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1 Posterior sampling for product kernel mixture model
Posterior sampling procedures for model (6) are given as follows:

1. Update the cluster allocation of Si for each fiber curve from the conditional posterior with

Pr(Si = h|−) =
πh
∏M

m=1Km(c
(m)
i ; θ

(m)
h )∑K

l=1 πl
∏M

m=1Km(c
(m)
i ; θ

(m)
l )

.

2. Update the weights on each component from the conjugate conditional posterior

(π|−) ∼ Dir

(
α

K
+ n1, ...,

α

K
+ nK

)
,

where nh is the number of observations with cluster h.

3. Update the parameter θ(m)
h for m = 1, ...,M and h = 1, ..., k from

(θ
(m)
h |−) ∝ Pm

0 (θ
(m)
h )

∏
i:Si=h

Km(c
(m)
i ; θ

(m)
h ),

where Pm
0 is a conjugate prior to Km(c

(m)
i ; θ

(m)
h ) for each component m; in particular, we use

Gaussian-Inverse Wishart priors.

2 Jointly model fiber curves and connection strength
Model (7) does not incorporate information on the strength of connection wj between the two
ROIs within individual j. However, it is straightforward to generalize the model to include this
additional information by letting

Gj ∼
∞∑
h=1

π∗hδ{G∗
h(·),ψh},
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where now the hth component of Gj includes not only the mixing measure G∗h characterizing the
distribution of fiber curves in that component but also parameters ψh within a kernel Kw(·;ψh) for
the measure of connection strength. The resulting joint model characterizes flexible dependence
in the connection strength and fiber curves through shared dependence on the individual’s cluster
allocation. For continuous measures of connection strength wj , we can simply use a Gaussian
kernel. However, we will focus on wj equal to the number of connections between the regions of
interest, so that Kw(w;ψ) is a parametric distribution with support on the non-negative integers.
To induce this kernel, we can apply the approach of Canale and Dunson (2011) and simply ‘round’
a Gaussian kernel with unknown mean and variance, with negative values mapped to 0, values in
(0,1) mapped to 1, values in (1,2) mapped to 2 and so on. Posterior sampling can proceed via a
slight modification of the sampler in Section 4.2.

Posterior inference for jointly modeling: The connection strength wj is defined to be the
count of fibers. To model this count variable independently, one can rely on the rounded kernel
mixture model proposed by Canale and Dunson (2011). Here we present a simple Gibbs sampling
algorithm for this joint modeling. Some modification of the Gibbs sampler in Section 4.2 is needed.
Again, let ζj , for j = 1, ..., J , be the membership indicator of individuals and let ξji, for i =
1, ..., nj , be the membership indicator of fiber curves for the jth subject. Sampling proceeds via
the following steps:

1. Sample the membership indicator for the jth individual (j = 1, ..., J) from a multinomial
distribution with probabilities

P (ζj = h|−) ∝ π∗hp(wj|ψh)
nj∏
i=1

L∑
l=1

w∗lh

M∏
m=1

Km(c
(m)
ji |θ

(m)∗

lh ),

where p(wj|ψh) = Φ(awj+1|ψh)− Φ(awj
|ψh).

2. Sample the membership indicator ξji, for j = 1, ..., J and i = 1, ..., nj , from the following
multinomial distribution:

P (ξji = l|−) ∝ w∗lζj

M∏
m=1

K(c
(m)
ji |θ

(m)∗

lζj
).

3. Sample π∗h by the following procedure: First sample uh according to (u∗h|−) ∼ beta(1 +
mh, α +

∑K
s=h+1ms), h = 1, ..., K − 1, and u∗K = 1, where mh is the number of subjects

assigned to cluster h. π∗h is constructed as

π∗h = u∗h

h−1∏
s=1

(1− u∗s).

4. Generate the auxiliary variable y∗j , j = 1, ..., J , for the connection strength part:
Sample tj ∼ U(Φ(awj

;ψζj),Φ(awj+1;ψζj)) and let y∗j = Φ−1(tj;ψζj).

5. Samplew∗lh by the following procedure: Sample (v∗lh|−) ∼ beta(1+nlh, β+
∑L

s=l+1 nsh), l =
1, ..., L− 1, h = 1, ..., K and v∗LK = 1, where nlh is the number of observations assigned to
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atom l of distribution h. w∗lh is constructed as

w∗lh = v∗lh

l−1∏
s=1

(1− v∗sh).

6. Sample the parameter ψh for h = 1, ..., K according to:

P (ψh|·) ∝ Pψ
0 (ψh)

∏
{j|ζj=h}

N(y∗j ;ψh),

where Pψ
0 (·) is a Gaussian-gamma conjugate prior distribution for ψ. If there is no observa-

tion for the hth cluster, we sample ψh from Pψ
0 .

7. Sample the parameters θ(m)∗

lh for l = 1, ..., L, h = 1, ..., K and m = 1, ...,M from

P (θ
(m)∗
lh |−) ∝ Pm

0 (θ
(m)∗
lh )

 ∏
{i,j|ζj=h,ξij=l}

Km(c
(m)
ji |θ

(m)∗
lh )

 ,

where Pm
0 (·) is the conjugate prior for the parameter in Km(·|θ(m)). If no observation is

assigned to the cluster, we draw θ
(m)∗
lh from the prior Pm

0 .

8. Sample the concentration parameters α and β. We choose conjugate priors: α ∼ gamma(aα, bα)
and β ∼ gamma(aβ, bβ). The posterior samples for α and β are constructed as

P (α|−) ∼ gamma(aα + (K − 1), bα −
K−1∑
h=1

log(1− µ∗h)),

P (β−) ∼ gamma(aβ +K(L− 1), bβ −
L−1∑
l=1

K∑
h=1

log(1− v∗lh)).

3 Selection of T
The number of coefficients T is an important parameter for precisely representing fiber curves.
The higher the T the better the representation power. Selection of T is similar to selection of
the number of PC components in PCA, where the goodness-of-fit for a given T can be evaluated
through the cumulative percentage of total variation explained or some formal tests of hypothesis
(Jolliffee, 1986; Choi et al., 2017). However, these procedures can not be directly applied since
we have a different setting: we represent shapes of fibers in new subjects using a fixed set of basis
functions learned from training data; and there are other components (e.g., rotation and translation)
contributing to the fiber recovery (refer to Section 2.3). We borrow some ideas from the PCA
(Jolliffee, 1986) components selection and utilize the following criteria to evaluate the choice of
T .
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Figure 1: The first row shows the derivative of MPRE at different T value (the MPRE change as T
increases to T +1). The second row shows the histogram of MPRE at T = 3 for the 3 connections.
The unit for MPRE is mm.

For a bundle with N fibers, the goodness-of-fit can be evaluated through mean point-wise
representation error (MPRE), defined as (

∑N
j=1

∑m
i=1 ‖yj(si) − ŷj(si)‖)/Nm, where yj(si) rep-

resents the j-th fiber’s coordinate observed at si and ŷj represents the recovered fiber with T
coefficients. MPRE is a function of T (its value will decrease as T increases). We want to select a
T such that (1) MPRE is within a reasonable range and (2) it explains most of the variation in the
data. We define cumulative percentage of total variation (CPTV) explained by T coefficients as
100 ∗ (1−

∑N
j=1 ‖yj− ŷj‖2/

∑N
j=1 ‖yi−µ‖2). We conducted MPER analysis for three representa-

tive connections (indexed as (16,55), (16,56) and (2,61)) in 9 scans of the test-retest dataset. From
Figure 1 first row, we can see that MPRE levels off and does not increase significantly for T > 3
in almost all cases. We can see that for T > 3 the increase of T does not significant decrease the
MPRE anymore in almost all cases. Also, at T = 3, we have CPTV = 91.46± 3.71% for (16,55),
CPTV = 97.9±1.0% for (16,56) and CPTV = 97.1±2.20% for (2,61). Figure 1 second row shows
the histogram of MPRE at T = 3 for the 9 scans of the 3 connections, indicating that the average
fiber recovery error is often less than 2 voxels (each voxel has the size of 2× 2× 2 mm3, and the
unit for MPRE is mm).

These results encourage our choice of T = 3, especially when we only consider the global
geometry of fiber bundles and deal with hundreds and thousands of streamlines (a lower dimension
is important for reducing the computational cost of our model). We set T = 3 in all our real data
applications.

4



2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

50 100 150 200

20

40

60

80

100

120

140

160

180

200

-3

-2

-1

0

1

2
-4-2024

4

2

0

-2
140

120
100

80140

120

140

130

120

110

100

90

100

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

50 100 150 200

20

40

60

80

100

120

140

160

180

200

2

0

-2
420-2-4

-4

-2

4

2

0

14012010014080
120

100

140

130

120

110

100

90

50 100 150 200

20

40

60

80

100

120

140

160

180

200

1

0.5

0-1

-1

-0.5-0.5

0
-1

0.5

0

1

90

100

110

140

120

130

140

120 80100120100 140

(a) Posterior dist. of k (b) Pairwise Prob. (c) Clustering of {c(m)
i } (d) Clustering of fibers

Figure 2: Posterior summary for the connection between r pl and l pcc. The three rows are results
for the shape, translation and rotation component, respectively.

4 Experimental results for modeling a single connection
Figure 2 shows posterior inference results for the connection (r pl, l pcc). This connection contains
206 fiber curves. In column (c), we plot these multivariate components, and their final clustering
configuration. We see that the shape component has three major clusters (shown in red, green
and blue). The red ones have L shape; the green and blue ones have similar shape but can be
distinguished through their lengths. The translation component seems to have three major clusters.
Our algorithm broke one cluster into two, and thus gave us four major clusters. The result based on
fusion of three components together is shown in Figure 3. Four clusters are identified in the final
clustering results. The green and red clusters are two major long fiber bundles in this connection.
They have similar shapes, but can be distinguished by their locations. The magenta cluster has an
“L” shape, and the blue cluster contains straight and short fibers.

Figure 4 shows posterior inference results for the connection (r pl, l pg). Column (a) shows
posterior samples of number of clusters and (b) shows the pairwise probability heat map according
to the posterior samples. Figure 4 (c) and (d) show the final clustering results on {c(m)

i } and the
original fibers.

5 Manual clustering of fibers in (r pl, l pg) and (r pl, l pcc)

The final manual clustering of fibers in (r pl, l pg) is shown in Figure 5. Fibers in this connection
split into two bundles, and the manual clustering is based on this split. We identified two clusters.
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Figure 3: Joint model result for the connection (r pl, l pcc).

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90 5
-2

-1

-2

0

1

2

3

00
-52

80

100

150

120

140

100

50
200180160140120100

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

-2

-1

-2

0

1

2

3

0 4
2

0
-22 -4

80

100

150

120

140

100

50
200180160140120100

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

-0.2

-0.5

0

0.2

0.4

0 1
0.5

0
0.5 -0.5

80

100

150

120

140

100

50
200180160140120100

(a) Posterior dist. of k (b) Adjacency matrix (c) Clustering of {c(m)
i } (d) Clustering of fibers

Figure 4: Posterior summary for the connection (r pl, l pg). The three rows are results for the
shape, translation and rotation component, respectively.
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Figure 5: Manual clustering of (r pl, l pg). Red ones are fibers in current cluster and yellow ones
are remaining fibers in the connection.
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Figure 6: Manual clustering of (r pl, l pcc).

In cluster 1 there are a few fibers having distinct shapes (change their directions significantly near
the end points), but we did not distinguish them.

The final manual clustering of fibers for the other connection (r pl, l pcc) are shown in Figure 6.
We identified five clusters based on their shapes and locations. First, fibers were clustered into two
major clusters based on their locations. Red fibers in the first row are from the first major cluster
and red fibers in the second row are from the second major cluster. Next we refined this clustering
based on their shapes and obtained 3 sub-clusters for the first major cluster and 2 sub-clusters for
the other major cluster.

6 MCMC Diagnosis
The following MCMC diagnosis is performed for each run. We first perturbed the prior distribu-
tion within a reasonable range, and checked if the final results and inferences change. Next, we
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Figure 7: Trace plots of some parameters in the MCMC chains generating Figure 6 (first row) and
8 (second row) in the main paper. (a) k (number of clusters); (b) mean of the shape component for
the first cluster (the mean is in <3); (c) mean of the shape component for another cluster; and (d)
π for the two clusters.

specified different initializations for the MCMC chain. All results remain similar, indicating that
the MCMC sampling strategies and Bayesian inferences are robust.

Next, we used standard convergence diagnostic tools to study the MCMC chains. We per-
formed post-processing to fix the label switching issue caused by our discrete mixture models.
Trace plots and the Gelman-Rubin R statistics were used for convergence diagnosis. Figure 7
shows the MCMC trace plots of the cluster number k, means and π for data in Figure 7 in the
paper. The effective sample size is > 90% of the total number of samples. The Gelman-Rubin R
statistics for all parameters are close to 1 (e.g 1.0005, 1.0004 and so on), indicating no evidence
of lack of convergence. Similar studies were also performed (perturbation of the initialization,
visual examination of the trace plots and Gelman-Rubin R statistics) to examine and confirm the
convergence for other MCMC chains in the Section 5.3.

7 Results on 9 scans of 3 subjects
This section presents the results for analyzing 9 scans of 3 subjects in Figure 8 in the main paper.
Pairwise probability heat maps in different scenarios are shown in Figure 8, showing clustering
results based on (a) only shape, (b) only translation, and (c) both shape and translation. The 9
scans were ordered by concatenating columns of Figure 8 in the main paper (scans of the same
subject are next to each other). From (a) we observe that, if we only use the shape part, the
posterior clustering result favors five clusters, e.g., the 3 scans of subject 1 are clustered together;
the scan 2 and 3 of subject 2 are clustered together, while the scan 1 is a separate cluster. We then
inspected this result more closely: their shape components are plotted in Figure 9. The fibers in the
3 scans of subject 1 have a very different distribution from data of subject 2 and 3 in their shapes;
scan 2 and 3 of subject 2 are different from scan 1. We compared the NDP clustering result with
the ground truth subject ids and the results are shown in Table 1. We can see that the shape part has
the best clustering performance. Combining shape and translation does not improve clustering.
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Figure 8: Pairwise probabilities of clustering for 9 scans of 3 subjects in Figure ??.

Subject 1:

Subject 2:

Subject 3:

Subject 1
Subject 2

Subject 1
Subject 3

Figure 9: The first row shows the mapped shape components in <3 for fiber curves in the three
subjects. The recovered fiber curves with used only 9 parameters (3 for shape component, 3 for
rotation and 3 for translation).

Table 1: Clustering of subjects using fiber curves connecting (r pl, l pg ).
Shape Trans. Shape & Trans. Count

RI 0.8889 0.7222 0.7222 0.6389
ARI 0.6522 0.3130 0.3130 -0.1818
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Figure 10: (a) Posterior estimation of the pmf for fiber counts; (b) Heat map of the adjacency
matrix.

As a comparison, we clustered subjects according to their fiber counts by the rounded kernel
mixture model of Canale and Dunson (2011), using their recommended priors, collecting 10, 000
posterior draws, and discarding the first 1, 000. Figure 10 shows the result, with (a) the estimated
fiber count pmf for the 9 scans and (b) pairwise probabilities that two elements are clustered to-
gether. The estimated pmf illustrates the enormous heterogeneity in the counts, with five peaks in
the distribution. From the pairwise probability matrix, scans for the same subject are not reliably
clustered together. The Rand index and adjusted Rand index of the final clustering configuration
are reported in Table 1. These results illustrate that fiber counts have very high variability and
cannot reliably distinguish between subjects.

8 Sensitivity to misalignment
By definition the shape component is invariant to the misalignment but other components are not.
To illustrate this, we take 9 scans (from three subjects) in the test retest dataset and permute
their tractographic data with random rotations and translations. The random rotation is gener-
ated through Euler angles (each of them is drawn from N(0, 0.22)) and the translation is generated
from normal distributions (each of x, y, z coordinates is from N(6, 4)). Figure 11 panel (a) illus-
trates the fiber bundles in a randomly selected connection (31,47) for scan 1 and scan 2 of subject
1 before and after permutation. We then align them back using the algorithm in Garyfallidis et al.
(2015), and the aligned bundles are shown in panel (b). In panel (c) of Figure 11, we show the
calculated shape components before and after alignment (for the moving blue bundle). We see
that the shape component is invariant to the permutation/misalignment. In Table 2, we compare
our NDP model’s result for different components, where we can see that, the shape component is
invariant to the misalignment, but the translation and rotation are not.

9 Subsampling of fibers and more results
Among the 45 connections, some of them contain very rich fiber curves, e.g. with more than 10000
fibers. In order to efficiently fit our NDP model and infer the posterior distribution of fiber curves,
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Table 2: Misalginment sensitivity analysis using connection (31,47)
Before alignment After alignment

Shape Trans. Rot. Shape&Trans. Shape Trans. Rot. Shape&Trans.

RI 0.8611 0.75 0.6667 0.36 0.8611 0.75 0.5278 0.75
ARI 0.6429 0 0.1724 0 0.6429 0.5 0.1500 0.5

we randomly subsample fiber curves in each connection. To study how many fibers (denoted as
n) to keep for each connection for our analyses, we run our NDP model with different n’s for 10
randomly selected ROI pairs. Figure 12 shows the RI and ARI of 10 randomly selected ROI pairs.
We observe that although with a bigger n, we generally can obtain better results, the decline of the
clustering performance is slow with the decreasing of n (when n ≥ 100).

The selected 45 connections involve 32 different regions. In Table 3, we list the name of these
regions according to the Desikan-Killiany atlas (Desikan et al., 2006). Table 4 shows the clustering
results for the remaining 27 connections (as a complement of Table 2 in the paper).

10 HCP Data Selection and exploratory analysis
From the Human Connectome Project data, according to (Zhang et al., 2018), we first select a
trait of reading (NIH Toolbox Oral Reading Recognition Test: Age-Adjusted Scale Score) that
potentially relates to structural connectome. Figure 13 shows the histogram of this trait score.
We then order this trait and select two groups of subjects - one group with the highest scores and
one group with the lowest scores. The two groups have equal number of subjects - assume each
group have m subjects. In the first experiment of Section 5.4, we have m = 10 and in the second
experiment, we have m = 50.

Next, we visually checked the subjects’ T1 brain images and found that in general, people with
very low reading scores tend to have smaller brains with less complex gyrus and sulcus folding
patterns compared with people with high reading scores. Some examples of the T1 images and
their reading scores are shown in Figure 14.
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Figure 12: Clustering results (RI and ARI) for 10 randomly selected ROI pairs under different
sample size n.

Table 3: Names and indices of selected regions in Desikan-Killiany atlas
Index Name Index Name

2 ctx-lh-caudalanteriorcingulate 37 ctx-rh-caudalmiddlefrontal
3 ctx-lh-caudalmiddlefrontal 43 ctx-rh-isthmuscingulate
7 ctx-lh-inferiorparietal 45 ctx-rh-lateralorbitofrontal
9 ctx-lh-isthmuscingulate 47 ctx-rh-medialorbitofrontal

11 ctx-lh-lateralorbitofrontal 50 ctx-rh-paracentral
13 ctx-lh-medialorbitofrontal 51 ctx-rh-parsopercularis
16 ctx-lh-paracentral 53 ctx-rh-parstriangularis
22 ctx-lh-posteriorcingulate 55 ctx-rh-postcentral
23 ctx-lh-precentral 56 ctx-rh-posteriorcingulate
24 ctx-lh-precuneus 57 ctx-rh-precentral
25 ctx-lh-rostralanteriorcingulate 58 ctx-rh-precuneus
26 ctx-lh-rostralmiddlefrontal 59 ctx-rh-rostralanteriorcingulate
27 ctx-lh-superiorfrontal 60 ctx-rh-rostralmiddlefrontal
28 ctx-lh-superiorparietal 61 ctx-rh-superiorfrontal
31 ctx-lh-frontalpole 62 ctx-rh-superiorparietal
36 ctx-rh-caudalanteriorcingulate 64 ctx-rh-supramarginal
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Table 4: Comparison of clustering results of using geometric information and count.
RI/ARI (22,61) (23,50) (23,56) (23,57) (23,61) (24,43) (24,58) (24,62)

Shape 0.74/0.40 0.90/0.64 0.91/0.72 0.91/0.72 0.71/0.30 0.91/0.72 0.83/0.53 0.91/0.72
Trans. 0.35/0.05 0.50/0.06 0.55/0.17 0.62/0.13 0.74/0.31 0.81/0.46 0.74/0.40 0.77/0.35

Shape &Trans 0.74/0.40 0.66/0.30 0.80/0.28 0.76/0.22 0.52/0.15 0.75/0.33 0.66/0.30 0.91/0.72
Count 0.58/0.19 0.58/0.19 0.58/0.19 0.58/0.14 0.70/0.15 0.58/0.19 0.79/0.23 0.45/0.01

RI/ARI (25,61) (26,36) (26,47) (26,59) (26,60) (26,61) (27,36) (27,37)

Shape 0.91/0.72 0.91/0.72 0.64/0.24 0.55/0.17 0.91/0.72 0.91/0.72 0.83/0.53 0.87/0.57
Trans. 0.65/0.18 0.49/0.16 0.49/0.16 0.68/0.18 0.49/0.16 0.58/0.19 0.83/0.53 0.71/0.28

Shape &Trans 0.70/0.11 0.66/0.30 0.32/-0.00 0.47/0.11 0.66/0.30 0.49/0.16 0.83/0.53 0.70/0.30
Count 0.64/0.24 0.58/0.19 0.52/0.15 0.58/0.19 0.14/0.00 0.55/0.05 0.14/0.00 0.64/0.24

RI/ARI (27,47) (27,51) (27,53) (27,56) (27,57) (27,59) (27,60) (27,61)

Shape 0.78/0.41 0.86/0.32 0.90/0.50 0.82/0.43 0.91/0.72 0.74/0.40 0.91/0.72 0.74/0.40
Trans. 0.54/0.07 0.88/0.48 0.69/0.06 0.83/0.53 0.49/0.16 0.45/0.01 0.75/0.37 0.60/0.16

Shape &Trans 0.14/0.00 0.78/0.21 0.71/0.25 0.70/0.30 0.66/0.30 0.75/0.30 0.74/0.40 0.49/0.16
Count 0.64/0.24 0.49/0.16 0.64/0.24 0.14/0.00 0.80/0.11 0.52/0.15 0.14/0.00 0.14/0.00

RI/ARI (28,43) (28,58) (28,62) (28,64) (31,47)

Shape 1.00/1.00 0.91/0.72 0.90/0.64 0.79/0.19 0.91/0.72
Trans. 0.74/0.40 0.54/0.12 0.78/0.41 0.81/0.18 0.84/0.47

Shape &Trans 0.75/0.37 0.70/0.30 0.74/0.40 0.73/0.07 0.66/0.30
Count 0.45/0.01 0.14/0.00 0.31/-0.01 0.49/0.16 0.49/0.16
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Figure 13: Histogram of English reading scores in the HCP after age adjusting.
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ID: 100610 
Reading score: 132.4  
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ID: 141826 
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Figure 14: T1 images of subjects in the HCP dataset with their reading scores.
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