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Free Energy Change along Each Edge in a Triangular Cy-

cle

In the supporting material, we show another example of FEP calculations involving three

congeneric ligands forming a triangular perturbation map of closed thermodynamic cycle.

The three ligands also belong to quinoline-based ALLINIs which bind to HIV-1 integrase.

We consider the bound state for the perturbations which is more challenging to sample.

The estimated free energy change along each edge in the triangular cycle is summarized

in Figure 1. The black and blue values represent the free energy estimations using the

data from independent parallel simulations for each λ-states based on BAR and UWHAM,

respectively. The hysteresis of cycle closure in the triangular cycle is 1.39 kcal/mol as the

free energy change along each edge is evaluated based on BAR; while there is no hysteresis

effect when UWHAM is applied. The orange values denote the benchmark results from
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Hamiltonian replica exchange simulations. We observe that along the edge of ligand 3 to

ligand 1, it shows the largest discrepancy for the estimation based on BAR compared to the

benchmark with a value of 1.83 kcal/mol. This would be improved by using UWHAM all

the data in the cycle, leading to the drop of discrepancy compared to the benchmark with a

value of 1.07 kcal/mol.

Gaussian Statistics Analysis Method

An approach to analyzing hysteresis in the FEP thermodynamic cycles has been proposed by

Wang et al.1 based on Gaussian statistics, which is discussed here for a cycle with four nodes.

The basic assumption is that the FEP estimate 4Fi along edge i is Gaussian distributed, in-

dependently of other edges, with mean4F̄i and standard deviation σi for i ∈ {12, 23, 34, 41}.

That is, the probability density of 4Fi is

ρi =
1√

2πσi
exp(−(4Fi −4F̄i)

2

2σ2
i

). (1)

There are two distinct methods introduced. In the first method, the standard deviations σi

are assumed to be known. Maximization of the overall likelihood

L =
1

(2π)2
exp(−

∑
i

log σi −
∑
i

(4Fi −4F̄i)
2

2σ2
i

), (2)

subject to the constraint of cycle closure,
∑

i4F̄i = 0, leads to the estimator

4F̂i = 4Fi −
σ2
i ∆

σ2
12 + σ2

23 + σ2
34 + σ2

41

, (3)

where the hysteresis ∆ = 4F12 + 4F23 + 4F34 + 4F41. A limitation of this estimator

Eq.(3) is that the adjustments from 4Fi to 4F̂i for all i are in the same direction as
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−∆. Nevertheless, if the assumption is valid that ∆ is Gaussian with mean 0 and standard

deviation s = (σ2
12 + σ2

23 + σ2
34 + σ2

41)
1/2 , then the cycle closure requirement can be used to

assess convergence of the calculations: if |∆| > 2s, then it is unlikely (P -value < 0.05) that

the calculations are converged.

In the second method, the standard deviations σi are unknown, but assumed to be equal

to a common value σ. Then the estimator Eq.(3) reduces to

4F̂i = 4Fi −
∆

4
, (4)

Note that the adjustments from 4Fi to 4F̂i for all i are all the same, regardless of poten-

tially different degrees of equilibration along different edges. Now the assumption that ∆

is Gaussian with mean 0 and standard deviation s = 2σ, can be used with cycle closure to

derive an estimator of σ as σ̂ = ∆/2. This estimator of standard deviation of each 4Fi

is the same for all edges, irrespective of their degrees of equilibration. This argument also

necessarily implies that ∆ = 2σ̂ ≈ s = 2σ, corresponding to a P -value= 0.32.

Block Bootstrap

We compared the standard error for the free energy change along each edge calculated based

on the fractional replication method as shown in Table 1 and the block bootstrap method as

shown in Table 2. For the block bootstrap method, the original data set was first split into

non-overlapping n blocks. A new data set was reconstructed by randomly resampling the n

blocks of original data set n times with replacement. We call such a new data set which has

the same size with original data set as one resample. In this study, we test different number

of blocks and different number of resamples in the block bootstrap method.

As seen from Tables 1 and 2, the standard errors estimated using fractional replication
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or block bootstrap stabilize quickly as the number of resamples increases. However, the

standard errors by block bootstrap decreases considerably as the number of blocks ranges

from 4 to 50 or equivalently the block length ranges from 1250 down to 100, with the data size

n = 5000 for each state. The optimal block size from statistical theory based on stationarity

is of order n1/3 ≈ 17, corresponding to the number of blocks equal to 292, which would lead

to even smaller standard errors than with the number of blocks equal to 50.

4



Figure 1: Comparison of free energy change along each edge in the triangular system in the
bound state estimated from BAR and UWHAM
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Table 1: Standard error of free energy change along each edge in the bound state estimated
from UWHAM including all the data. The standard error is calculated based on fractional
replication method.

No. of Combinations SE of ∆Fpro12 SE of ∆Fpro23 SE of ∆Fpro34 SE of ∆Fpro41

25 0.047 0.089 0.093 0.059
50 0.046 0.087 0.105 0.062
100 0.048 0.087 0.100 0.063
200 0.044 0.085 0.097 0.058
400 0.044 0.084 0.091 0.058
600 0.043 0.082 0.090 0.056
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Table 2: Standard error of free energy change along each edge in the bound state estimated
from UWHAM including all the data. The standard error is calculated based on block
bootstrap.

No. of Blocks No. of Resamples SE of ∆Fpro12 SE of ∆Fpro23 SE of ∆Fpro34 SE of ∆Fpro41

4 50 0.043 0.084 0.079 0.050
4 100 0.046 0.076 0.080 0.050
4 200 0.045 0.082 0.093 0.057
4 400 0.046 0.091 0.100 0.059
4 600 0.042 0.087 0.095 0.054
10 50 0.033 0.072 0.078 0.041
10 100 0.034 0.073 0.080 0.042
10 200 0.031 0.068 0.076 0.044
10 400 0.033 0.072 0.083 0.042
10 600 0.035 0.066 0.073 0.044
20 50 0.024 0.049 0.060 0.032
20 100 0.026 0.050 0.059 0.032
20 200 0.029 0.050 0.055 0.033
20 400 0.026 0.050 0.055 0.029
20 600 0.026 0.049 0.054 0.034
40 50 0.023 0.037 0.039 0.024
40 100 0.023 0.040 0.042 0.025
40 200 0.027 0.038 0.042 0.028
40 400 0.021 0.040 0.044 0.029
40 600 0.022 0.040 0.043 0.028
50 50 0.022 0.031 0.035 0.026
50 100 0.021 0.036 0.038 0.025
50 200 0.024 0.038 0.040 0.026
50 400 0.021 0.037 0.040 0.026
50 600 0.022 0.038 0.039 0.025
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