Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201901819

Whole-Genome Promoter Profiling of Plasma DNA Exhibits Diagnostic Value for Placenta-Origin Pregnancy Complications

Zhiwei Guo, Fang Yang, Jun Zhang, Zhigang Zhang, Kun Li, Qi Tian, Hongying Hou, Cailing Xu, Qianwen Lu, Zhonglu Ren, Xiaoxue Yang, Zenglu Lv, Ke Wang, Xinping Yang,* Yingsong Wu,* and Xuexi Yang*

Supporting Information

Whole-Genome Promoter Profiling of Plasma DNA Exhibits Diagnostic Value for Placenta-Origin Pregnancy Complications

Zhiwei Guo^{1,†}, Fang Yang^{2,†}, Jun Zhang^{3,†}, Zhigang Zhang^{4,†}, Kun Li¹, Qi Tian³, Hongying Hou³, Cailing Xu², Qianwen Lu², Zhonglu Ren², Xiaoxue Yang², Zenglu Lv⁴, Ke Wang², Xinping Yang^{2,*}, Yingsong Wu^{1,*}, Xuexi Yang^{1,*}

Supplemental methods

The definition of pregnancy complications and healthy controls

All selected samples for developing classifiers were singleton pregnancies.

Macrosomia was defined as a birth weight > 4,000-g^[1] and gestational age at birth was ≥ 37 weeks.

Fetal growth restriction (FGR) was defined as a birth weight below the 10th percentile for gestational age^[2] and gestational age at birth was \geq 37 weeks.

Gestational diabetes mellitus (GDM) was defined according to International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria, with universal testing for GDM between 24 and 28 weeks' gestation with the 75-g 2-h OGTT. According to the IADPSG, at least one of the following criteria needs to be fulfilled for a GDM diagnosis: fasting plasma glucose, ≥ 5.1 mmol/L; 1-h glucose \geq 8.5 mmol/L. In addition, pregnancies with diabetes mellitus type 1 or 2 were excluded.

Preeclampsia (PE) was defined according to the criteria of the International Society for the Study of Hypertension in Pregnancy (ISSHP), which required blood pressure ≥ 90 mmHg on at least two occasions, 4 h apart, with proteinuria ≥ 0.3 -g in a 24-h collection after 20 weeks' gestation in previously normotensive women.

Participants due to chromosomal, congenital abnormalities, preterm birth and multiple pregnancies were excluded.

Healthy control samples were full-term singleton pregnancies without pregnancy complications where the fetus was appropriately grown at birth with no obstetric, medical, or surgical complications in pregnancy.

The number of control of case-control study

This is a nested case-control study. According to other case-control study published in journals with high impact factor,^[3-5] the ratio of control and case is usually 3-5:1.

Base on the number of gestation age-matched healthy controls in our cohort, we selected four gestation age-matched healthy controls for MA, FGR and PE. As the number of gestation age-matched healthy controls was limited by 267 GDM cases, we selected three controls for each GDM case. The gestational age of four pregnancy complications and their corresponding controls were well matched in four cohorts (Supplemental Table S1; p > 0.05, Mann-Whiney U test). According to the time of sample collection and the sample size, the samples collected from Nanfang Hospital were divided into two cohorts, including training cohort (70% of samples) and internal cohort (30% of samples). The samples involved in The Third Affiliated Hospital of Sun Yat-sen University (SYSU) and Cangzhou People's Hospital were taken as external cohort-1 and external cohort-2, respectively. As some control samples were used in more than one pregnancy complication prediction, the number of total control is less than the sum control number for each pregnancy complication.

Isolation of cfDNA and whole-genome sequencing

Maternal blood was collected using a cfDNA BCT tube (Streck, USA). Cell-free plasma DNA (cfDNA) was extracted from a plasma sample using the QIAamp DNA Blood Mini kit (Qiagen, German) by following the manufacturer's instructions. DNA concentration and integration were measured using Qubit (ThermoFisher Scientific, USA) and Agilent Bioanalyzer 2100 (Agilent Technologies, USA). DNA was eluted in 50 μ L AE buffer and stored at -20° C. For Life platform, libraries were prepared using the Ion Torrent Ampliseq 2.0 kit (ThermoFisher Scientific), according to the manufacturer's instructions. Samples were barcoded and quantified by qPCR using the Ion Xpress Barcode Adapter and the Ion Library TaqMan quantitation kit (ThermoFisher Scientific), respectively. Sequencing libraries were then sequenced on Ion Proton System on a P1 chip. For illumina platform, the DNA libraries were prepared using the TruSeq DNA Sample Prep reagents (Illumina, USA). After quantification on the LabChip GX microfluidic platform (Perkin- Elmer), the libraries were then sequenced using NextSeq. DNA sequencing was performed at a depth of $0.3 \times$ average coverage.

Reference:

- [1] J. M. Walsh, F. M. McAuliffe, Eur J Obstet Gynecol Reprod Biol 2012, 162, 125.
- [2] P. L. Yudkin, M. Aboualfa, J. A. Eyre, C. W. Redman, A. R. Wilkinson, Early Hum Dev

1987, *15*, 45.

- [3] D. A. Grimes, K. F. Schulz, *Lancet* 2005, *365*, 1429.
- [4] M. A. Hernan, A. J. Wilcox, *Epidemiology* **2009**, *20*, 167.

[5] Y. Lu, J. Lagergren, S. Eloranta, M. Lambe, *Epidemiology* 2009, 20, 780.

A list of Supplemental Figures and Supplemental Tables

ID	Description	File
Supplemental	Promoter read depth patterns of highly and lowly expressed	In this file
Figure 1	genes for pregnancy complications	In this file
Supplemental	Functional enrichment analysis of genes with differential	In this file
Figure 2	promoter coverages	In this me
Supplemental	Oli i l har staitist of stale groups size in four schorts	I 41-1- file
Table S1	Clinical characteristics of study pregnancies in four conorts	In this file
Supplemental		L. 41. :- 611-
Table S2	Clinical characteristics of nearing pregnancies	In this me
Supplemental	500 (historic and largest supressed serves in tissues	In a separated
Table S3	500 most highest- and lowest-expressed genes in ussues	excel file
Supplemental		In a separated
Table S4	lissue-specific genes of placenta and whole blood cells	excel file
Supplemental	miin -11 Aigeneg	In a separated
Table S5	The unexpressed genes in all tissues	excel file
Supplemental		In a separated
Table S6	Gene transcripts with differential read coverages at the p155	excel file
Supplemental	Functional annotation of genes with differential promoter	In this file
Table S7	coverage by retrieving literatures	In this file
Supplemental	The performance of classifiers for predicting pregnancy	In this file
Table S8	complications	In this file
Supplemental	The performance of the optimal gene combination in the	
Table S9	training cohort for macrosomia	In this file
Supplemental	The performance of the optimal gene combination in the	In this file
Table S10	training cohort for FGR	In this file
Supplemental	The performance of the optimal gene combination in the	L. 41. :- 611-
Table S11	training cohort for GDM	In this file
Supplemental	The performance of the optimal gene combination in the	In this file
Table S12	training cohort for PE	In this file
Supplemental		In 41 :- £11-
Table S13	The logistical regression equations of classifiers	in uns me
Supplemental	The performance of the optimal classifiers based on promoter	In this file
Table S14	profiling of tissue-specific genes	in uns me

Supplemental Table S15	The AUC comparison between different classifier sets	In this file
Supplemental Table S16	The performance of clinical features for predicting pregnancy complications	In this file
Supplemental Table S17	Functional annotation of genes in classifiers by retrieving literatures	In this file
Supplemental Table S18	Performance evaluation of the classifiers	In this file

Supplemental Figures and legends

Supplemental Figures

Supplemental Figure 1. Promoter read depth patterns of highly and lowly expressed genes for pregnancy complications. Mean expression levels of the 500 most- (Top500, red) and least-expressed (Bottom500, blue) genes in the placenta and their promoter read coverages of the cfDNA derived from pregnancies with PE (a), GDM (b) and FGR (c). Mean expression levels of the 500 most- and least-expressed genes in blood cells and their promoter read coverages of the cfDNA derived from pregnancies with PE (d) and GDM (e). FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia

Supplemental Figure 2. Functional enrichment analysis of genes with differential promoter coverages. (a) MA. (b) FGR. (c) GDM. (d) PE. MA = macrosomia. FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia

Supplementary Tables

		C	estational a	ige at sampli	ng		Maternal age				
		Training	Internal	External	External		Training	Internal	External	External	
				1	2				1	2	
	Case 16.6 <u>+</u> 3. 15.0+2 16.4+2.4		196129		33.3 <u>+</u> 3.	35.7 <u>+</u> 2.	24.0+2.4	20 6 5 0			
		5	13.9 <u>+</u> 3	10.4 <u>+</u> 3.4	10.0+3.0		6	1	54.0 <u>+</u> 5.4	<u>30.0+</u> 3.0	
	Contro	16.4 <u>+</u> 3.	15.0.2	16 4 2 2	199120		31.7 <u>+</u> 5.	32.1 <u>+</u> 5.	240.22	20.1+4.0	
MA	1	4	13.9 <u>+</u> 3.	10.4 <u>+</u> 3.5	18.8 <u>+</u> 3.9		0	1	54.0 <u>+</u> 5.5	50.1 <u>+</u> 4.9	
	p-valu										
	е	0.774	0.961	0.95	0.821).821		0.027	0.953	0.537	
FGR	Case	19.3 <u>+</u> 5.	18.8 <u>+</u> 6.	19.4 <u>+</u> 6.2	18.3 <u>+</u> 3.9		30.9 <u>+</u> 5.	31.5 <u>+</u> 3.	31.3 <u>+</u> 5.2	31.0 <u>+</u> 6.1	

Supplemental Table S1. Clinical characteristics of study pregnancies in four cohorts

		8	0				5	1			
	Contro	18.2 <u>+</u> 4.	18.4 <u>+</u> 5.	10.2+5.7	19.2 2 0		31.8 <u>+</u> 4.	31.9 <u>+</u> 4.	21 4 5 2	20.5+5.2	
	1	8	1	19.2 <u>+</u> 3.7	18.5 <u>+</u> 5.9		9	6	51.4 <u>+</u> 5.2	30.5 <u>+</u> 5.3	
	p-valu										
	е	0.297	0.909	1.000	0.929	-	0.386	0.629	0.970	0.705	
	Case	15.2 <u>+</u> 1.	15.2 <u>+</u> 1.	167+13	163+1.6		34.5 <u>+</u> 4.	34.5 <u>+</u> 3.	325153	33.615.4	
		8	9	10.7 <u>+</u> 1.5	10.5 <u>+</u> 1.0	-	0	5	32.3 <u>+</u> 3.3	<u> </u>	
GD	Contro	15.3 <u>+</u> 2.	15.2 <u>+</u> 2.	167+13	16 3+1 3		32.9 <u>+</u> 5.	32.7 <u>+</u> 4.	32 1+5 1	33 3+3 8	
М	1	0	0	10.7 <u>+</u> 1.3	10.5 <u>+</u> 1.5	-	1	4	<u>52.1</u> <u>+</u> 5.1	55.5 <u>+</u> 5.0	
	p-valu										
	е	0.519	0.990	0.858	0.972		0.006	0.019	0.813	0.899	
	Case	16.8 <u>+</u> 2.	16.4 <u>+</u> 2.	16.9+1.6	/		33.8 <u>+</u> 5.	36.4 <u>+</u> 2.	33 3+4 8	/	
		2	3	10.9 <u>+</u> 1.0	/	-	5	9	<u> </u>	/	
DE	Contro	16.2 <u>+</u> 2.	16.3 <u>+</u> 2.	17 1+1 6	/		32.9 <u>+</u> 0.	35.3 <u>+</u> 0.	32.8±0.7	/	
I L	1	3	2	17.1 <u>+</u> 1.0	/		4	2	52.0 <u>+</u> 0.7	/	
	p-valu										
	е	0.903	0.925	0.659	/		0.357	0.188	0.664	/	

Data are mean \pm standard deviation. p = Mann-Whitney U test. MA = macrosomia. FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia

	Range	Number (n=300)
	<u><</u> 20	3
	21-25	29
Maternal age (years)	26-30	56
	31-35	139
	<u>></u> 36	73
Costational aga at compling (weaks)	<u><</u> 12	23
Gestational age at sampling (weeks)	13-28	277

Supplemental lable 52. Chinear characteristics of heating pregnancies

Supplemental Table S7. Functional annotation of genes with differential promoter coverage

	Function	PMID
	Deidensel en ette service eine die enderen	20817666
ЛЛА	Epidermal growth factor receptor signaling pathway	15592299
MA	Behavior	25256661
	Regulation of cellular protein localization	12646062
	Infactions disease	12933859
	Infectious disease	18482615
	Metabolism of RNA	2581828
	Lung epithelium development	11536449
ECD	Positive regulation of protein transport	19144403
FUK	Deculation of blood simulation	11169323
-		11864679
	Regulation of autophagy	22815878
	Neural precursor cell proliferation	25720426
	Platelet activation	8193094
CDM		12937895
UDM		26508738
	Fatty acid matabolism	18849305
		18986856
	Inner ear receptor cell development	20657326
	Microtubule cytoskeleton organization	15042020
	PI3K-Akt signaling pathway	20488538
PE	Regulation of cellular protein localization	12389018
	Histone H4 acetylation	31343798
	Learning or memory	28322777
	Cell morphogenesis involved in differentiation	23276825

by retrieving literatures

PMID=PubMed Unique Identifier

		Perform	nance	
	AUC (95% CI)	Accuracy (%)	Sensitivity (%)	Specificity (%)
Training	cohort		, , , , , , , , , , , , , , , , , , ,	F
C _{MA-A}	0.766 (0.678-0.854)	80.0	71.0	82.3
C _{FGR-A}	0.774 (0.700-0.847)	79.5	73.8	81.0
C _{GDM-A}	0.720 (0.674-0.765)	72.6	70.6	73.3
C _{PE-A}	0.813 (0.727-0.898)	81.5	80.8	81.7
Internal	cohort			
C _{MA-A}	0.817 (0.689-0.945)	84.6	76.9	86.5
C _{FGR-A}	0.813 (0.703-0.922)	81.3	81.3	81.3
C _{GDM-A}	0.732 (0.663-0.800)	72.7	74.1	72.2
C _{PE-A}	0.898 (0.797-0.999)	89.1	90.9	88.6
External	cohort-1			
C _{MA-A}	0.791 (0.721-0.861)	80.5	76.7	81.4
C _{FGR-A}	0.763 (0.684-0.843)	79.5	71.1	81.6
C _{GDM-A}	0.699 (0.604-0.794)	71.0	67.7	72.0
C _{PE-A}	0.804 (0.710-0.899)	81.7	78.3	82.6
External	cohort-2			
C _{MA-A}	0.762 (0.675-0.848)	78.8	71.9	80.5
C _{FGR-A}	0.765 (0.684-0.845)	76.5	76.5	76.5
C _{GDM-A}	0.711 (0.642-0.780)	71.0	71.4	70.8
C _{PE-A}	/	/	/	/
All subje	ets			
C _{MA-A}	0.779 (0.736-0.823)	80.3	73.9	81.9
C _{FGR-A}	0.773 (0.732-0.814)	78.9	74.6	80.0
C _{GDM-A}	0.718 (0.687-0.749)	72.1	71.2	72.4
C _{PE-A}	0.825 (0.770-0.880)	83.0	81.7	83.3

Supplemental Table S8. The performance of classifiers for predicting pregnancy complications

AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval.

	Gana	Cut off [†]	Performances							
	Gene	Cut-on	AUC (95% CI)	Acc(%)	Sen(%)	Spe(%)				
	SMC3	9.86	0.613(0.523-0.703)	53.6	74.2	48.4				
	MASTL	7.41	0.621(0.523-0.719)	64.5	58.1	66.1				
	CREM	9.54	0.653(0.560-0.747)	63.9	67.7	62.9				
	C1QTNF12	7.45	0.633(0.538-0.729)	74.2	45.2	81.5				
	MLXIP	7.41	0.577(0.480-0.673)	67.1	41.9	73.4				
Individual	MAP3K9	6.91	0.577(0.480-0.673)	67.1	41.9	73.4				
gene	IGSF6	15.93	0.597(0.498-0.695)	64.5	51.6	67.7				
in C_{MA-A}	APC2	7.88	0.633(0.536-0.730)	70.3	51.6	75.0				
	GPM6A	20.75	0.577(0.478-0.676)	59.4	54.8	60.5				
	TMEM128	17.56	0.609(0.511-0.707)	64.5	45.2	62.9				
	NIPBL	7.48	0.540(0.442-0.639)	59.4	54.8	37.1				
	TMEM184A	11.49	0.637(0.540-0.734)	67.1	58.1	69.4				
	12-genes combination	/	0.766(0.678-0.854)	80.0	71.0	82.3				
	VAV3	16.71	0.625(0.527-0.723)	69.0	51.6	73.4				
	COL4A1	17.20	0.633(0.536-0.73)	66.5	58.1	68.6				
	LEPROT	9.84	0.569(0.471-0.666)	54.2	61.3	52.4				
Individual	PROCR	20.72	0.621(0.529-0.713)	56.8	71.0	53.2				
marviduai	CRIM1	7.10	0.601(0.502-0.699)	65.2	51.6	68.6				
in C	C5orf15	13.32	0.577(0.478-0.675)	57.4	58.1	57.3				
III C _{MA-P}	CRH	21.78	0.613(0.521-0.705)	55.5	71.0	51.6				
	TMEM2	8.82	0.641(0.551-0.731)	58.1	74.2	54.0				
	CTSL	18.85	0.573(0.474-0.672)	58.7	54.8	59.7				
	9-genes combination	/	0.746(0.657-0.835)	76.8	71.0	78.2				
	HSPA6	13.34	0.573(0.474-0.672)	60.7	51.6	62.9				
	SYF2	14.56	0.589(0.494-0.683)	53.6	67.7	50.0				
	CCPG1	12.88	0.561(0.461-0.660)	56.8	54.8	57.3				
	PLEKHO2	7.08	0.561(0.461-0.660)	56.8	54.8	57.3				
	TLE3	9.50	0.613(0.517-0.709)	59.4	64.5	58.1				
Individual	SUPT4H1	11.21	0.605(0.510-0.700)	56.1	67.7	53.2				
gene	BID	13.19	0.609(0.514-0.703)	56.8	67.7	54.0				
in C_{MA-W}	CAB39	13.24	0.657(0.565-0.749)	62.6	71.0	60.5				
	PF4V1	22.83	0.540(0.441-0.64)	53.6	54.8	53.2				
	PBX2	9.49	0.552(0.453-0.652)	55.5	54.8	55.7				
	MGAM	20.75	0.561(0.461-0.660)	58.7	51.6	60.5				
	SDCBP	13.43	0.548(0.450-0.647)	52.9	58.1	51.6				
	12-genes combination	/	0.718(0.628-0.808)	72.3	71.0	72.6				

Supplemental Table S9. The performance of the optimal gene combination in the training cohort for macrosomia

	IFIT1	19.19	0.625(0.531-0.719)	59.4	67.7	57.3
	VAV3	16.71	0.625(0.527-0.723)	69.0	51.6	73.4
	HSPA6	13.34	0.573(0.474-0.672)	60.7	51.6	62.9
	COL4A1	17.20	0.633(0.536-0.73)	66.5	58.1	68.6
	SUSD6	9.25	0.613(0.518-0.707)	57.4	67.7	54.8
T 1 1 1	TLE3	9.50	0.613(0.517-0.709)	59.4	64.5	58.1
gene	WFDC1	25.70	0.625(0.527-0.723)	69.0	51.6	73.4
	ARRB2	6.66	0.637(0.540-0.734)	67.1	58.1	69.4
III C _{MA-PW}	PROCR	20.72	0.621(0.529-0.713)	56.8	71.0	53.2
	MMP11	17.18	0.629(0.531-0.727)	67.7	54.8	71.0
	C5orf15	13.32	0.577(0.478-0.675)	57.4	58.1	57.3
	TMEM2	8.82	0.641(0.551-0.731)	58.1	74.2	54.0
	CTSL	18.85	0.573(0.474-0.672)	58.7	54.8	59.7
	13-genes combination	/	0.726(0.633-0.818)	77.4	64.5	80.7

[†]The optimal cut-off point of each gene was defined when the value of (sensitivity+specificity)/2 reached a maximum. AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc = accuracy. Sen = sensitivity. Spe = specificity.

	C		Performances							
	Gene	Cuton	AUC (95 CI)	Acc (%)	Sen (%)	Spe (%)				
	CD63	9.31	0.649(0.572-0.726)	59.5	73.8	56.0				
	TCF7	12.08	0.604(0.524-0.684)	55.2	69.1	51.8				
	OR4P4	10.06	0.592(0.512-0.674)	54.8	66.7	51.8				
	VPS35	9.33	0.554(0.472-0.635)	48.6	66.7	44.1				
	DNPEP	11.49	0.607(0.528-0.686)	54.3	71.4	50.0				
Individual	FAM214B	9.86	0.577(0.495-0.660)	53.8	64.3	51.2				
in C	PTDSS2	7.20	0.598(0.514-0.682)	65.7	50.0	69.6				
III C _{FGR-A}	GPAT4	13.26	0.607(0.524-0.691)	61.4	59.5	61.9				
	LANCL2	16.26	0.577(0.493-0.662)	59.5	54.8	60.7				
	VAV1	10.99	0.705(0.637-0.774)	62.9	83.3	57.7				
	HPS5	10.53	0.622(0.539-0.705)	63.8	59.5	64.9				
	DPP6	9.31	0.610(0.535-0.686)	51.9	76.2	45.8				

Supplemental Table S10. The performance of the optimal gene combination in the training cohort for FGR

		PNRC2			13	3.02	0.571(0.487-0.	656)	5	5.7	5	9.5	5	4.8
		13-gene combinati		ation		/	0.774(0.700-0.	847)	7	9.5	7	3.8	8	1.0
			ADM		12.57		0.628(0.549-0.	707)	57.6		71.4	5	4.2	
	Н		HSD17B1		1:	5.52	0.622(0.540-0.704) 0.619(0.538-0.700)		6	1.0	6	64.3	6	0.1
			MMP11		12.60				5	9.0	6	6.7	5	7.1
			FBLN1		1:	5.11	0.569(0.486-0.	651)	5	2.4	6	4.3	4	9.4
			SLC5A6		14	4.06	0.625(0.550-0.	700)	5	4.3	7	6.2	4	8.8
	Indiv	idual	CRIM1		9	.86	0.589(0.509-0.	670)	5	2.9		69	4	8.8
	gene		ACVR2B		12	2.74	0.619(0.540-0.	698)	5	6.2	7	1.4	5	2.4
	in C _F	GR-P	RYBP		7	.62	0.542(0.460-0.	624)	6	3.8	3	8.1	7	0.2
			PRKAG2		1	1.83	0.568(0.484-0.	653)	5	5.2	5	9.5	5	4.2
			BZW2		1	1.02	0.613(0.531-0.	695)	5	9.5	6	4.3	5	8.3
			AZIN1		6	5.74	0.521(0.438-0.	603)	6	0.5	3	8.1	6	6.1
			LAMC3		1′	7.83	0.679(0.605-0.	752)	6	1.4	7	8.6	5	7.1
		12-ge	enes combination	/		0.71	1 (0.633-0.790)	72.	4	69.	0	73.	2	
			MAP3K11 9.1			0.536	6(0.451-0.621)	52.	9	54.	8 52.		4	
			PLXNC1	9.3	1	0.586	6(0.503-0.670)	56.	7	61.	9	55.	4	
			CAP1	9.1	0	0.548(0.463-0.633)		54.	54.8		54.8 54		8	
			NUMB	9.3	3	0.563(0.478-0.648)		58.6		52.	52.4		1	
Indiv	vidual		MLH3 15.8		36	0.586(0.504-0.669)		55.	2	64.	3	53.	0	
gene			VMP1	17.0)8	0.566	6(0.481-0.650)	60.5		50.0		63.	1	
in C _I	GR-W		ARPC2		2	0.63	1(0.550-0.712)	61.0		66.	7	59.	5	
			PPP3R1	6.3	7	0.607	7(0.530-0.684)	52.9		73.8		47.	6	
			ARAP3	12.2	26	0.563(0.478-0.647)		57.1		54.	8	57.	7	
			LST1	14.6	60	0.604	4(0.521-0.687)	59.5 6		61.	9	58.	9	
		10-ge	enes combination	/		0.670	0(0.588-0.751)	70.	0	61.	9	72.	0	
			ADM	12.5	57	0.628	8(0.549-0.707)	57.	6	71.	4	54.	2	
			CAP1	9.1	0	0.527	7(0.442-0.612)	51.	4	54.	8	50.	6	
NUME MLH3		NUMB	9.3	3	0.586	6(0.504-0.669)	55.	2	64.	3	53.	0		
		MLH3	15.8	86	0.628	8(0.548-0.708)	59.	1	69.	1	56.	6		
	SERPINB2		SERPINB2	24.3	34	0.598	8(0.515-0.681)	58.	6	61.	9	57.	7	
			ACVR2B	12.7	/4	0.619	9(0.540-0.698)	56.	2	71.	4	52.4		
			PRKAG2	11.8	33	0.569	9(0.484-0.653)	55.	2	59.	5	54.	2	
			PILRA	18.1	0	0.563	3(0.478-0.647)	57.	1	54.	8	57.7	1	
			FAM49B	13.4	8	0.604	4(0.521-0.687)	59.	5	61.	9	58.	9	
		10-ge	enes combination	/		0.688	8 (0.608-0.768)	70.	0	66.	7	70.	8	

[†]The optimal cut-off point of each gene was defined when the value of (sensitivity+specificity)/2 reached a maximum. AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc = accuracy. Sen = sensitivity. Spe = specificity.

	Cana	Cutoff	Performances						
	Gene	Cuton	AUC (95% CI)	Acc(%)	Sen(%)	Spe(%)			
	CC2D2B	18.38	0.579(0.529-0.629)	61.1	51.6	64.3			
	NAT10	16.96	0.616(0.570-0.663)	56.8	71.4	51.9			
	SIPA1	16.83	0.614(0.568-0.660)	54.8	74.6	48.2			
	ZNF565	13.92	0.583(0.537-0.630)	51.0	73.0	43.7			
T., d'' d., .1	ZNF552	16.80	0.582(0.536-0.628)	50.4	73.8	42.6			
Individual	WDR35	17.97	0.549(0.500-0.600)	50.6	63.5	46.3			
in C	MICALL1	10.68	0.583(0.533-0.633)	60.5	54.0	62.7			
III C _{GDM-A}	CTNNB1	13.73	0.573(0.525-0.620)	51.4	69.1	45.5			
	CLOCK	13.93	0.575(0.527-0.624)	53.0	66.7	48.4			
	BCKDHB	14.44	0.573(0.523-0.623)	56.2	59.5	55.0			
	TGIF2LY	7.26	0.593(0.544-0.642)	56.8	64.3	54.2			
	11-genes combination	/	0.720(0.674-0.765)	72.6	70.6	73.3			
	RBMS2	14.89	0.561(0.513-0.609)	50.0	31.8	56.1			
	IFI6	20.20	0.564(0.513-0.614)	57.1	54.8	57.9			
	HSD17B2	22.41	0.579(0.529-0.629)	59.1	55.6	60.3			
	DLX4	17.42	0.565(0.515-0.615)	55.4	58.7	54.2			
	CSHL1	20.22	0.550(0.500-0.600)	53.2	58.7	51.3			
Individual	LGALS14	23.77	0.564(0.514-0.613)	54.0	61.1	51.6			
gene	EPS8L1	15.41	0.554(0.504-0.604)	53.8	58.7	52.1			
in $C_{\text{GDM-P}}$	PROCR	20.10	0.546(0.496-0.597)	56.9	50.0	59.3			
	DAG1	9.64	0.554(0.504-0.604)	54.6	57.1	53.7			
	SQSTM1	7.70	0.534(0.484-0.585)	55.2	50.0	56.9			
	AZIN1	7.91	0.515(0.464-0.565)	52.2	50.0	52.9			
	CTSL	16.61	0.586(0.538-0.634)	54.6	67.0	50.5			
	12-genes combination	/	0.652(0.604-0.700)	66.5	62.7	67.7			

Supplemental Table S11. The performance of the optimal gene combination in the training cohort for GDM

	CREBBP	7.26	0.519(0.468-0.569)	52.0	51.6	52.1
	SUPT4H1	10.57	0.566(0.518-0.615)	51.6	66.7	46.6
	CTBS	15.23	0.593(0.543-0.642)	57.5	62.7	55.8
	ARPC2	8.37	0.534(0.484-0.585)	55.2	50.0	56.9
Individual	ASXL2	10.98	0.523(0.472-0.573)	51.0	54.8	49.7
gene	PF4	18.60	0.545(0.495-0.595)	56.8	50.0	59.0
III C _{GDM-W}	HIST1H2BC	10.98	0.570(0.520-0.620)	55.8	59.5	54.5
	SDCBP	10.69	0.558 (0.51-0.606)	50.0	67.5	44.2
	TOPORS	14.83	0.562(0.513-0.611)	52.6	63.5	48.9
	9-genes combination	/	0.626(0.576-0.675)	64.5	58.7	66.4
	FRAT1	6.94	0.554(0.504-0.605)	57.3	51.6	59.3
	IFI6	20.20	0.564(0.513-0.614)	57.1	54.8	57.9
	HSD11B2	11.15	0.523(0.472-0.573)	52.6	51.6	52.9
	HSD17B2	22.41	0.579(0.529-0.629)	59.1	55.6	60.3
	DLX4	17.42	0.565(0.515-0.615)	55.4	58.7	54.2
Individual	CSHL1	20.22	0.550(0.500-0.600)	53.2	58.7	51.3
gene	LGALS14	23.77	0.564(0.514-0.613)	53.9	61.1	51.6
in C _{GDM-PW}	ARPC2	8.37	0.534(0.484-0.585)	55.2	50.0	56.9
	HIST1H2BC	10.98	0.570(0.520-0.620)	55.8	59.5	54.5
	TMEM2	10.27	0.550(0.500-0.600)	54.8	55.6	54.5
	VGLL1	23.50	0.537(0.487-0.588)	53.6	54.0	53.4
	11-genes combination	/	0.647(0.598-0.696)	67.3	59.5	69.8

[†]The optimal cut-off point of each gene was defined when the value of (sensitivity+specificity)/2 reached a maximum. AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc = accuracy. Sen = sensitivity. Spe = specificity.

	Gene Cutoff [†] Performances					
	Gene	Cuton	AUC (95% CI)	Acc(%)	Sen(%)	Spe(%)
	NFKB2	8.37	0.625(0.520-0.730)	60.8	65.4	59.6
	EHBP1L1	9.36	0.639(0.540-0.739)	58.5	73.1	54.8
	AMOTL1	13.10	0.606(0.498-0.713)	62.3	57.7	63.5
	VSIG10	12.19	0.615(0.509-0.722)	61.5	61.5	61.5
Individual	USP10	9.75	0.577(0.469-0.685)	60.0	53.9	61.5
gene	ZSWIM4	6.26	0.582(0.476-0.687)	67.7	42.3	74.0
in C_{PE-A}	ZNF565	13.17	0.625(0.519-0.731)	63.1	61.5	63.5
	BZW1	8.31	0.625(0.520-0.730)	60.8	65.4	59.6
	ATP6V1E2	10.58	0.606(0.499-0.712)	60.0	61.5	59.6
	CDX1	22.03	0.649(0.544-0.755)	66.9	61.5	68.3
	10-genes combination	/	0.813(0.727-0.898)	81.5	80.8	81.7
	ITIH5	12.39	0.6394(0.54-0.739)	58.5	73.1	54.8
	ST3GAL4	13.38	0.606(0.498-0.713)	62.3	57.7	63.5
	EVA1B	16.40	0.615(0.509-0.722)	61.5	61.5	61.5
	PSG1	11.12	0.582(0.476-0.687)	67.7	42.3	74
	PSG7	24.95	0.635(0.529-0.741) 64.0		61.5	65.4
Individual	SDC1	11.15	0.625(0.519-0.731)	63.1	61.5	63.5
gene	AGTR1	29.67	0.707(0.616-0.797)	64.6	80.8	60.6
in C _{PE-P}	RYBP	8.32	0.615(0.511-0.72)	59.2	65.4	57.7
	AFF1	14.89	0.625(0.520-0.73)	60.8	65.4	59.6
	TNS3	15.16	0.606(0.499-0.712)	60.0	61.5	59.6
	GNE	12.46	0.659(0.573-0.7442)	0.7442) 54.6		47.1
	HMGB3	11.59	0.649(0.544-0.755)	66.9	61.5	68.3
	12-genes combination	/	0.736(0.639-0.832)	73.85	73.08	74.04
	PXN	14.45	0.611(0.503-0.718)	67.7	50.0	72.1
	CAP1	8.14	0.596(0.490-0.703)	58.5	61.5	57.7
	MLH3	13.57	0.51(0.400-0.619)	51.5	50.0	51.9
Individual	CCPG1	16.09	0.558(0.449-0.666)	56.9	53.8	57.7
gene	CRLF3	10.80	0.611(0.504-0.717)	60.8	61.5	60.6
in C _{PE-W}	VMP1	16.70	0.563(0.456-0.669)	53.1	61.5	51.0
	CTBS	17.31	0.591(0.484-0.699)	60.0	57.7	60.6
	VASP	12.21	0.572(0.470-0.675)	50.0	69.2	45.2
	CAB39	6.63	0.644 (0.539-0.75)	73.1	50.0	78.8

Supplementary Table S12. The performance of the optimal gene combination in the training cohort for PE

	PPP3R1	9.46	0.625(0.520-0.730)	60.8	65.4	59.6
	13-genes combination	/	0.683(0.580-0.786)	70.0	65.4	71.2
	ITIH5	12.39	0.673(0.574-0.772)	63.9	73.1	61.5
	PXN	14.45	0.611(0.503-0.718)	67.7	50.0	72.1
	CAP1	8.14	0.596(0.49-0.703)	58.5	61.5	57.7
	EFS	10.64	0.625(0.518-0.732)	65.4	57.7	67.3
	CCPG1	16.09	0.558(0.449-0.666)	56.9	53.8	57.7
T 1º º 1 1	PSG1	11.12	0.639(0.535-0.744)	63.1	65.4	62.5
Individual	VASP	12.21	0.572(0.470-0.675)	50.0	30.8	54.8
in C	PPP3R1	9.46	0.625(0.520-0.730)	60.8	65.4	59.6
III CPE-PW	ABHD5	9.36	0.591(0.507-0.676)	56.2	15.4	66.4
	RYBP	8.32	0.615(0.508-0.723)	66.2	53.9	69.2
	IRF2	6.61	0.606(0.499-0.713)	66.9	50.0	71.2
	TNS3	15.16	0.611(0.503-0.718)	63.1	57.7	64.4
	ZCCHC6	12.81	0.601(0.498-0.704)	54.6	69.2	51.0
	13-genes combination	/	0.702(0.599-0.805)	75.4	61.5	78.9

[†]The optimal cut-off point of each gene was defined when the value of (sensitivity+specificity)/2 reached a maximum. AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc = accuracy. Sen = sensitivity. Spe = specificity.

Classifier	Equation (Logit [p=pregnancies with MA/FGR/GDM/PE])	Threshold
C _{MA-A}	C_{MA-A} = 2.180 + 0.605 × SMC3 - 1.204 × MASTL + 1.366 × CREM - 1.295 ×	
	$C1QTNF12 - 0.471 \times MLXIP - 0.811 \times MAP3K9 - 1.284 \times IGSF6 - 1.347 \times APC2 - 0.471 \times MLXIP - 0.811 \times MAP3K9 - 0.284 \times IGSF6 - 0.347 \times APC2 - 0.347 \times MLXIP - 0.811 \times MAP3K9 - 0.284 \times IGSF6 - 0.347 \times APC2 - 0.347 \times MLXIP - 0.347 \times MLP - 0.347$	0.277
	$0.504 \times GPM6A + 1.048 \times TMEM128 - 0.057 \times NIPBL - 1.652 \times TMEM184A$	
C _{MA-P}	$C_{MA-P} = -2.007 + 1.269 \times VAV3 + 1.405 \times COL4A1 + 0.240 \times LEPROT - 1.221 \times 1000 \times 10000 \times 100000 \times 10000 \times 100000000$	
	$PROCR - 0.893 \times CRIM1 - 0.926 \times C5 or f15 - 1.198 \times CRH + 1.201 \times TMEM2 +$	0.220
	$1.213 \times \text{CTSL}$	
	C_{MA-W} = - 2.556 - 1.003 × HSPA6 + 1.136 × SYF2 + 0.602 × CCPG1 - 0.1503 ×	
C _{MA-W}	$PLEKHO2 + 0.887 \times TLE3 + 1.224 \times SUPT4H1 - 1.528 \times BID + 1.879 \times CAB39 - 0.0000 \times CAB39 - 0.00000 \times CAB39 - 0.00000 \times CAB39 - 0.00000 \times CAB39 - 0.00000 \times CAB39 - 0.0000000000000000000000000000000000$	0.188
	$0.208 \times PF4V1 + 0.402 \times PBX2 - 1.011 \times MGAM - 0.597 \times SDCBP$	
C _{MA-PW}	$C_{MA-PW} = -4.382 + 0.958 \times IFIT1 + 1.035 \times VAV3 - 0.982 \times HSPA6 + 1.251 \times IFIT1 + 1.035 \times IFI$	
	$COL4A1 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 1.266 \times MMP11 + 1.461 \times SUSD6 + 0.471 \times TLE3 - 0.845 \times ARRB2 + 0.471 \times SUSD6 + 0.471 \times SUS$	0.250
	$1.457 \times CAB39 - 1.064 \times CRIM1 - 1.379 \times C5 or f15 + 1.175 \times TMEM2 + 1.168 \times C5 Or f15 + 1.175 \times TMEM2 + 1.168 \times C100 \times C1000 \times C100 \times C1000 \times C10000 \times C10000 \times C1000 \times C1000 \times C10000 \times C100000 \times C10000000 \times C100000 \times C10000000000$	

Supplemental Table S13. The logistical regression equations of classifiers

	CTSL	
	$C_{FGR\text{-}A}\text{=}-1-0.797\times HPS5-1.142\times PTDSS2+0.846\times OR4P4+0.636\times PNRC2+0.846\times OR4P4+0.836\times PNRC2+0.846\times OR4P4+0.846\times PNRC2+0.846\times OR4P4+0.846\times PNRC2+0.846\times OR4P4+0.846\times PNRC2+0.846\times OR4P4+0.846\times PNRC2+0.846\times OR4P4+0.846\times PNRC2+0.846\times PNRC2+0.840\times PNRC2+0.846\times PNR$	
C _{FGR-A}	$1.208 \times CD63 + 0.310 \times VPS35 - 1.903 \times VAV1 - 1.313 \times DNPEP - 1.370 \times TCF7 + 0.0000000000000000000000000000000000$	0.190
	$0.673 \times DPP6 + 0.574 \times LANCL2 - 1.288 \times GPAT4 + 1.238 \times FAM214B$	
	$C_{FGR-P} = 0.360 - 1.489 \times ADM - 0.704 \times HSD17B1 - 0.969 \times MMP11 - 0.345 \times 10^{-10} \times$	
C _{FGR-P}	FBLN1 – 1.229 × SLC5A6 + 1.218 × CRIM1 – 1.079 × ACVR2B – 0.389 × RYBP –	0.190
	$0.273 \times \text{PRKAG2} - 0.961 \times \text{BZW2} - 0.154 \times \text{AZIN1} + 1.402 \times \text{LAMC3}$	
	$C_{FGR-W} = -\ 2.393 - 0.538 \times MAP3K11 + 0.5826 \times PLXNC1 + 0.23 \times CAP1 + 0.619 \times 0.0000 \times 0.00000 \times 0.00000000$	
C _{FGR-W}	NUMB + $0.849 \times MLH3 + 0.764 \times VMP1 - 1.209 \times ARPC2 + 0.949 \times PPP3R1 + 0.0000 \times PPP3R1 + 0.00000 \times PPP3R1 + 0.0000000000000000000000000000000000$	0.222
	$0.480 \times ARAP3 - 1.138 \times LST1$	
	C_{FGR-PW} = - 1.867 - 1.154 × ADM + 0.441 × CAP1 + 0.700 × NUMB + 1.166 × MLH3	
C _{FGR-PW}	+ 0.852 × SERPINB -1.105 × ACVR2B - 0.211× PRKAG2+0.545 × PILRA - 1.030 ×	0.208
	FAM49B	
	C_{GDM-A} = 0.957 + 0.565 × CC2D2B - 1.060 × NAT10 - 1.070 × SIPA1 - 0.620 ×	
C _{GDM-A}	ZNF565 – 0.805 × ZNF552 – 0.367 × WDR35 + 0.559 × MICALL1 – 0.653 ×	0.259
	CTNNB1 – $0.529 \times CLOCK$ – $0.674 \times BCKDHB$ – $0.693 \times TGIF2LY$	
	$C_{GDM\text{-}P}\text{=}-0.886+0.699\times RBMS2-0.529\times IFI6-0.867\times HSD17B2-0.496\times HSD$	
C _{GDM-P}	$DLX4 - 0.701 \times CSHL1 - 0.676 \times LGALS14 + 0.469 \times EPS8L1 + 0.439 \times PROCR + 0.$	0.251
	$0.587 \times DAG1 - 0.350 \times SQSTM1 - 0.179 \times AZIN1 + 0.812 \times CTSL$	
	$C_{GDM-W}\!\!=\!-1.82265-0.073\times CREBBP + 0.595\times SUPT4H1 + 0.728\times CTBS - 0.202\times CTBS - 0$	
C _{GDM-W}	$ARPC2 + 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times ASXL2 - 0.403 \times PF4 + 0.544 \times HIST1H2BC + 0.398 \times SDCBP - 0.145 \times HIST1H2BC + 0.145 \times SDCBP - 0.145 \times HIST1H2BC + 0.145 \times SDCBP - 0.145 \times SDCB$	0.261
	$0.626 \times \text{TOPORS}$	
	$C_{\text{GDM-PW}}$ =-0.217 - 0.456 × FRAT1 - 0.489 × IFI6 + 0.159 × HSD11B2 - 0.713 ×	
C _{GDM-PW}	$HSD17B2 - 0.617 \times DLX4 - 0.568 \times CSHL1 - 0.563 \times LGALS14 - 0.115 \times ARPC2 + 0.0112 \times CSHL1 - 0.0012 \times CSHL1$	0.263
	$0.662 \times HIST1H2BC + 0.407 \times TMEM2 + 0.469 \times VGLL1$	
	C_{PE-A} = -0.655 - 1.146 × NFKB2 + 1.350 × EHBP1L1 - 1.371 × AMOTL1 - 0.784 ×	
C _{PE-A}	$VSIG10 - 1.047 \times USP10 - 1.226 \times ZSWIM4 + 1.242 \times ZNF565 - 0.983 \times BZW1 + 0.0000 \times DCOM + 0.00000 \times DCOM + 0.00000 \times DCOM + 0.00000 \times DCOM + 0.00000 \times DCOM + 0.0000000000000000000000000000000000$	0.258
	$0.761 \times ATP6V1E2 + 1.842 \times CDX1$	
	$C_{PE-P} = -1.745 + 1.500 \times ITIH5 - 0.524 \times ST3GAL4 - 0.301 \times EVA1B - 1.22 \times PSG1$	
C _{PE-P}	+ $1.056 \times PSG7 - 1.267 \times SDC1 - 1.45 \times AGTR1 - 1.065 \times RYBP + 0.445 \times AFF1 + 1.056 \times PSG7 - 1.267 \times SDC1 - 1.45 \times AGTR1 - 1.065 \times RYBP + 0.445 \times AFF1 + 1.056 \times RYBP + 0.445 \times RYBP + 0.$	0.170
	$1.659 \times TNS3 - 0.163 \times GNE + 1.273 \times HMGB3$	
	$C_{PE\text{-}W} = -1.756 + 1.224 \times PXN - 0.480 \times CAP1 - 0.010 \times MLH3 + 0.140 \times CCPG1 + 0.010 \times MLH3 + 0.000 \times CCPG1 + 0.0000 \times CCPG1 + 0.000 \times CCPG1 + 0.000 \times CCPG1 + 0.000 \times C$	
C _{PE-W}	$0.786 \times CRLF3 - 0.605 \times VMP1 + 0.662 \times CTBS - 1.021 \times VASP - 1.228 \times CAB39 + 0.021 \times VASP - 0.021 \times VASP - 0.001 \times CAB39 + 0$	0.201
	1.536 × PPP3R1	
	$C_{PE-PW}\!\!=-1.6\overline{34+1.546\timesITIH5+0.825\timesPXN-0.656\timesCAP1-0.984\timesEFS+}$	
C _{PE-PW}	$0.358 \times CCPG1 - 1.066 \times PSG1 - 0.658 \times VASP + 1.379 \times PPP3R1 + 0.531 \times CCPG1 - 0.066 \times PSG1 - 0.0658 \times VASP + 0.000 \times PPP3R1 + 0.0000 \times PPP3R1 + 0.000 \times PPP3R1 + 0.000 \times PPP3$	0.216
	$ABHD5 - 0.461 \times RYBP - 0.973 \times IRF2 + 0.967 \times TNS3 - 0.440 \times ZCCHC6$	

In these equations, the gene coverage around TSSs ranging from -1 KB to +1 KB were substituted with the discretized value "one" when the level of each gene was larger than the corresponding cut-off (see *Supplemental Table S8-S11*); otherwise, it was substituted with the discretized value "zero". If the result of Logit p was larger than the corresponding threshold, the detected subject was predicted as pregnancy complications (MA, GFR, GDM, and PE); otherwise as non-obstetrical syndromes. MA = macrosomia. FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia.

Supplemental Table S14. The performance of the optimal classifiers based on promote
profiling of tissue-specific genes

	Whole blood s	maaifi	o gon	00	_	Disconta an	oifio	aonos		Whole blood-and plac			centa-specific		
	whole blood-s	specifi	c gen	65		r lacenta-sp	ecific	genes			genes				
	AUC (95% CI)	ACC	Sen	Spe		AUC (95% CI)	ACC	Sen	Spe		AUC (95% CI)	ACC	Sen	Spe	
Training	g cohort														
C _{MA-W}	0.718(0.628-0.808)	72.3	71.0	72.6	C _{MA-P}	0.746(0.657-0.835)	76.8	71.0	78.2	C _{MA-PW}	0.766 (0.678-0.854)	80.0	71.0	82.3	
C _{FGR-W}	0.670(0.588-0.751)	70.0	61.9	72.0	C _{FGR-P}	0.711(0.633-0.790)	72.4	69.0	73.2	C _{FGR-PW}	0.688(0.608-0.768)	70.0	66.7	70.8	
C _{GDM-W}	0.626(0.576-0.675)	64.5	58.7	66.4	C _{GDM-P}	0.652(0.604-0.701)	66.5	62.7	67.7	C _{GDM-PW}	0.647(0.598-0.696)	67.3	59.5	69.8	
C _{PE-W}	0.683(0.580-0.786)	70.0	65.4	71.2	C _{PE-P}	0.736(0.639-0.832)	73.8	73.1	74.0	C _{PE-PW}	0.702(0.599-0.805)	75.4	61.5	78.8	
Internal	cohort							•	•			•			
C _{MA-W}	0.625(0.472-0.778)	63.1	61.5	63.5	C _{MA-P}	0.644(0.492-0.796)	66.2	61.5	67.3	C _{MA-PW}	0.635(0.482-0.787)	64.6	61.5	65.4	
C _{FGR-W}	0.586(0.447-0.725)	63.8	50.0	67.2	C _{FGR-P}	0.570(0.431-0.710)	61.3	50.0	64.1	C _{FGR-PW}	0.625(0.487-0.763)	66.3	56.3	68.8	
C _{GDM-W}	0.562(0.485-0.639)	59.3	50.0	62.3	C _{GDM-P}	0.679(0.606-0.753)	70.4	63.0	72.8	C _{GDM-PW}	0.633(0.557-0.708)	65.3	59.3	67.3	
C _{PE-W}	0.739(0.586-0.891)	74.5	72.7	75.0	C _{PE-P}	0.750(0.598-0.902)	76.4	72.7	77.3	C _{PE-PW}	0.750(0.598-0.902)	76.4	72.7	77.3	
External	l cohort-1							•	•			•			
C _{MA-W}	0.619(0.537-0.702)	64.2	58.1	65.7	C _{MA-P}	0.663(0.582-0.744)	69.8	60.5	72.1	C _{MA-PW}	0.640(0.557-0.722)	68.8	55.8	72.1	
C _{FGR-W}	0.602(0.514-0.690)	66.3	50.0	70.4	C _{FGR-P}	0.635(0.548-0.722)	71.6	50.0	77.0	C _{FGR-PW}	0.625(0.537-0.713)	66.8	55.3	69.7	
C _{GDM-W}	0.610(0.535-0.685)	64.7	53.6	68.5	C _{GDM-P}	0.554(0.478-0.629)	58.0	50.0	60.7	C _{GDM-PW}	0.616(0.542-0.690)	62.1	60.7	62.5	
C _{PE-W}	0.674(0.562-0.785)	71.3	60. 9	73.9	C _{PE-P}	0.625(0.512-0.738)	63.5	60.9	64.1	C _{PE-PW}	0.679(0.572-0.787)	67.0	69.6	66.3	
External	l cohort-2														
C _{MA-W}	0.598(0.501-0.694)	65.6	50.0	69.5	C _{MA-P}	0.520(0.422-0.617)	55.0	46.9	57.0	C _{MA-PW}	0.555(0.457-0.652)	60.6	46.9	64.1	
C _{FGR-W}	0.559(0.465-0.653)	54.1	58.8	52.9	C _{FGR-P}	0.500(0.416-0.584)	64.1	26.5	73.5	C _{FGR-PW}	0.533(0.441-0.625)	62.4	38.2	68.4	
C _{GDM-W}	0.484(0.382-0.586)	51.6	41.9	54.8	C _{GDM-P}	0.489(0.387-0.591)	52.4	41.9	55.9	C _{GDM-PW}	0.5484(0.446-0.651)	58.1	48.4	61.3	
C _{PE-W}	/	/	/	/	C _{PE-P}	/	/	/	/	C _{PE-PW}	/	/	/	/	
All subje	ects														
C _{MA-W}	0.640(0.591-0.689)	66.6	59.7	68.3	C _{MA-P}	0.644(0.595-0.693)	67.2	59.7	69.1	C _{MA-PW}	0.649 (0.600-0.698)	69.1	58.0	71.8	
C _{FGR-W}	0.611(0.563-0.658)	64.0	56.2	66.0	C _{FGR-P}	0.616(0.569-0.664)	68.6	50.0	73.3	C _{FGR-PW}	0.621 (0.574-0.668)	66.7	54.6	69.6	
C _{GDM-W}	0.593(0.559-0.627)	62.0	53.9	64.7	C _{GDM-P}	0.618(0.584-0.652)	63.9	57.7	65.9	C _{GDM-PW}	0.626 (0.592-0.660)	64.7	58.4	66.8	
C _{PE-W}	0.690(0.623-0.757)	71.3	65.0	72.9	C _{PE-P}	0.696(0.630-0.762)	70.3	68.3	70.8	C _{PE-PW}	0.702 (0.636-0.768)	72.3	66.7	73.8	

AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc =

accuracy. Sen = sensitivity. Spe = specificity.

	AUC (95% CI)	p-value
MA		
C _{MA-A}	0.779 (0.736-0.823)	
C _{MA-W}	0.640 (0.591-0.689)	2.97E-06
C _{MA-P}	0.644 (0.595-0.693)	5.78E-05
C _{GDM-PW}	0.649 (0.600-0.698)	8.88E-05
FGR		
C _{FGR-A}	0.773 (0.732-0.814)	
C _{FGR-W}	0.611 (0.563-0.658)	2.09E-06
C _{FGR-P}	0.616 (0.569-0.664)	8.62E-07
C _{FGR-PW}	0.621 (0.574-0.668)	9.24E-06
GDM		
C _{GDM-A}	0.718 (0.687-0.749)	
C _{GDM-W}	0.593 (0.559-0.627)	1.27E-07
C _{GDM-P}	0.618 (0.584-0.652)	4.86E-05
C _{GDM-PW}	0.626 (0.592-0.660)	1.31E-04
PE		
C _{PE-A}	0.825 (0.770-0.880)	
C _{PE-W}	0.690 (0.623-0.757)	4.68E-04
C _{PE-P}	0.696 (0.630-0.762)	3.37E-03
C _{PE-PW}	0.702 (0.636-0.768)	4.17E-03

Supplemental Table S15. The AUC comparison between different classifier sets

P-values of AUC comparison were calculated using pROC package with default setting. 95% CI=95% confidence interval. MA = macrosomia. FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia. P-value of AUC comparison between male- and female-bearing pregnancies was calculated using pROC package of R.

Supplemental Table S16. The performance of clinical features for predicting pregnancy complications

		AUC (95% CI)	Acc (%)	Sen (%)	Spe (%)	P-value
MA	C _{MA-A}	0.779 (0.736-0.823)	80.3	73.9	81.9	
	BMI	0.714 (0.668-0.761)	73.9	67.2	75.6	0.045
	Combination	0.762 (0.721-0.803)	73.4	80.7	71.6	0.32
FGR	C _{FGR-A}	0.773 (0.732-0.814)	78.9	74.6	80.0	
	BMI	0.690 (0.645-0.736)	74.9	59.2	78.8	9.32E-03
	Combination	0.786 (0.744-0.827)	81.8	73.1	84.0	0.311
GDM	C _{GDM-A}	0.718 (0.687-0.749)	72.1	71.2	72.4	
	BMI	0.540 (0.506-0.574)	58.7	44.6	63.4	9.66E-14
	Combination	0.682 (0.650-0.715)	68.1	68.5	67.9	2.20E-03
PE	C _{PE-A}	0.825 (0.770-0.880)	83.0	81.7	83.3	
	BMI	0.667 (0.598-0.735)	68.7	63.3	70.0	1.93E-04
	Combination	0.629 (0.560-0.699)	65.6	67.5	58.4	1

MA = macrosomia. FGR = fetal growth restriction. GDM = gestational diabetes mellitus. PE = preeclampsia. AUC = area under the receive operating characteristic curve. 95% CI = 95% confidence interval. Acc = accuracy. Sen = sensitivity. Spe = specificity. Combination meant that the BMI was taken as one of the features of set-A classifier of each pregnancy complication to develop novel classifier. *P-value* of AUC comparison was calculated by the pROC package of R. BMI means body mass index before pregnancy.

Supplemental Table S17. Functional annotation of genes in classifiers by retrieving

literatures

Classifier	Gene	Function annotation	PMID
C _{MA-A}	SMC2	Central component of cohesin, a complex required for	19614052
	SIVICS	chromosome cohesion during the cell cycle.	18014035
	MASTL	Serine/threonine kinase that plays a key role in M phase by	20010157
		acting as a regulator of mitosis entry and maintenance.	20010137
	CIOTNE12	Insulin-sensitizing adipocyte-secreted protein that regulates	21940507
	CIQINFIZ	glucose metabolism in liver and adipose tissue.	21849307

	MLXIP	It is involved in the regulation of genes in response to cellular glucose levels.	19706488			
	MAP3K9	It plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis.	26573018			
	APC2	This gene has its highest expression in the central nervous system and is involved in brain development through cytoskeletal regulation in neurons.	17367777			
	NIPBL	It plays a role in developmental regulation.	15373324			
	CREM	It is associated with Type 1 Diabetes Mellitus	17509149			
	CD63	Different levels of platelet activation in preeclamptic, normotensive pregnant, and non-pregnant women.	15118653			
	TCF7	This gene is associated with type 1 diabetes.	12765974			
	DNPEP	DNPEP It likely to play an important role in intracellular protein and peptide metabolism.				
C _{FGR-A}	PTDSS2 The protein functions in cell signaling, blood coagulation, and apoptosis.					
	VAV1	It couples tyrosine kinase signals with the activation of the Rho/Rac GTPases, thus leading to cell differentiation and/or proliferation.	21647562			
	PNRC2	It plays roles in glucocorticoid receptor-mediated mRNA degradation by interacting with the glucocorticoid receptor NR3C1.	25775514			
	NAT10	It may affect microtubule stability and cell division.	19303003			
	SIPA1	It affects cell cycle progression.	19765277			
	WDR35	It promotes TNF-stimulated apoptosis.	20193664			
	MICALL1	It may indirectly play a role in neurite outgrowth.	25086062			
$C_{\text{GDM-A}}$	CTNNB1	It regulates cell growth and adhesion between cells	28456466			
	CLOCK	Polymorphisms in this gene may be associated with obesity and metabolic syndrome.	18541547			
	BCKDHB	Mutations in this gene have been associated with maple syrup urine disease (MSUD), type 1B.	22326532			
	NFKB2	It involves in inflammation and immune function, which is associated with preterm birth.	18818748			
C_{PE-A}	AMOTL1	It induces the remodeling of the actin cytoskeleton.	19565639			
	CDX1	It could play a role in the terminal differentiation of the intestine.	19059241			

PMID = PubMed Unique Identifier.

Supplemental Table S18. Performance evaluation of the classifiers

Classifier	Positive predictive value	Negative predictive value
C _{MA-A}	0.483	0.927

C _{GFR-A}	0.506	0.926
C _{GDM-A}	0.462	0.883
C _{PE-A}	0.551	0.948