
Table S1. Locoregional or Systematic Recurrence 

No. of 
cases Locoregional or Systematic Recurrence 

187 lung including ribs and mediastinal  
30 lung 
4 Liver, Bone, Brain, Vertebra 
27 Brain 
41 lung 
29 Scapula, Ribs, pelvis, vertebra, skull 
15 Pleura, Diaphragm 
4 Adrenal gland 
2 Mediastinum, left apical lesion abutting the subclavian vessels and mediastinum 
11 Ribs, Lung, Diaphragm, Pancreas, spleen 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Radiomic features and the patterns that they capture. 

Feature 
group Quantity Description Rationale 

Laws 
energy 
measures 

25 

Response to 5-pixel × 5-pixel filter 
targeting combination of specific textural 
enhancement patterns in 
the X and Y directions. Descriptors 
include all combinations of five 1D filters: 
level (L), edge (E), spot (S), wave (W), 
and ripple (R). 

May possibly detect 
patterns of 
heterogeneous 
enhancement and 
abnormal structure 

Laws 
Laplacian 
features 

25 

Laplacian pyramids allow for capture of 
multi- scale edge representations via a 
set of band pass filters. First, the original 
image is convolved with a Gaussian 
kernel. The Laplacian is then computed 
as the difference between the original 
image and the low-pass-filtered image. 
The resulting image is then sub- 
sampled by a factor of 2, and the filter 
subsample operation is applied 
recursively. This process is continued to 
obtain a set of band pass-filtered 
images. Laws Energy filters are then 
applied to the resulting images to obtain 
a set of 25 features. 

Like Laws features can 
detect patterns of 
heterogeneous 
enhancement and 
abnormal structure 

Gabor 
features 48 

Detection of edges through response to 
Gabor wavelet features. Each descriptor 
quantifies response to a given Gabor 
filter at a specific frequency (f ∈{ 0, 2, 4, 
8, 16, or 32}) and orientation (θ ∈{ 0, 
π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8}). 

May possibly capture 
changes in tumor 
microarchitecture or 
detect the presence of 
TILs 

Haralick 
features 13 

Quantify heterogeneity and entropy of 
local intensity texture as represented by 
the gray-level co-occurrence matrix 
within a 5-pixel × 5-pixel window. 

Quantify heterogeneity 
and entropy of tumor 
texture 

3D 
Shape 
Features 

12 

convexity, width, height, depth, 
perimeter, area, eccentricity, 
compactness, radial distance, 
roughness, elongation equivalent 
diameter and 3D-sphericity of the 
nodule. 

irregularities in tumors 
shape can result from its 
internal heterogeneity 
and differences in the 
growth pattern 

 

 



Table S3. Demographics and clinical characteristics for the 350 cases from D1 and D2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics 350 Patients from 
D1 and D2 

Sex 
Male 136 (39%) 

Female 214 (61%) 

Age Median (range) 67 (22 – 87) 

Race 
White 287 (82%) 

Black 63 (18%) 

Smoking 
Never 49 (14%) 

Former or current 301 (86%) 

Histology 

Adenocarcinoma 276 (79%) 

Squamous cell carcinoma 53 (15%) 

Large cell carcinoma 21 (6%) 

Cancer stage 
I A, B 224 (64%) 

II A 126 (36%) 

Surgery 

Lobectomy 273 (78%) 

Pneumonectomy 14 (5%) 

Wedge Resection  
(Segmentectomy) 58 (17%) 

Time to recurrence 
after surgery Median (range) 17.5 (1.3 – 75.3) 



 
Figure S1. 46 features found in ROIs of the PI-AUC space shown in Figure 2. The PI and AUC 
values were found by using all 175 patients in training set. PI is calculated across cancer 
recurrence and AUC is the mean value obtained across 100 iterations of 3-fold cross validation for 
the prognostic task. 

 

 

1: High AUC (>0.7), Low PI (0.1<PI<0.25)     2: High AUC (>0.65), very Low PI (<0.1) 

 Skewness of peri-tumoral (2, π/8)   SD of (0, π/8) Gabor  
 Kurtosis of peri-tumoral (2, π/8)  Kurtosis of (0, π/8) Gabor 
 Var of peri-tumoral (2, π/8)  Var of (0, π/8) Gabor 
 Mean of peri-tumoral (2, 3π 8)   Mean of (0, π/4) Gabor 
 Median of peri-tumoral (2, 3π/8)  Median of (0, π/4) Gabor 
 SD of peri-tumoral (2, 3π/8)  Kurtosis of (0, π/4) Gabor 
 Kurtosis of peri-tumoral (2, π/2) Var of (0, π/4) Gabor 
 Skewness of peri-tumoral (2, 7π/8  Mean of (0, 3π/8) Gabor 
 Mean of peri-tumoral inertia  Median of (0, 3π/8) 
 Skewness of peri-tumoral sum_va   Skewness of (0, 3π/8) 

 SD of (0, π/2) 
 Var of (0, π/2) 
 Var of (0, 3π/4) 
 Median of (0, 7π/8) 
 Var of peri-tumoral entropy 
Mean of peri-tumoral idm 

3: Low AUC (<0.48), Low PI (<0.05)                    4: Low AUC (<0.5), High PI (>0.8) 
 Kurtosis of L*E  Kurtosis of (4, 0) 
 SD of L*R  Skewness of (4, π/8) 
 Kurtosis of L*E Laplace  Kurtosis of (4, π/8) 
Mean of diff_av  Var of (4, π/8) 

 Mean of peri-tumoral (2, π/8)  Mean of (4, π/4)  
 Mean of peri-tumoral W*E  Kurtosis of (32, 0) 
 Skewness of peri-tumoral W*L Laplace  Skewness of (32, π/8) 
 Mean of peri-tumoral W*E Laplace  Kurtosis of (32, π/8) 

Var of (32, π/8) 
 Mean of (32, π/4) 

Median of peri-tumoral idm 



Feature Stability Measures 

Features may be affected by factors such as slice thickness, specimen preservation 

procedure, and scanner hardware. To evaluate the effect of these site-specific factors on the 

quantitative features, Leo et al. defined two measures of instability. The first, latent instability 

score (LI), describes the inherent randomness of a feature’s distribution within a single 

preparation procedure. A feature’s LI is calculated by repeatedly randomly dividing the 

patients of a single dataset in half and testing the feature’s distributions in the two halves for 

a significant difference. A low LI indicates that there is a low probability of features being 

significantly different between two datasets from different sites due to effects such as a 

different set of patients. Secondly, they introduce a method involving cross-dataset 

comparisons for quantifying the frequency at which a feature is different between datasets 

from different sites. This is the preparation-induced instability score (PI). A high PI indicates 

that a feature is frequently different between sites, likely because it is affected by preparation 

procedures. In other words, the preparation instability (PI) is the rate that a feature has a 

significantly different distribution between sites. A feature with a low LI but high PI is likely to 

have been affected by site-induced variation. The low LI indicates that the feature is not 

unstable from differences in image content or patient population but the high PI indicates that 

the feature was frequently found to be different between sites. Thus, if PI≫LI, differences 

between sites has greatly affected the features. Leo et al. found that LI was universally low in 

every feature of every dataset they tested, with LI being an order of magnitude less than PI, 

suggesting that LI can be neglected and cross-site feature instability can be almost entirely 

attributed to site-induced variation. 

In this study, feature instability was calculated using the cancer-recurrence patients. 

Differences in the feature values of cancer recurrence patients was assumed to be a sign of 

site instability because it was considered unlikely that the texture would vary across sites 



without site-specific confounding effects. A low instability (PI) shows that features are not 

significantly different sites in the training set, whereas a high instability indicates that feature 

values have been greatly affected by site-specific factors. 

Every feature which exhibited a PI above a predetermined threshold (PI = 0.1) was excluded 

from consideration. For this problem, PI=0.1 suggests that a radiomic feature associated with 

a nodule that resulted in cancer recurrence following surgical removal was significantly 

different between different sites for 10% of comparisons. 

To determine the relationship between feature stability and discriminability, the area under the 

receiver operating characteristic (ROC) curve (AUC) for each feature was then calculated. 

Feature AUC was calculated with 100 iterations of 3-fold cross validation (CV) using twelve 

machine learning classifiers in the training sets. In this study, twelve machine-learning 

classifiers were used to evaluate the accuracy of features in the training set. A detailed 

description with regard to the machine learning classifiers can be found in section 2 of this 

supplementary. The mean AUC across twelve classifiers was then used to generate the final 

AUC for each feature. Every feature which exhibited an AUC under a predetermined threshold 

(0.67) was also excluded from further consideration. Each feature had two values, a PI and 

mean AUC. Thus each feature was defined by a unique position in the PI-AUC space. Those 

features identified simultaneously as stable and discriminating were then used to construct 

generalizable prognostic classifier. 

 

 

 

 

 

 



Machine Learning Classifiers 

In this study twelve machine-learning classifiers from nine classifier families were used. 

Bagging (BAG): Bagging is a “bootstrap” ensemble method that creates individuals for its 

classes by training each classifier on a random redistribution of the training set. The training set 

is generated by randomly drawing with N replacement - where N is the size of the original 

training set. 

Bayesian (BY): Bayesian is a probabilistic classifier that makes classifications using the 

Maximum a Posteriori decision rule in a Bayesian setting based on Bayes’ Theorem. 

Boosting (BST): The term ‘Boosting’ refers to a family of algorithms which converts weak 

learner to strong learners. To find weak rule, the learning algorithms with a different distribution 

is applied and each time a new weak prediction rule is generated. After many iterations, the 

boosting algorithm combines the weak rules into a single strong prediction rule. 

Decision Trees (DT): The decision trees are a type of supervised machine learning classifier 

where the data is continuously split according to a certain parameter (features). The tree is 

explained by two entities, decision nodes and leaves. The leaves are the decisions (outcomes) 

and the decision nodes are where the data is split. The classification is done based on the path 

that gives the highest information gain. 

Linear Discriminant Analysis (LDA): The LDA classifier generates a linear class boundary 

while assuming that each class has normal distribution with a class-specific mean vector and a 

common variance. 



Quadratic Discriminant Analysis (QDA): The QDA classifier generates nonlinear class 

boundaries (quadratic patterns) while assuming that the covariance of each class is not 

identical. 

Nearest Neighbors (NN): In this classification, an object is classified by a majority vote of its 

neighbors, with the object being assigned to the class most common among its k nearest 

neighbors 

Neural Networks (Nnet): A neural network consists of units (neurons), arranged in layers, while 

each unit takes an input, applies a (often nonlinear) function to it and then passes the output on 

to the next layer. A unit feeds its output to all the units on the next layer, but there is no 

feedback to the previous layer. Weightings are applied to the signals passing from one unit to 

another, and it is these weightings which are tuned in the training phase. 

Random Forests (RF): Random forest classifier creates a set of decision trees from randomly 

selected subset of training set. It then aggregates the votes from different decision trees to 

decide the final class of the test object. 

Support Vector Machines (SVM): The classifier separates data points using a hyperplane with 

the largest amount of margin. A hyperplane is a decision plane which separates between a set 

of objects having different class memberships. The SVM algorithm is implemented in practice 

using a kernel. A kernel transforms an input data space into the required form. Based on which 

kernel is used to transform input data space into the required form, the classifier is divided into 

three subgroups. Linear Kernel, Polynomial Kernel and Radial Basis Function Kernel (RBF). 


