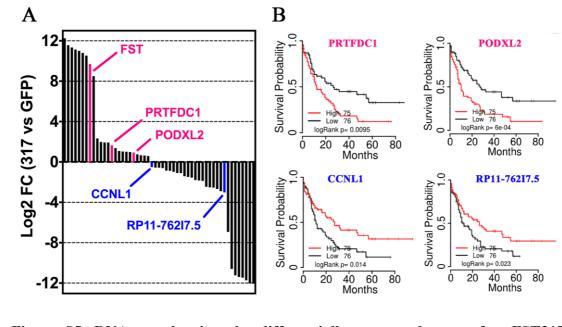
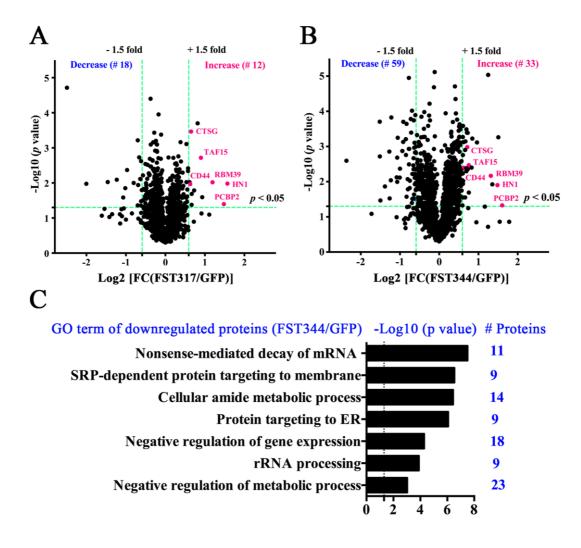



Figure S4. In silico analysis of CCL5 and IL2RA expression in normal
hematopoietic tissues and human AML.


A-D The relative expression of CCL5 (A and B) and IL2RA (C and D) in normal
hematopoietic tissues and human AML were analyzed by the public program Bloodspot
(http://servers.binf.ku.dk/bloodspot/).

99 Figure S5. RNA-seq showing the differentially expressed gene after FST317
100 overexpression in ML-2.

A The differentially expressed genes in ML-2 cells (FST317 vs GFP) were shown aswaterfall plot.

B The clinical relevance of these differentially expressed genes were analyzed based
on the patients' survival data from TCGA-AML. Upregulation of *PRTFDC1* and *PODXL2*, and downregulation of *CCNL1* and *RP11-76217.5* after *FST317*overexpression in ML-2 predicted the poor survival of AML patients.

109

110 Figure S6. Proteomic analysis of ML-2 cells after *FST* overexpression.

A-B Volcano plot showing differentially expressed proteins after *FST317* and *FST344*

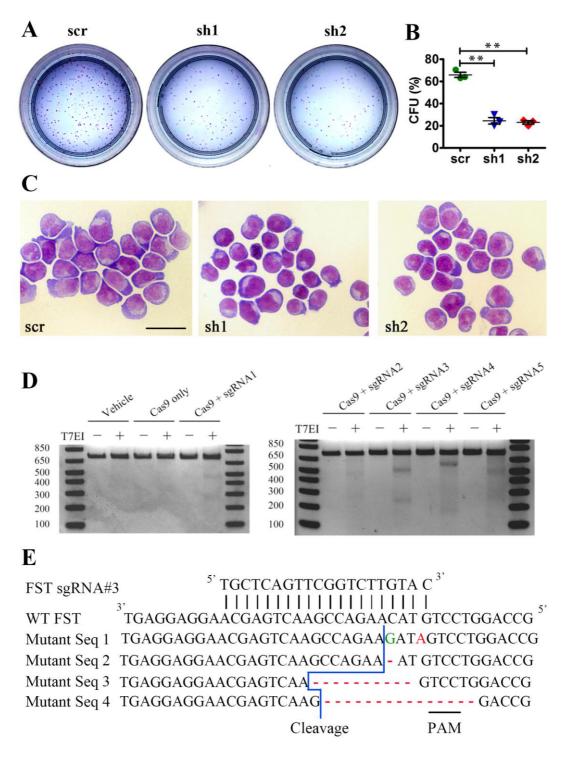

overexpression in ML-2 comparing to those of *GFP* overexpression. CTSG, TAF15,

113 CD44, RBM39, HN1, and PCBP1 were significantly upregulated in both *FST317* and

114 *FST344*-overexpressing ML-2 cells.

115 C Gene ontology (GO) analysis of downregulated proteins in ML-2 cells116 overexpressing *FST344* comparing to those of *GFP*. The downregulated proteins

associated with nonsense-mediated decay of mRNA were most significant.



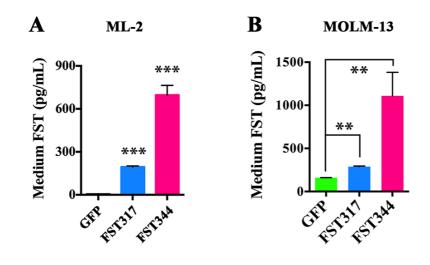
121 Figure S7. Exogenous FST and Activin treatment on AML cell growth.

122 A Gene expression of Activin and its receptors in AML cell lines by semi-quantitative

123 PCR. *GAPDH* was used as house-keeping gene.

- B-C The effect of exogenous FST and Activin A on MOLM-13 cell growth after 3 days
 treatment *in vitro*.
- 126 **D** The effect of Activin receptor antagonist (SB431542) on cell growth of different
- 127 AML cell lines after 3 days treatment *in vitro*.
- 128 E The effect of FST neutralizing antibody on MOLM-13 cell growth after 3 days129 treatment *in vitro*.
- 130 Data information: In (B-E), the data were presented as mean \pm SEM.

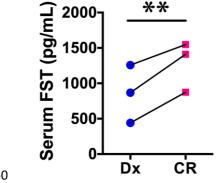
135 Figure S8. FST targeting by shRNA and CRISPR/Cas9 in FLT3/ITD AML cell


136 lines.

137 A-C The clonogenicity (A and B) and morphology (C) of MV4-11 cells after FST

knockdown *in vitro*. Scale bar = 20 μm (C). In (B), the data were presented as mean ±
SEM. **P<0.01 (Student's t-test)

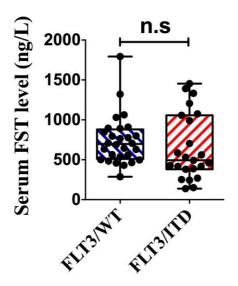
D-E T7EI assay (D) and sanger sequencing (E, for sgRNA#3) detecting the genome 140 editing efficiency of different sgRNAs for human FST in 293FT cells. Genomic DNA 141 was extracted from 293FT cells at 3 days post transfection. Fragments containing the 142 sgRNA target sites were PCR amplified, purified, denatured, annealed to form the 143 heteroduplex, and digested with or w/o T7 Endonuclease I (T7EI) (D). To detect these 144 insertion and deletion, fragments containing the sgRNA#3 target site were ligated into 145 pGEM-T-easy vector for sanger sequencing (E). Green: mismatch; Red: insertion and 146 deletion; PAM: protospacer adjacent motif. 147


148

151

152 Figure S9. *FST* overexpression resulted in increased FST level in culture medium.

FST in the culture medium was measured by ELISA from ML-2 (A) and MOLM-13
(B) cells stably expressing *GFP*, *FST317*, and *FST344*, respectively. The ELISA
experiments were performed in triplicates and the data were presented as mean ± SEM.
P<0.01, *P<0.001 (Student's t-test)


160

161 Figure S10. Serum FST level from FLT3/WT AML patients treated with
162 conventional chemotherapy.

Serum FST levels were measured by ELISA from FLT3/WT AML patients treated with
conventional "7+3" chemotherapy at diagnosis (Dx) and complete remission (CR). The

data were presented as scatter dot plot. $**P \le 0.01$ (Student's t-test).

167 Figure S11

168

Figure S11. Serum FST levels from FLT3/WT and FLT3/ITD AML patients from
our achieved samples.

- 171 Serum FST levels were measured by ELISA from FLT3/WT and FLT3/ITD AML
- 172 patients at diagnosis. The data were presented in box plot. The whiskers, boxes, and
- central lines represented the minimum-to-maximum values, 25th-to-75th percentile, and
- the 50th percentile (median), respectively. n.s: not significant (Student's t-test).

175

176

178 Supplemental Table S1

Figure and panel	comparing groups	p-value	Symbol
E. 1. march W	DMSO vs Qui 5.0 µM (dorsalization)	1.51E-04	***
Fig 1, panel K	DMSO vs Qui 5.0 µM (axis duplication)	1.15E-04	***
	FLT3/WT vs FLT3/ITD (fst)	5.74E-03	**
Fig 1, panel L	FLT3/WT vs FLT3/ITD (gsc)	7.95E-03	**
	FLT3/WT vs FLT3/ITD (fzd4)	3.23E-02	*
Fig 2, panel N	WT vs ITD	1.17E-04	***
Fig 2, panel O	WT vs ITD	9.23E-03	**
	IgG vs p-CREB (c-Fos)	1.09E-04	***
Fig 3, panel C	IgG vs p-CREB (FST)	3.28E-03	**
F. 2 1 D	Red vs purple	5.99E-05	***
Fig 3, panel D	Green vs purple	9.72E-04	***
	Ba/F3-P vs Ba/F3-ITD (DMSO)	7.37E-05	***
	DMSO vs Qui-2.5 nM (Ba/F3-ITD)	9.54E-05	***
Fig 3, panel G	DMSO vs Qui-5.0 nM (Ba/F3-ITD)	1.17E-05	***
	DMSO vs Qui-10 nM (Ba/F3-ITD)	1.11E-05	***
Fig 3, panel H	DMSO vs Qui-10 nM	2.42E-04	***
	DMSO vs BRD7389 (Ba/F3-ITD)	8.76E-04	***
Fig 3, panel J	DMSO vs BRD7389 (MOLM-13)	1.39E-03	**
	DMSO vs BRD7389 (MV4-11)	1.18E-03	**
E' 4 1 D	Green vs blue	2.42E-03	**
Fig 4, panel B	Green vs red	4.26E-03	**
E's A secol C	Green vs blue	7.91E-03	**
Fig 4, panel C	Green vs red	7.40E-03	**
F: 4 1 F	Green vs blue	2.06E-02	*
Fig 4, panel E	Green vs red	5.20E-03	**
Fig 4, panel G	Green vs red	2.90E-03	**
	GFP vs FST317	3.40E-02	*
Fig 4, panel H	GFP vs FST344	2.40E-03	**
	GFP vs FST344 (RET)	8.33E-03	**
Fig 4, panel J	GFP vs FST344 (IL2RA)	2.08E-02	*
	GFP vs FST344 (CCL5)	9.33E-04	***

	scr vs sh1	8.42E-03	**
Fig 5, panel C	scr vs sh2	3.42E-03	**
	scr vs sh1	1.90E-02	*
Fig 5, panel E	scr vs sh2	5.70E-03	**
	Green vs blue	4.58E-02	*
Fig 5, panel G	Green vs red	3.16E-02	*
	scr vs sh1	5.34E-03	**
Fig 5, panel H	scr vs sh2	3.29E-03	**
	Cas9 vs sgRNA#3	6.22E-03	**
Fig 6, panel B	Cas9 vs sgRNA#4	5.32E-03	**
	Cas9 vs sgRNA#3	4.45E-02	*
Fig 6, panel D	Cas9 vs sgRNA#4	2.89E-02	*
Fig 6, panel F	Neg-ASO vs FST-ASO3	7.13E-03	**
Fig 6, panel G	Neg-ASO vs FST-ASO3	9.41E-03	**
Fig 7, panel C	Flt3 ^{+/+} vs Flt3 ^{ITD/+}	9.70E-03	**
Fig 7, panel D	Flt3 ^{+/+} vs Flt3 ^{ITD/+}	9.80E-03	**
Fig 7, panel G	pre-injection vs week 2	1.55E-02	*
Eig 7 genel II	scr vs sh1	3.64E-02	*
Fig 7, panel H	scr vs sh2	3.54E-02	*
Fig 7, panel K	Pre vs week 6	8.89E-03	**
Eig 7 monol N	Pre vs 1	6.72E-03	**
Fig 7, panel N	Pre vs 2	3.74E-03	**
	HSC vs CN-AML	2.70E-03	**
	HSC vs t(15;17)/APL	6.00E-05	****
	HSC vs Complex	1.00E-04	***
	HSC vs inv(16)	2.00E-04	***
Fig S2, panel A	HSC vs t(8;21)	7.00E-05	****
	HSC vs t(11q23)/MLL	3.00E-04	***
	HSC vs Trisomy 8	5.00E-04	***
	HSC vs del(5q)	1.70E-02	*
	del(7q)/7q-	1.26E-02	*
Fig S2, panel E	FLT3/WT vs FLT3/ITD	2.60E-03	**
Fig S2, panel G	FLT3/WT vs FLT3/ITD	3.76E-02	*

Fig S2, panel H	Mock vs ITD	7.32E-03	**
	GFP vs FST317	5.96E-03	**
Fig S3, panel C	GFP vs FST344	4.78E-03	**
Fig S2 monol D	FST317 vs GFP (Day 9)	2.12E-02	*
Fig S3, panel D	FST344 vs GFP (Day 9)	4.64E-03	**
Fig S8 papel P	scr vs sh1	5.22E-03	**
Fig S8, panel B	scr vs sh2	3.96E-03	**
Fig SQ papel A	FST317 vs GFP	2.84E-04	***
Fig S9, panel A	FST344 vs GFP	6.15E-04	***
Fig S0, papel P	FST317 vs GFP	2.04E-03	**
Fig S9, panel B	FST344 vs GFP	9.25E-03	**
Fig S10	Dx vs CR	9.79E-03	**

179 Supplemental Table S1

180 The p-values in the main figures and Appendix were summarized. P<0.05, P<0.01,

181 ***P<0.001.

182